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Abstract. We extended Isabelle/HOL with a pair of definitional commands for
datatypes and codatatypes. They support mutual and nested (co)recursion through
well-behaved type constructors, including mixed recursion–corecursion, and are
complemented by syntaxes for introducing primitively (co)recursive functions
and by a general proof method for reasoning coinductively. As a case study, we
ported Isabelle’s Coinductive library to use the new commands, eliminating the
need for tedious ad hoc constructions.

1 Introduction

Coinductive methods are becoming widespread in computer science. In proof assistants
such as Agda, Coq, and Matita, codatatypes and coinduction are intrinsic to the log-
ical calculus [2]. Formalizations involving programming language semantics, such as
the CompCert verified C compiler [17], use codatatypes to represent potentially infinite
execution traces. The literature also abounds with “coinductive pearls,” which demon-
strate how coinductive methods can lead to nicer solutions than traditional approaches.

Thus far, provers based on higher-order logic (HOL) have mostly stood on the side-
lines of these developments. Isabelle/HOL [24, Part 1; 25] provides a few manually
derived codatatypes (e.g., lazy lists) in the Coinductive entry of the Archive of Formal
Proofs [18]. This library forms the basis of JinjaThreads [19], a verified compiler for
a Java-like language, and of the formalization of the Java memory model [21]. The
manual constructions are heavy, requiring hundreds of lines for each codatatype.

Even in the realm of datatypes, there is room for improvement. Isabelle’s datatype
package was developed by Berghofer and Wenzel [4], who could draw on the work of
Melham [23], Gunter [11, 12], Paulson [28], and Harrison [14]. The package supports
positive recursion through functions and reduces nested recursion through datatypes to
mutual recursion, but otherwise allows no nesting. It must reject definitions such as

datatype α treeFS = TreeFS α (α treeFS fset)

where fset designates finite sets (a non-datatype). Moreover, the reduction of nested to
mutual recursion makes it difficult to specify recursive functions truly modularly.

We introduce a definitional package for datatypes and codatatypes that addresses the
issues noted above. The key notion is that of a bounded natural functor (BNF), a type
constructor equipped with map and set functions and a cardinality bound (Section 2).
BNFs are closed under composition and least and greatest fixpoints and are expressible
in HOL. Users can register well-behaved type constructors such as fset as BNFs.



The BNF-based datatype and codatatype commands provide many conveniences
such as automatically generated discriminators, selectors, map and set functions, and
relators (Sections 3 and 4). Thus, the command

codatatype (lset: α) llist (map: lmap rel: lrel) =
lnull: LNil | LCons (lhd: α) (ltl: α llist)

defines the type α llist of lazy lists over α, with constructors LNil :: α llist and LCons ::
α⇒ α llist⇒ α llist, a discriminator lnull :: α llist⇒ bool, selectors lhd :: α llist⇒ α
and ltl :: α llist⇒ α llist, a set function lset :: α llist⇒ α set, a map function lmap ::
(α⇒ β)⇒ α llist⇒ β llist, and a relator lrel :: (α⇒ β⇒ bool)⇒ α llist⇒ β llist⇒
bool. Intuitively, the codatatype keyword indicates that the constructors can be applied
repeatedly to produce infinite values—e.g., LCons 0 (LCons 1 (LCons 2 . . .)).

Nesting makes it possible to mix recursion and corecursion arbitrarily. The next
commands introduce the types of Rose trees with finite or possibly infinite branching
(list vs. llist) and with finite or possibly infinite paths (datatype vs. codatatype):

datatype α tree = Tree (lab: α) (sub: α tree list)
datatype α treeω = Treeω (labω: α) (subω: α treeω llist)
codatatype α ltree = LTree (llab: α) (lsub: α ltree list)
codatatype α ltreeω = LTreeω (llabω: α) (lsubω: α ltreeω llist)

Primitively (co)recursive functions can be specified using primrec and primcorec
(Sections 5 and 6). The function below constructs a possibly infinite tree by repeatedly
applying f :: α⇒ α llist to x. It relies on lmap to construct the nested llist modularly:

primcorec iterate_�ltreeω :: (α⇒ α llist)⇒ α⇒ α ltreeω where
iterate_�ltreeω f x = LTreeω x (lmap (iterate_�ltreeω f ) ( f x))

An analogous definition is possible for α ltree, using list’s map instead of lmap.
For datatypes that recurse through other datatypes, and similarly for codatatypes,

old-style mutual definitions are also allowed. For the above example, this would mean
defining iterate_�ltreeω by mutual corecursion with iterate_�ltreesω :: (α⇒ α llist)⇒
α llist⇒ α ltreeω llist. Despite its lack of modularity, the approach is useful both for
compatibility and for expressing specifications in a more flexible style. The package
generates suitable (co)induction rules to facilitate reasoning about the definition.

Reasoning coinductively is needlessly tedious in Isabelle, because the coinduct
method requires the user to provide a witness relation. Our new coinduction method
eliminates this boilerplate; it is now possible to have one-line proofs by coinduction
auto (Section 7). To show the package in action, we present a theory of stream proces-
sors, which combine a least and a greatest fixpoint (Section 8). In addition, we describe
our experience porting the Coinductive library to use the new package (Section 9). A
formal development accompanies this paper [6].

The package has been part of Isabelle starting with version 2013. The implementa-
tion is a significant piece of engineering, at over 18 000 lines of Standard ML code and
1 000 lines of Isabelle formalization. The features described here are implemented in
the development repository and are expected to be part of version 2014. (In the current
implementation, the BNF-based datatype command is suffixed with _new to avoid a
clash with the old package.) The input syntax and the generated constants and theorems
are documented in the user’s manual [7].



2 Low-Level Constructions

At the lowest level, each (co)datatype has a single unary constructor. Multiple curried
constructors are modeled by disjoint sums (+) of products (×). A (co)datatype defi-
nition corresponds to a fixpoint equation. For example, the equation β = unit+α×β
specifies either (finite) lists or lazy lists, depending on which fixpoint is chosen.

Bounded natural functors (BNFs) are a semantic criterion for where (co)recursion
may appear on the right-hand side of an equation. The theory of BNFs is described in a
previous paper [33] and in Traytel’s M.Sc. thesis [32]. We refer to either of these for a
discussion of related work. Here, we focus on implementational aspects.

There is a large gap between the low-level view and the end products presented to
the user. The necessary infrastructure—including support for multiple curried construc-
tors, generation of high-level characteristic theorems, and commands for specifying
functions—constitutes a new contribution and is described in Sections 3 to 6.

Bounded Natural Functors. An n-ary BNF is a type constructor equipped with a map
function (or functorial action), n set functions (or natural transformations), and a car-
dinal bound that satisfy certain properties. For example, llist is a unary BNF. Its relator
lrel extends binary predicates over elements to binary predicates over lazy lists:

lrel R xs ys = (∃zs. lset zs⊆ {(x, y) | R x y} ∧ lmap fst zs = xs ∧ lmap snd zs = ys)

Additionally, lbd bounds the number of elements returned by the set function lset; it
may not depend on α’s cardinality. To prove that llist is a BNF, the greatest fixpoint
operation discharges the following proof obligations:1

lmap id= id lmap ( f ◦g) = lmap f ◦ lmap g
∧

x. x ∈ lset xs =⇒ f x = g x

lmap f xs = lmap g xs|lset xs| ≤o lbd lset ◦ lmap f = image f ◦ lset
ℵ0 ≤o lbd lrel R �•�• lrel S v lrel (R �•�• S)

(The operator ≤o is a well-order on ordinals [8], v denotes implication lifted to binary
predicates, and �•�• denotes the relational composition of binary predicates.) Internally,
the package stores BNFs as an ML structure that combines the functions, the basic
properties, and derived facts such as lrel R �•�• lrel S = lrel (R�•�• S), lrel (op=)= (op=),
and R v S =⇒ lrel R v lrel S.

Given an n-ary BNF, the n type variables associated with set functions, and on which
the map function acts, are live; any other variables are dead. The notation σ 〈α |∆〉
stands for a BNF of type σ depending on the (ordered) list of live variables α and the
set of dead variables ∆. Nested (co)recursion can only take place through live variables.

A two-step procedure introduces (co)datatypes as solutions to fixpoint equations:

1. Construct the BNFs for the right-hand sides of the equations by composition.
2. Perform the least or greatest fixpoint operation on the BNFs.

Whereas codatatypes are necessarily nonempty, some datatype definitions must be
rejected in HOL. For example, codatatype α stream = SCons (shd: α) (stl: α stream),

1 The list of proof obligations has evolved since our previous work [33]. The redundant cardi-
nality condition |{xs | lset xs⊆ A}| ≤o (|A|+2)lbd has been removed, and the preservation of
weak pullbacks has been reformulated as a simpler property of the relator.



the type of infinite streams, can be defined only as a codatatype. In the general BNF
setting, each functor must keep track of its nonemptiness witnesses [9].

The Fixpoint Operations. The LFP operation constructs a least fixpoint solution
τ1, . . . , τn to n mutual fixpoint equations βj = σj. Its input consists of n BNFs sharing
the same live variables [32, 33]:

LFP : n (m+n)-ary BNFs σj 〈α, β |∆ j〉 →
• n m-ary BNFs τj 〈α |∆1 ∪ ·· · ∪ ∆n〉 for newly defined types τj

• n constructors ctor_�τj :: σj[β 7→ τ]⇒ τj

• n iterators iter_�τj :: (σ1⇒ β1)⇒ ··· ⇒ (σn⇒ βn)⇒ τj⇒ βj

• characteristic theorems including an induction rule

(The fixpoint variables βj are harmlessly reused as result types of the iterators.) The
contract for GFP, the greatest fixpoint, is identical except that coiterators and coinduct-
ion replace iterators and induction. The coiterator coiter_�τj has type (β1⇒σ1)⇒···⇒
(βn⇒ σn)⇒ βj⇒ τj. An iterator consumes a datatype, peeling off one constructor at
a time; a coiterator produces a codatatype, delivering one constructor at a time.

LFP defines algebras and morphisms based on the equation system. The fixpoint,
or initial algebra, is defined abstractly by well-founded recursion on a sufficiently large
cardinal. The operation is defined only if the fixpoint is nonempty. In contrast, GFP
builds a concrete tree structure [33]. This asymmetry is an accident of history—an ab-
stract approach is also possible for GFP [30].

Nesting BNFs scales much better than the old package’s reduction to mutual recur-
sion [32, Appendix B]. On the other hand, LFP and GFP scale poorly in the number of
mutual types; a 12-ary LFP takes about 10 minutes of CPU time on modern hardware.
Reducing mutual recursion to nested recursion would circumvent the problem.

The ML functions that implement BNF operations all adhere to the same pattern:
They introduce constants, state their properties, and discharge the proof obligations
using dedicated tactics. About one fifth of the code base is devoted to tactics. They rely
almost exclusively on resolution and unfolding, which makes them fast and reliable.

Methodologically, we developed the package in stages, starting with the formaliza-
tion of a fixed abstract example β= (α, β, γ)F0 and γ = (α, β, γ)G0 specifying α F and
α G. We axiomatized the BNF structure and verified the closure under LFP and GFP
using structured Isar proofs. We then expanded the proofs to detailed apply scripts [6].
Finally, we translated the scripts into tactics and generalized them for arbitrary m and n.

The Composition Pipeline. Composing functors together is widely perceived as be-
ing trivial, and accordingly it has received little attention in the literature, including
our previous paper [33]. Nevertheless, an implementation must perform a carefully or-
chestrated sequence of steps to construct BNFs (and discharge the accompanying proof
obligations) for the types occurring on the right-hand sides of fixpoint equations. This
is achieved by four operations:

COMPOSE : m-ary BNF σ 〈α |∆〉 and m n-ary BNFs τi 〈β |Θi〉 →
n-ary BNF σ[α 7→ τ] 〈β |∆ ∪Θ1 ∪ ·· · ∪Θm〉

KILL : m-ary BNF σ 〈α |∆〉 and k ≤ m →
(m− k)-ary BNF σ 〈αk+1, . . . , αm |∆ ∪ {α1, . . . , αk}〉



LIFT : m-ary BNF σ 〈α |∆〉 and n fresh type variables β →
(m+n)-ary BNF σ 〈β, α |∆〉

PERMUTE : m-ary BNF σ 〈α |∆〉 and permutation π of {1, . . . ,m} →
m-ary BNF σ 〈απ(1), . . . , απ(m) |∆〉

COMPOSE operates on BNFs normalized to share the same live variables; the other op-
erations perform this normalization. Traytel’s M.Sc. thesis [32] describes all of them
in more detail. Complex types are proved to be BNFs by applying normalization fol-
lowed by COMPOSE recursively. The base cases are manually registered as BNFs. These
include constant α 〈|α〉, identity α 〈α |〉, sum α+β 〈α, β |〉, product α×β 〈α, β |〉, and
restricted function space α⇒β 〈β |α〉. Users can register further types, such as those
introduced by the new package for non-free datatypes [31].

As an example, consider the type (α⇒β) + γ×α. The recursive calls on the argu-
ments to + return the BNFs α⇒β 〈β |α〉 and γ×α 〈γ, α |〉. Since α is dead in α⇒ β, it
must be killed in γ×α as well. This is achieved by permuting α to be the first variable
and killing it, yielding γ×α 〈γ |α〉. Next, both BNFs are lifted to have the same set of
live variables: α⇒β 〈γ, β |α〉 and γ×α 〈β, γ |α〉. Another permutation ensures that the
live variables appear in the same order: α⇒β 〈β, γ |α〉. At this point, the BNF for +
can be composed with the normalized BNFs to produce (α⇒β)+ γ×α 〈β, γ |α〉.

The compositional approach to BNF construction keeps the tactics simple at the
expense of performance. By inlining intermediate definitions and deriving auxiliary
BNF facts lazily, we were able to address the main bottlenecks. Nevertheless, Brian
Huffman has demonstrated in a private prototype that a noncompositional, monolithic
approach is also feasible and less heavy, although it requires more sophisticated tactics.

Nested-to-Mutual Reduction. The old datatype command reduces nested recursion
to mutual recursion, as proposed by Gunter [11]. Given a nested datatype specification
such as α tree = Tree α (α tree list), the old command first unfolds the definition of list,
resulting in the mutual specification of trees and “lists of trees,” as if the user had entered

datatype α tree=Tree α (α treelist) and α treelist=Nil |Cons (α tree)(α treelist)

In a second step, the package translates all occurrences of α treelist into the more palat-
able α tree list via an isomorphism. As a result, the induction principle and the input
syntax to primrec have an unmistakable mutual flavor.

For compatibility, and for the benefit of users who prefer the mutual approach, the
new package implements a nested-to-mutual reduction operation, N2M, that constructs
old-style induction principles and iterators from those produced by LFP:

N2M : n (m+n)-ary BNFs σj 〈α, β |∆ j〉 and n (new-style) datatypes τj →
• n iterators n2m_�iter_�τj :: (σ1⇒ β1)⇒ ·· · ⇒ (σn⇒ βn)⇒ τj⇒ βj

• characteristic theorems including an induction rule

Like LFP and GFP, the N2M operation takes a system of equations βj = σj given as
normalized BNFs. In addition, it expects a list of datatypes τj produced by LFP that
solve the equations and that may nest each other (e.g., α tree and α tree list). The oper-
ation is dual for codatatypes; its implementation is a single ML function that reverses
some of the function and implication arrows when operating on codatatypes.



The primrec and primcorec commands invoke N2M when they detect nested
(co)datatypes used as if they were mutual. In addition, datatype_compat relies on
N2M to register new-style nested datatypes as old-style datatypes, which is useful
for interfacing with existing unported infrastructure. In contrast to Gunter’s approach,
N2M does not introduce any new types. Instead, it efficiently composes artifacts of the
fixpoint operations: (co)iterators and (co)induction rules. By giving N2M a similar in-
terface to LFP and GFP, we can use it uniformly in the rest of the (co)datatype code.
The description below is admittedly rather technical, because there is (to our knowl-
edge) no prior account of such an operation in the literature.

As an abstract example that captures most of the complexity of N2M, let (α, β)F0
and (α, β)G0 be arbitrary BNFs with live type variables α and β. Let α F be the LFP of
β= (α, β)F0 and α G be the LFP of β= (α, βF)G0 (assuming they exist).2 These two
definitions reflect the modular, nested view: First α F is defined as an LFP, becoming
a BNF in its own right; then α G is defined as an LFP using an equation that nests F.
The resulting iterator for α G, iter_�G, has type ((α, γF)G0 ⇒ γ)⇒ α G⇒ γ, and its
characteristic equation recurses through the F components of G using map_�F.

If we instead define α GM (' α G) and α GFM (' α G F) together in the old-style,
mutually recursive fashion as the LFP of β = (α, γ)G0 and γ = (β, γ)F0, we obtain
two iterators with the following types:

iter_�GM :: ((α, γ)G0⇒ β)⇒ ((β, γ)F0⇒ γ)⇒ α GM ⇒ β
iter_�GFM :: ((α, γ)G0⇒ β)⇒ ((β, γ)F0⇒ γ)⇒ α GFM⇒ γ

These are more flexible: iter_�GFM offers the choice of indicating recursive behavior
other than a map for the α GFM components of α GM. The gap is filled by N2M, which
defines mutual iterators by combining the standard iterators for F and G. It does not
introduce any new types α GM and α GFM but works with the existing ones:

n2m_�iter_�G :: ((α, γ)G0⇒ β)⇒ ((β, γ)F0⇒ γ)⇒ α G ⇒ β
n2m_�iter_�G_�F :: ((α, γ)G0⇒ β)⇒ ((β, γ)F0⇒ γ)⇒ α G F⇒ γ

n2m_�iter_�G g f = iter_�G (g ◦map_�G0 id (iter_�F f ))
n2m_�iter_�G_�F g f = iter_�F ( f ◦map_�F0 (n2m_�iter_�G g f ) id)

N2M also outputs a corresponding mutual induction rule. For each input BNF, the
operation first derives the low-level relator induction rule—a higher-order version of
parallel induction on two values of the same shape (e.g., lists of the same length):∧

x x′. rel_�G0 P (rel_�F R) x x′ =⇒ R (ctor_�G x) (ctor_�G x′)

rel_�G P v R∧
y y′ . rel_�F0 R S y y′ =⇒ S (ctor_�F y) (ctor_�F y′)

rel_�F R v S

The binary predicates R and S are the properties we want to prove on α G and α G F.
The left-hand sides of the of lifted implications v ensure that the two values related by
R or S have the same shape. The binary predicate P relates α elements. The antecedents
of the rules are the induction steps. The left-hand sides of the implications =⇒ are the

2 It may help to think of these types more concretely by taking
F := list G := tree (α, β)F0 := unit+α×β (α, β)G0 := α×β



induction hypotheses; they ensure that R and S hold for all parallel, direct subterms
with types α G and α G F of the values for which we need to prove the step.

The relators are compositional, enabling a modular proof of the mutual relator in-
duction rule from the above rules and relator monotonicity of G0 and F0:∧

x x′. rel_�G0 P S x x′ =⇒ R (ctor_�G x) (ctor_�G x′)∧
y y′ . rel_�F0 R S y y′ =⇒ S (ctor_�F y) (ctor_�F y′)

rel_�G P v R ∧ rel_�F (rel_�G P) v S

The standard induction rule is derived by instantiating P :: α⇒ α′⇒ bool with equality,
followed by some massaging. Coinduction is dual, with =⇒ and v reversed.

3 Types with Free Constructors

Datatypes and codatatypes are instances of types equipped with free constructors. Such
types are useful in their own right, regardless of whether they support induction or
coinduction; for example, pattern matching requires only distinctness and injectivity.

We have extended Isabelle with a database of freely constructed types. Users can
enter the free_constructors command to register custom types, by listing the construc-
tors and proving exhaustiveness, distinctness, and injectivity. In exchange, Isabelle gen-
erates constants for case expressions, discriminators, and selectors—collectively called
destructors—as well as a wealth of theorems about constructors and destructors. Our
new datatype and codatatype commands use this functionality internally.

The case constant is defined via the definite description operator ( ι)—for example,
case_�list n c xs = ( ιz. xs = Nil ∧ z = n ∨ (∃y ys. xs = Cons y ys ∧ z = c y ys)). Syntax
translations render case_�list n c xs as an ML-style case expression.

Given a type τ constructed by C1, . . . ,Cm, its discriminators are constants is_�C1, . . . ,
is_�Cm :: τ⇒ bool such that is_�Ci (Cj x̄) if and only if i = j. No discriminators are needed
if m = 1. For the m = 2 case, Isabelle generates a single discriminator and uses its
negation for the second constructor by default. For nullary constructors Ci, Isabelle can
be told to use λx. x = Ci as the discriminator in the theorems it generates.

In addition, for each n-ary constructor Ci :: τ1⇒ ··· ⇒ τn⇒ τ, n selectors un_�Cij ::
τ⇒ τj extract its arguments. Users can reuse selector names across constructors. They
can also specify a default value for constructors on which a selector would otherwise be
unspecified. The example below defines four selectors and assigns reasonable default
values. The mid selector returns the third argument of Node2 x l r as a default:

datatype α tree23 =
Leaf (defaults left: Leaf mid: Leaf right: Leaf)
| Node2 (val: α) (left: α tree23) (right: α tree23) (defaults mid: λx l r. r)
| Node3 (val: α) (left: α tree23) (mid: α tree23) (right: α tree23)

4 (Co)datatypes

The datatype and codatatype commands share the same input syntax, consisting of
a list of mutually (co)recursive types to define, their desired constructors, and optional
information such as custom names for destructors. They perform the following steps:



1. Formulate and solve the fixpoint equations using LFP or GFP.
2. Define the constructor constants.
3. Generate the destructors and the free constructor theorems.
4. Derive the high-level map, set, and relator theorems.
5. Define the high-level (co)recursor constants.
6. Derive the high-level (co)recursor theorems and (co)induction rules.

Step 1 relies on the fixpoint and composition operations described in Section 2 to
produce the desired types and low-level constants and theorems. Step 2 defines high-
level constructors that untangle sums of products—for example, Nil= ctor_�list (Inl ())
and Cons x xs = ctor_�list (Inr (x, xs)). Step 3 amounts to an invocation of the free_
constructors command described in Section 3. Step 4 reformulates the low-level map,
set, and relator theorems in terms of constructors; a selection is shown for α list below:

list.map: map f Nil= Nil map f (Cons x xs) = Cons ( f x) (map f xs)
list.set: set Nil= {} set (Cons x xs) = {x} ∪ set xs
list.rel_inject: rel R Nil Nil rel R (Cons x xs) (Cons y ys)←→ R x y ∧ rel R xs ys

Datatypes and codatatypes differ at step 5. For an m-constructor datatype, the high-
level iterator takes m curried functions as arguments (whereas the low-level version
takes one function with a sum-of-product domain). For convenience, a recursor is de-
fined in terms of the iterator to provide each recursive constructor argument’s value both
before and after the recursion. The list recursor has type β⇒ (α⇒ α list⇒ β⇒ β)⇒
α list⇒ β. The corresponding induction rule has one hypothesis per constructor:

list.rec: rec_�list n cNil= n rec_�list n c (Cons x xs) = c x xs (rec_�list n c xs)

list.induct:
P Nil

∧
x xs. P xs =⇒ P (Cons x xs)

P t

For nested recursion beyond sums of products, the map and set functions of the type
constructors through which recursion takes place appear in the high-level theorems:

treeω.rec: rec_�treeω f (Treeω x ts) = f x (lmap (λt. (t, rec_�treeω f t)) ts)

treeω.induct:
∧

x ts. (
∧

t. t ∈ lset ts =⇒ P t) =⇒ P (Treeω x ts)

P t

As for corecursion, given an m-constructor codatatype, m− 1 predicates sequentially
determine which constructor to produce. Moreover, for each constructor argument, a
function specifies how to construct it from an abstract value of type α. For corecursive
arguments, the function has type α⇒ τ+α and returns either a value that stops the
corecursion or a tuple of arguments to a corecursive call. The high-level corecursor
presents such functions as three arguments stop ::α⇒ bool, end ::α⇒ τ, and continue ::
α⇒ α, abbreviated to s, e, c below. Thus, the high-level corecursor for lazy lists has the
type (α⇒ bool)⇒ (α⇒ β)⇒ (α⇒ bool)⇒ (α⇒ β llist)⇒ (α⇒ α)⇒ α⇒ β llist:

llist.corec: n a =⇒ corec_�llist n h s e c a = LNil
¬ n a =⇒ corec_�llist n h s e c a =

LCons (h a) (if s a then e a else corec_�llist n h s e c (c a))



Nested corecursion is expressed using the map functions of the nesting type construc-
tors. The coinduction rule uses the relators to lift a coinduction witness R. For example:

ltree.corec: corec_�ltree l s a =

LTree (l a) (map (case_�sum (λt. t) (corec_�ltree l s)) (s a))

ltree.coinduct:
R t u

∧
t u. R t u =⇒ llab t = llab u ∧ rel R (lsub t) (lsub u)

t = u

5 Recursive Functions

Primitively recursive functions can be defined by providing suitable arguments to the
recursors. The primrec command automates this process: From recursive equations
specified by the user, it synthesizes a recursor-based definition.

The main improvement of the new implementation of primrec over the old one is
its support for nested recursion through map functions [27]. For example:

primrec height_�treeFS :: α treeFS⇒ nat where
height_�treeFS (TreeFS _ T ) = 1+

⊔
fset (fimage height_�treeFS T )

In the above, α treeFS is the datatype constructed by TreeFS ::α⇒α treeFS fset⇒α treeFS

(Section 1),
⊔

N stands for the maximum of N, fset injects α fset into α set, and the
map function fimage gives the image of a finite set under a function. From the specified
equation, the command synthesizes the definition

height_�treeFS = rec_�treeFS (λ_ TN. 1+
⊔

fset (fimage snd TN))

From this definition and the treeFS.rec theorems, it derives the original specification as a
theorem. Notice how the argument T :: α treeFS fset becomes TN :: (α treeFS×nat) fset,
where the second pair components store the result of the corresponding recursive call.

Briefly, constructor arguments x are transformed as follows. Nonrecursive argu-
ments appear unchanged in the recursor and can be used directly. Directly or mutually
recursive arguments appear as two values: the original value x and the value y after the
recursive call to f. Calls f x are replaced by y. Nested recursive arguments appear as a
single argument but with pairs inside the nesting type constructors. The syntactic trans-
formation must follow the map functions and eventually apply fst or snd, depending on
whether a recursive call takes place. Naked occurrences of x without map are replaced
by a suitable “map fst” term; for example, if the constant 1 were changed to fcard T in
the specification above, the definition would have fcard (fimage fst TN) in its place.

The implemented procedure is somewhat more complicated. The recursor generally
defines functions of type α treeFS⇒ β, but primrec needs to process n-ary functions that
recurse on their jth argument. This is handled internally by moving the jth argument to
the front and by instantiating β with an (n−1)-ary function type.

For recursion through functions, the map function is function composition (◦). In-
stead of f ◦ g, primrec also allows the convenient (and backward compatible) syntax
λx. f (g x). More generally, λx1 . . . xn. f (g x1 . . . xn) expands to (op ◦ (. . . (op ◦ f ) . . .)) g.

Thanks to the N2M operation described in Section 2, users can also define mutually
recursive functions on nested datatypes, as they would have done with the old package:



primrec height_�tree :: α tree⇒ nat and height_�trees :: α tree list⇒ nat where
height_�tree (Tree _ ts) = 1 + height_�trees ts
| height_�trees Nil = 0
| height_�trees (Cons t ts) = height_�tree t t height_�trees ts

Internally, the following steps are performed:

1. Formulate and solve the fixpoint equations using N2M.
2. Define the high-level (co)recursor constants.
3. Derive the high-level (co)recursor theorems and (co)induction rules.

Step 1 produces low-level constants and theorems. Steps 2 and 3 are performed by the
same machinery as when declaring mutually recursive datatypes (Section 4).

6 Corecursive Functions

The primcorec command is the main mechanism to introduce functions that produce
potentially infinite codatatype values; alternatives based on domain theory and topol-
ogy are described separately [22]. The command supports three competing syntaxes, or
views: destructor, constructor, and code. Irrespective of the view chosen for input, the
command generates the characteristic theorems for all three views [27].

The Destructor View. The coinduction literature tends to favor the destructor view,
perhaps because it best reflects the duality between datatypes and codatatypes [1, 16].
The append function on lazy lists will serve as an illustration:

primcorec lapp :: α llist⇒ α llist⇒ α llist where
lnull xs =⇒ lnull ys =⇒ lnull (lapp xs ys)
| lhd (lapp xs ys) = lhd (if lnull xs then ys else xs)
| ltl (lapp xs ys) = (if lnull xs then ltl ys else lapp (ltl xs) ys)

The first formula, called the discriminator formula, gives the condition on which
LNil should be produced. For an m-constructor datatype, up to m discriminator formulas
can be given. If exactly m−1 formulas are stated (as in the example above), the last one
is implicitly understood, with the complement of the other conditions as its condition.

The last two formulas, the selector equations, describe the behavior of the function
when an LCons is produced. They are implicitly conditional on ¬ lnull xs ∨ ¬ lnull ys.
The right-hand sides consist of ‘let’, ‘if’, or ‘case’ expressions whose leaves are either
corecursive calls or arbitrary non-corecursive terms. This restriction ensures that the
definition qualifies as primitively corecursive. The selector patterns on the left ensure
that the function is productive and hence admissible [16].

With nesting, the corecursive calls appear under a map function, in much the same
way as for primrec. Intuitive λ syntaxes for corecursion via functions are supported.
The nested-to-mutual reduction is available for corecursion through codatatypes.

Proof obligations are emitted to ensure that the conditions are mutually exclusive.
These are normally given to auto but can also be proved manually. Alternatively, users
can specify the sequential option to have the conditions apply in sequence.



The conditions need not be exhaustive, in which case the function’s behavior is left
underspecified. If the conditions are syntactically detected to be exhaustive, or if the
user enables the exhaustive option and discharges its proof obligation, the package
generates stronger theorems—notably, discriminator formulas with←→ instead of =⇒.

The Constructor View. The constructor view can be thought of as an abbreviation for
the destructor view. It involves a single conditional equation per constructor:

primcorec lapp :: α llist⇒ α llist⇒ α llist where
lnull xs =⇒ lnull ys =⇒ lapp xs ys = LNil
| _ =⇒ lapp xs ys = LCons (lhd (if lnull xs then ys else xs))

(if lnull xs then ltl ys else lapp (ltl xs) ys)

The wildcard _ stands for the complement of the previous conditions.
This view is convenient as input and sometimes for reasoning, but the equations are

generally not suitable as simplification rules since they can loop. Compare this with the
discriminator formulas and the selector equations of the destructor view, which can be
safely registered as simplification rules.

The Code View. The code view is a variant of the constructor view in which the con-
ditions are expressed using ‘if’ and ‘case’ expressions. Its primary purpose is for inter-
facing with Isabelle’s code generator, which cannot cope with conditional equations.

The code view that primcorec generates from a destructor or constructor view is
simply an equation that tests the conditions sequentially using ‘if’:

lapp xs ys = (if lnull xs ∧ lnull ys then LNil
else LCons(lhd(if lnull xs then ys else xs))(if lnull xs then ltl ys else lapp(ltl xs)ys))

If the cases are not known to be exhaustive, an additional ‘if’ branch ensures that the
generated code throws an exception when none of the conditions are met.

The code view has a further purpose besides code generation: It provides a more
flexible input format, with nested ‘let’, ‘if’, and ‘case’ expressions outside the con-
structors, multiple occurrences of the same constructors, and non-corecursive branches
without constructor guards. This makes the code view the natural choice for append:

primcorec lapp :: α llist⇒ α llist⇒ α llist where
lapp xs ys = (case xs of LNil⇒ ys | LCons x xs⇒ LCons x (lapp xs ys))

The package reduces this specification to the following constructor view:

lnull xs =⇒ lnull ys =⇒ lapp xs ys = LNil
_ =⇒ lapp xs ys = LCons (case xs of LNil⇒ lhd ys | LCons x _⇒ x)

(case xs of LNil⇒ ltl ys | LCons _ xs⇒ lapp xs ys)

In general, the reduction proceeds as follows:

1. Expand branches t of the code equation that are not guarded by a constructor to the
term (case t of C1 x̄1⇒ C1 x̄1 | · · · | Cm x̄m⇒ Cm x̄m), yielding an equation χ.

2. Gather the conditions Φi associated with the branches guarded by Ci by traversing
χ, with ‘case’ expressions recast as ‘if’s.

3. Generate the constructor equations
∨

Φi x̄ =⇒ f x̄ = Ci (un_�Ci1 χ) . . . (un_�Cij χ),
taking care of moving the un_�Cij’s under the conditionals and of simplifying them.



For the append example, step 1 expands the ys in the first ‘case’ branch to the term
(case ys of LNil⇒ LNil | LCons y ys⇒ LCons y ys).

Finally, although primcorec does not allow pattern matching on the left-hand side,
the simps_of_case command developed by Gerwin Klein and Lars Noschinski can be
used to generate the pattern-matching equations from the code view—in our example,
lapp LNil ys = ys and lapp (LCons x xs) ys = LCons x (lapp xs ys).

7 Coinduction Proof Method

The previous sections focused on the infrastructure for defining coinductive objects.
Also important are the user-level proof methods, the building blocks of reasoning. The
new method coinduction provides more automation over the existing coinduct, follow-
ing a suggestion formulated in Lochbihler’s Ph.D. thesis [20, Section 7.2]. The method
handles arbitrary predicates equipped with suitable coinduction theorems. In particular,
it can be used to prove equality of codatatypes by exhibiting a bisimulation.

A coinduction rule for a codatatype contains a free bisimulation relation variable R
in its premises, which does not occur in the conclusion. The coinduct method crudely
leaves R uninstantiated; the user is expected to provide the instantiation. However, the
choice of the bisimulation is often canonical, as illustrated by the following proof:

lemma
assumes infinite (lset xs)
shows lapp xs ys = xs

proof (coinduct xs)
def [simp]: R≡ λ l r. ∃xs. l = lapp xs ys ∧ r = xs ∧ infinite (lset xs)
with assms show R (lapp xs ys) xs by auto

fix l r assume R l r
then obtain xs where l = lapp xs ys ∧ r = xs ∧ infinite (lset xs) by auto
thus lnull l = lnull r ∧ (¬ lnull l−→¬ lnull r −→ lhd l = lhd r ∧ R (ltl l) (ltl r))
by auto

qed

The new method performs the steps highlighted in gray automatically, making a
one-line proof possible: by (coinduction arbitrary: xs) auto.

In general, given a goal P =⇒ q t1 . . . tn, the method selects the rule q.coinduct and
takes λz1 . . . zn. ∃x1 . . . xm. z1 = t1 ∧ ·· · ∧ zn = tn ∧ P as the coinduction witness R. The
variables xi are those specified as being arbitrary and may freely appear in P, t1, . . . , tn.
After applying the instantiated rule, the method discharges the premise R t1 . . . tn by re-
flexivity and using the assumption P. Then it unpacks the existential quantifiers from R.

8 Example: Stream Processors

Stream processors were introduced by Hancock et al. [13] and have rapidly become the
standard example for demonstrating mixed fixpoints [1, 3, 10, etc.]. Thanks to the new
(co)datatype package, Isabelle finally joins this good company.



A stream processor represents a continuous transformation on streams—that is, a
function of type α stream⇒ β stream that consumes at most a finite prefix of the in-
put stream before producing an element of output. The datatype sp1 captures a single
iteration of this process. The codatatype spω nests sp1 to produce an entire stream:

datatype (α, β, δ) sp1 = Get (α⇒ (α, β, δ) sp1) | Put β δ
codatatype (α, β) spω = SP (unSP: (α, β, (α, β)spω) sp1)

Values of type sp1 are finite-depth trees with inner nodes Get and leaf nodes Put. Each
inner node has |α| children, one for each possible input α. The Put constructor car-
ries the output element of type β and a continuation of type δ. The definition of spω
instantiates the continuation type to a stream processor (α, β) spω.

The semantics of spω is given by two functions: run1 recurses on sp1 (i.e., consumes
an sp1), and runω, corecurses on stream (i.e., produces a stream, defined in Section 2):

primrec run1 :: (α, β, δ) sp1⇒ α stream⇒ (β×δ)×α stream where
run1 (Get f ) s = run1 ( f (shd s)) (stl s)
run1 (Put x q) s = ((x, q), s)

primcorec runω :: (α, β) spω⇒ α stream⇒ β stream where
runω q s = (let ((x, q′), s′) = run1 (unSP q) s in SCons x (runω q′ s′))

These definitions illustrate some of the conveniences of primrec and primcorec. For
run1, the modular way to nest the recursive call of run1 through functions would rely
on composition—i.e., (run1 ◦ f ) (shd s) (stl s). The primrec command allows us not
only to expand the term run1 ◦ f to λx. run1 ( f x) but also to β-reduce it. For runω, the
constructor view makes it possible to call run1 only once, assign the result in a ‘let’,
and use this result to specify both arguments of the produced constructor.

The stream processor copy outputs the input stream:

primcorec copy :: (α, α) spω where copy= SP (Get (λa. Put a copy))

The nested sp1 value is built directly with corecursion under constructors as an alterna-
tive to the modular approach: copy= SP (map_�sp1 id (λ_. copy) (Get (λa. Put a ()))).
The lemma runω copy s = s is easy to prove using coinduction and auto.

Since stream processors represent functions, it makes sense to compose them:

function ◦1 :: (β, γ, δ)sp1⇒(α, β, (α, β)spω)sp1⇒(α, γ, δ×(α, β)spω)sp1 where
Put b q ◦1 p = Put b (q, SP p)
Get f ◦1 Put b q = f b ◦1 unSP q
Get f ◦1 Get g = Get (λa. Get f ◦1 g a)

by pat_completeness auto
termination by (relation lex_�prod sub sub) auto

primcorec ◦ω :: (β, γ) spω⇒ (α, β) spω⇒ (α, γ) spω where
unSP (q ◦ω q′) =map_�sp1 (λb. b) (λ(q, q′). q ◦ω q′) (unSP q ◦1 unSP q′)

The corecursion applies ◦ω nested through the map function map_�sp1 to the result of
finite preprocessing by the recursion ◦1. The ◦1 operator is defined using function,
which emits proof obligations concerning pattern matching and termination.



Stream processors are an interesting example to compare Isabelle with other proof
assistants. Agda does not support nesting, but it supports the simultaneous mutual def-
inition of sp1 and spω with annotations on constructor arguments indicating whether
they are to be understood coinductively [10]. Least fixpoints are always taken before
greatest fixpoints, which is appropriate for this example but is less flexible than nesting
in general. PVS [26] and Coq [5] support nesting of datatypes through datatypes and
codatatypes through codatatypes, but no nontrivial mixtures.3

9 Case Study: Porting the Coinductive Library

To evaluate the merits of the new definitional package, and to benefit from them, we
have ported existing coinductive developments to the new approach. The Coinductive
library [18] defines four codatatypes and related functions and comprises a large col-
lection of lemmas. Originally, the codatatypes were manually defined as follows:

• extended naturals enat as datatype enat = enat nat | ∞;
• lazy lists α llist using Paulson’s construction [29];
• terminated lazy lists (α, β) tllist as the quotient of α llist× β over the equivalence

relation that ignores the second component if and only if the first one is infinite;
• streams α stream as the subtype of infinite lazy lists.

Table 1 presents the types and the evaluation’s statistics. The third column gives
the lines of code for the definitions, lemmas, and proofs that were needed to define the
type, the constructors, the corecursors, and the case constants, and to prove the free
constructor theorems and the coinduction rule for equality. For enat, we kept the old
definition because the datatype view is useful. Hence, we still derive the corecursor and
the coinduction rules manually, but we generate the free constructor theorems with the
free_constructors command (Section 3), saving 6 lines. In contrast, the other three
types are now defined with codatatype in 33 lines instead of 774, among which 28
are for tllist because the default value for TNil’s selector applied to TCons requires
unbounded recursion. However, we lost the connection between llist, tllist, and stream,
on which the function definitions and proofs relied. Therefore, we manually set up the
Lifting and Transfer tools [15]; the line counts are shown behind plus signs (+).

The type definitions are just a small fraction of the library; most of the work went
into proving properties of the functions. The fourth column shows the number of lem-
mas that we have proved for the functions on each type. There are 36% more than
before, which might be surprising at first, since the old figures include the manual type
constructions. Three reasons explain the increase. First, changes in the views increase
the counts. Coinductive originally favored the code and constructor views, following
Paulson [29], whereas the new package expresses coinduction and other properties in
terms of the destructors (Sections 4 and 6). We proved additional lemmas for our func-
tions that reflect the destructor view. Second, the manual setup for Lifting and Transfer

3 In addition, Coq allows modifications of the type arguments under the constructors (e.g., for
powerlists α plist = α+ (α× α) plist), which Isabelle/HOL cannot support due to its more
restrictive type system.



Lines of code Number Lines of code
Codatatype Constructors for definition of lemmas per lemma

enat 0 | eSuc enat 200 → 194 31 → 57 8.42 → 5.79
α llist LNil | LCons α (α llist) 503 → 3 527 → 597 9.86 → 6.44
(α, β) tllist TNil β | TCons α ((α, β) tllist) 169 → 28+120 121 → 200 6.05 → 4.95
α stream SCons α (α stream) 102 → 2+ 96 64 → 159 3.11 → 3.47

Total 974 → 227+216 743 → 1013 8.60 → 5.65

Table 1. Statistics on porting Coinductive to the new package (before→ after)

accounts for 36 new lemmas. Third, the porting has been distributed over six months
such that we continuously incorporated our insights into the package’s implementation.
During this period, the stream part of the library grew significantly and tllist a little.
(Furthermore, primcorec was not yet in place at the time of the porting. It is now used,
but the gains it led to are not captured by the statistics.)

Therefore, the absolute numbers should not be taken too seriously. It is more in-
structive to examine how the proofs have changed. The last column of Table 1 gives the
average length of a lemma, including its statement and its proof; shorter proofs indicate
better automation. Usually, the statement takes between one and four lines, where two
is the most common case. The port drastically reduced the length of the proofs: We now
prove 36% more lemmas in 11% fewer lines.

Two improvements led to these savings. First, the coinduction method massages the
proof obligation to fit the coinduction rule. Second, automation for coinduction proofs
works best with the destructor view, as the destructors trigger rewriting. With the code
and constructor style, we formerly had to manually unfold the equations, and pattern-
matching equations obtained by simps_of_case needed manual case distinctions.

The destructor view also has some drawbacks. The proofs rely more on Isabelle’s
classical reasoner to solve subgoals that the simplifier can discharge in the other styles,
and the reasoner often needs more guidance. We have not yet run into scalability issues,
but we must supply a lengthy list of lemmas to the reasoner. The destructor style falls
behind when we leave the coinductive world. For example, the recursive function lnth ::
nat⇒ α llist⇒ α returns the element at a given index in a lazy list; clearly, there are no
destructors on lnth’s result type to trigger unfolding. Since induction proofs introduce
constructors in the arguments, rewriting with pattern-matching equations obtained from
the code view yields better automation. In summary, all three views are useful.

10 Conclusion

Codatatypes and corecursion have long been missing features in proof assistants based
on higher-order logic. Isabelle’s new (co)datatype definitional package finally addresses
this deficiency, while generalizing and modularizing the support for datatypes. Within
the limitations of the type system, the package is the most flexible one available in
any proof assistant. The package is already highly usable and is used not only for the
Coinductive library but also in ongoing developments by the authors. Although Isabelle
is our vehicle, the approach is equally applicable to the other provers in the HOL family.



For future work, our priority is to integrate the package better with other Isabelle
subsystems, including the function package (for well-founded recursive definitions), the
Lifting and Transfer tools, and the counterexample generators Nitpick and Quickcheck.
Another straightforward development would be to have the package produce even more
theorems, notably for parametricity. There is also work in progress on supporting more
general forms of corecursion and mixed recursion–corecursion. Finally, we expect that
BNFs can be generalized to define non-free datatypes, including nominal types, but this
remains to be investigated.
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