
Making the Java Memory Model Safe∗

Andreas Lochbihler

Institute for Information Security
ETH Zurich

∗supported by DFG Sn11/10-1,2



The need for a formal model of Java

Concurrency in Java

I threads

I synchronisation primitives

I memory model

Safety guarantees of Java

I definedness

I type safety

I security architecture (sandbox)

KeY-System Krakatoa / Why3

Java Path Finder Joana

rely on

Implications?

Andreas Lochbihler (ETH Zürich) Making the Java Memory Model Safe 2 / 9



The need for a formal model of Java

Concurrency in Java

I threads

I synchronisation primitives

I memory model

Safety guarantees of Java

I definedness

I type safety

I security architecture (sandbox)

KeY-System Krakatoa / Why3

Java Path Finder Joana

rely on

Implications?

Andreas Lochbihler (ETH Zürich) Making the Java Memory Model Safe 2 / 9



The need for a formal model of Java

Concurrency in Java

I threads

I synchronisation primitives

I memory model

Safety guarantees of Java

I definedness

I type safety

I security architecture (sandbox)

KeY-System Krakatoa / Why3

Java Path Finder Joana

rely on

Implications?

Andreas Lochbihler (ETH Zürich) Making the Java Memory Model Safe 2 / 9



The need for a formal model of Java

Concurrency in Java

I threads

I synchronisation primitives

I memory model

Safety guarantees of Java

I definedness

I type safety

I security architecture (sandbox)

KeY-System Krakatoa / Why3

Java Path Finder Joana

rely on

Implications?

Andreas Lochbihler (ETH Zürich) Making the Java Memory Model Safe 2 / 9



Why do we need a memory model?

x = 1;

j = y;

y = 2;

i = x;

initially: x = y = 0;

i == 0

i == 1

j == 0 j == 2

interleaving semantics

compiler and hardware
reorder statements

j = y;

x = 1;

i = x;

y = 2;

i == 0

i == 1

j == 0 j == 2

data races

Andreas Lochbihler (ETH Zürich) Making the Java Memory Model Safe 4 / 9



Why do we need a memory model?

x = 1;

j = y;

y = 2;

i = x;

initially: x = y = 0;

i == 0

i == 1

j == 0 j == 2

interleaving semantics

compiler and hardware
reorder statements

j = y;

x = 1;

i = x;

y = 2;

i == 0

i == 1

j == 0 j == 2

data races

Andreas Lochbihler (ETH Zürich) Making the Java Memory Model Safe 4 / 9



Why do we need a memory model?

x = 1;

j = y;

y = 2;

i = x;

initially: x = y = 0;

i == 0

i == 1

j == 0 j == 2

interleaving semantics

√

compiler and hardware
reorder statements

j = y;

x = 1;

i = x;

y = 2;

i == 0

i == 1

j == 0 j == 2

data races

Andreas Lochbihler (ETH Zürich) Making the Java Memory Model Safe 4 / 9



Why do we need a memory model?

x = 1;

j = y;

y = 2;

i = x;

initially: x = y = 0;

i == 0

i == 1

j == 0 j == 2

interleaving semantics

√
√

compiler and hardware
reorder statements

j = y;

x = 1;

i = x;

y = 2;

i == 0

i == 1

j == 0 j == 2

data races

Andreas Lochbihler (ETH Zürich) Making the Java Memory Model Safe 4 / 9



Why do we need a memory model?

x = 1;

j = y;

y = 2;

i = x;

initially: x = y = 0;

i == 0

i == 1

j == 0 j == 2

interleaving semantics

√
√
√

compiler and hardware
reorder statements

j = y;

x = 1;

i = x;

y = 2;

i == 0

i == 1

j == 0 j == 2

data races

Andreas Lochbihler (ETH Zürich) Making the Java Memory Model Safe 4 / 9



Why do we need a memory model?

x = 1;

j = y;

y = 2;

i = x;

initially: x = y = 0;

i == 0

i == 1

j == 0 j == 2

interleaving semantics

√
√
√X

compiler and hardware
reorder statements

j = y;

x = 1;

i = x;

y = 2;

i == 0

i == 1

j == 0 j == 2

data races

Andreas Lochbihler (ETH Zürich) Making the Java Memory Model Safe 4 / 9



Why do we need a memory model?

x = 1;

j = y;

y = 2;

i = x;

initially: x = y = 0;

i == 0

i == 1

j == 0 j == 2

interleaving semantics

√
√
√X

compiler and hardware
reorder statements

j = y;

x = 1;

i = x;

y = 2;

i == 0

i == 1

j == 0 j == 2√

data races

Andreas Lochbihler (ETH Zürich) Making the Java Memory Model Safe 4 / 9



Why do we need a memory model?

x = 1;

j = y;

y = 2;

i = x;

initially: x = y = 0;

i == 0

i == 1

j == 0 j == 2

Java memory model

√
√
√

√

compiler and hardware
reorder statements

j = y;

x = 1;

i = x;

y = 2;

i == 0

i == 1

j == 0 j == 2√

data races

Andreas Lochbihler (ETH Zürich) Making the Java Memory Model Safe 4 / 9



Why do we need a memory model?

x = 1;

j = y;

y = 2;

i = x;

initially: x = y = 0;

i == 0

i == 1

j == 0 j == 2

Java memory model

√
√
√

√

compiler and hardware
reorder statements

j = y;

x = 1;

i = x;

y = 2;

i == 0

i == 1

j == 0 j == 2√

data races

Andreas Lochbihler (ETH Zürich) Making the Java Memory Model Safe 4 / 9



Semantics in layers

Java memory model

legality constraints
pair read and write ops

need set of
candidate executions
cf. [Batty et al.’15]

set of well-formed
candidate executions

{
[t1 : α1, t2 : α2, . . .],
[t ′1 : α′

1, t
′
2 : α′

2, . . .],
[t ′′1 : α′′

1 , t
′′
2 : α′′

2 , . . .], . . .
}

operational
semantics

t : α
t1:
α1

t ′
1 :α ′

1

. . .

. .
.

. . .

paths in the

transition system

shared
memory

allocation &
type information

thread communication

legal

Andreas Lochbihler (ETH Zürich) Making the Java Memory Model Safe 5 / 9



Semantics in layers

Java memory model

legality constraints
pair read and write ops

need set of
candidate executions
cf. [Batty et al.’15]

set of well-formed
candidate executions

{
[t1 : α1, t2 : α2, . . .],
[t ′1 : α′

1, t
′
2 : α′

2, . . .],
[t ′′1 : α′′

1 , t
′′
2 : α′′

2 , . . .], . . .
}

operational
semantics

t : α
t1:
α1

t ′
1 :α ′

1

. . .

. .
.

. . .

paths in the

transition system

shared
memory

allocation &
type information

thread communication

legal

Andreas Lochbihler (ETH Zürich) Making the Java Memory Model Safe 5 / 9



Semantics in layers

Java memory model

legality constraints
pair read and write ops

need set of
candidate executions
cf. [Batty et al.’15]

set of well-formed
candidate executions

{
[t1 : α1, t2 : α2, . . .],
[t ′1 : α′

1, t
′
2 : α′

2, . . .],
[t ′′1 : α′′

1 , t
′′
2 : α′′

2 , . . .], . . .
}

operational
semantics

t : α

t1:
α1

t ′
1 :α ′

1

. . .

. .
.

. . .

paths in the

transition system

shared
memory

allocation &
type information

thread communication

legal

Andreas Lochbihler (ETH Zürich) Making the Java Memory Model Safe 5 / 9



Semantics in layers

Java memory model

legality constraints
pair read and write ops

need set of
candidate executions
cf. [Batty et al.’15]

set of well-formed
candidate executions

{
[t1 : α1, t2 : α2, . . .],
[t ′1 : α′

1, t
′
2 : α′

2, . . .],
[t ′′1 : α′′

1 , t
′′
2 : α′′

2 , . . .], . . .
}

operational
semantics

t : α

t1:
α1

t ′
1 :α ′

1

. . .

. .
.

. . .

paths in the

transition system

shared
memory

allocation &
type information

thread communication

legal

Andreas Lochbihler (ETH Zürich) Making the Java Memory Model Safe 5 / 9



Semantics in layers

Java memory model

legality constraints
pair read and write ops

need set of
candidate executions
cf. [Batty et al.’15]

set of well-formed
candidate executions

{
[t1 : α1, t2 : α2, . . .],
[t ′1 : α′

1, t
′
2 : α′

2, . . .],
[t ′′1 : α′′

1 , t
′′
2 : α′′

2 , . . .], . . .
}

operational
semantics

t : α
t1:
α1

t ′
1 :α ′

1

. . .

. .
.

. . .

paths in the

transition system

shared
memory

allocation &
type information

thread communication

legal

Andreas Lochbihler (ETH Zürich) Making the Java Memory Model Safe 5 / 9



Semantics in layers

Java memory model

legality constraints
pair read and write ops

need set of
candidate executions
cf. [Batty et al.’15]

set of well-formed
candidate executions

{
[t1 : α1, t2 : α2, . . .],
[t ′1 : α′

1, t
′
2 : α′

2, . . .],
[t ′′1 : α′′

1 , t
′′
2 : α′′

2 , . . .], . . .
}

operational
semantics

t : α
t1:
α1

t ′
1 :α ′

1

. . .

. .
.

. . .

paths in the
transition system

shared
memory

allocation &
type information

thread communication

legal

Andreas Lochbihler (ETH Zürich) Making the Java Memory Model Safe 5 / 9



Semantics in layers

Java memory model
legality constraints

pair read and write ops

need set of
candidate executions
cf. [Batty et al.’15]

set of well-formed
candidate executions

{
[t1 : α1, t2 : α2, . . .],
[t ′1 : α′

1, t
′
2 : α′

2, . . .],
[t ′′1 : α′′

1 , t
′′
2 : α′′

2 , . . .], . . .
}

operational
semantics

t : α
t1:
α1

t ′
1 :α ′

1

. . .

. .
.

. . .

paths in the
transition system

shared
memory

allocation &
type information

thread communication

legal

Andreas Lochbihler (ETH Zürich) Making the Java Memory Model Safe 5 / 9



Semantics in layers

Java memory model
legality constraints

pair read and write ops

need set of
candidate executions
cf. [Batty et al.’15]

set of well-formed
candidate executions

{
[t1 : α1, t2 : α2, . . .],
[t ′1 : α′

1, t
′
2 : α′

2, . . .],
[t ′′1 : α′′

1 , t
′′
2 : α′′

2 , . . .], . . .
}

operational
semantics

t : α
t1:
α1

t ′
1 :α ′

1

. . .

. .
.

. . .

paths in the
transition system

shared
memory

allocation &
type information

thread communication

legal

Andreas Lochbihler (ETH Zürich) Making the Java Memory Model Safe 5 / 9



Type safety for method calls

Dynamic method lookup finds a unique method.

JMM allows reordering with allocations.

r1 = x;

if (r1 != null) r1.m();

y = new A();

r2 = y;

x = r2;

initially: x = y = null;

class A { void m() {} }

reorder

object accessed
before allocated

Separate type information of addresses from their allocation!
Index addresses by dynamic type!

Andreas Lochbihler (ETH Zürich) Making the Java Memory Model Safe 6 / 9



Type safety for method calls

Dynamic method lookup finds a unique method.

JMM allows reordering with allocations.

r1 = x;

if (r1 != null) r1.m();

y = new A();

r2 = y;

x = r2;

initially: x = y = null;

class A { void m() {} }

reorder

object accessed
before allocated

Separate type information of addresses from their allocation!
Index addresses by dynamic type!

Andreas Lochbihler (ETH Zürich) Making the Java Memory Model Safe 6 / 9



Type safety for method calls

Dynamic method lookup finds a unique method.

JMM allows reordering with allocations.

r1 = x;

if (r1 != null) r1.m();

y = new A();

r2 = y;

x = r2;

initially: x = y = null;

class A { void m() {} }

reorder

object accessed
before allocated

Separate type information of addresses from their allocation!
Index addresses by dynamic type!

Andreas Lochbihler (ETH Zürich) Making the Java Memory Model Safe 6 / 9



Type safety for method calls

Dynamic method lookup finds a unique method.

JMM allows reordering with allocations.

r1 = x;

if (r1 != null) r1.m();

y = new A();

r2 = y;

x = r2;

initially: x = y = null;

class A { void m() {} }

reorder

object accessed
before allocated

Separate type information of addresses from their allocation!
Index addresses by dynamic type!

Andreas Lochbihler (ETH Zürich) Making the Java Memory Model Safe 6 / 9



Type safety for method calls

Dynamic method lookup finds a unique method.

JMM allows reordering with allocations.

r1 = x;

if (r1 != null) r1.m();

y = new A();

r2 = y;

x = r2;

initially: x = y = null;

class A { void m() {} }

reorder

object accessed
before allocated

Separate type information of addresses from their allocation!
Index addresses by dynamic type!
Andreas Lochbihler (ETH Zürich) Making the Java Memory Model Safe 6 / 9



Type safety for fields

Accessed fields exist and
contain only type-conform values.

progress subject reduction

Java memory model
legality constraints

pair read and write ops

set of well-formed
candidate executions

{
[t1 : α1, t2 : α2, . . .],
[t ′1 : α′

1, t
′
2 : α′

2, . . .],
[t ′′1 : α′′

1 , t
′′
2 : α′′

2 , . . .], . . .
}

operational
semantics

t : α

Subject reduction fails,
when read op returns
value of wrong type.

Show that reads in legal
executions are type-correct.

Subject reduction may
assume type-correct reads

Andreas Lochbihler (ETH Zürich) Making the Java Memory Model Safe 7 / 9



Type safety for fields

Accessed fields exist and
contain only type-conform values.

progress

subject reduction

Java memory model
legality constraints

pair read and write ops

set of well-formed
candidate executions

{
[t1 : α1, t2 : α2, . . .],
[t ′1 : α′

1, t
′
2 : α′

2, . . .],
[t ′′1 : α′′

1 , t
′′
2 : α′′

2 , . . .], . . .
}

operational
semantics

t : α

Subject reduction fails,
when read op returns
value of wrong type.

Show that reads in legal
executions are type-correct.

Subject reduction may
assume type-correct reads

Andreas Lochbihler (ETH Zürich) Making the Java Memory Model Safe 7 / 9



Type safety for fields

Accessed fields exist and
contain only type-conform values.

progress

subject reduction

Java memory model
legality constraints

pair read and write ops

set of well-formed
candidate executions

{
[t1 : α1, t2 : α2, . . .],
[t ′1 : α′

1, t
′
2 : α′

2, . . .],
[t ′′1 : α′′

1 , t
′′
2 : α′′

2 , . . .], . . .
}

operational
semantics

t : α

Subject reduction fails,
when read op returns
value of wrong type.

Show that reads in legal
executions are type-correct.

Subject reduction may
assume type-correct reads

Andreas Lochbihler (ETH Zürich) Making the Java Memory Model Safe 7 / 9



Type safety for fields

Accessed fields exist and
contain only type-conform values.

progress subject reduction

Java memory model
legality constraints

pair read and write ops

set of well-formed
candidate executions

{
[t1 : α1, t2 : α2, . . .],
[t ′1 : α′

1, t
′
2 : α′

2, . . .],
[t ′′1 : α′′

1 , t
′′
2 : α′′

2 , . . .], . . .
}

operational
semantics

t : α

Subject reduction fails,
when read op returns
value of wrong type.

Show that reads in legal
executions are type-correct.

Subject reduction may
assume type-correct reads

Andreas Lochbihler (ETH Zürich) Making the Java Memory Model Safe 7 / 9



Type safety for fields

Accessed fields exist and
contain only type-conform values.

progress subject reduction

Java memory model
legality constraints

pair read and write ops

set of well-formed
candidate executions

{
[t1 : α1, t2 : α2, . . .],
[t ′1 : α′

1, t
′
2 : α′

2, . . .],
[t ′′1 : α′′

1 , t
′′
2 : α′′

2 , . . .], . . .
}

operational
semantics

t : α

Subject reduction fails,
when read op returns
value of wrong type.

Show that reads in legal
executions are type-correct.

Subject reduction may
assume type-correct reads

Andreas Lochbihler (ETH Zürich) Making the Java Memory Model Safe 7 / 9



Type safety for fields

Accessed fields exist and
contain only type-conform values.

progress subject reduction

Java memory model
legality constraints

pair read and write ops

set of well-formed
candidate executions

{
[t1 : α1, t2 : α2, . . .],
[t ′1 : α′

1, t
′
2 : α′

2, . . .],
[t ′′1 : α′′

1 , t
′′
2 : α′′

2 , . . .], . . .
}

operational
semantics

t : α
Subject reduction fails,
when read op returns
value of wrong type.

Show that reads in legal
executions are type-correct.

Subject reduction may
assume type-correct reads

Andreas Lochbihler (ETH Zürich) Making the Java Memory Model Safe 7 / 9



Type safety for fields

Accessed fields exist and
contain only type-conform values.

progress subject reduction

Java memory model
legality constraints

pair read and write ops

set of well-formed
candidate executions

{
[t1 : α1, t2 : α2, . . .],
[t ′1 : α′

1, t
′
2 : α′

2, . . .],
[t ′′1 : α′′

1 , t
′′
2 : α′′

2 , . . .], . . .
}

operational
semantics

t : α
Subject reduction fails,
when read op returns
value of wrong type.

Show that reads in legal
executions are type-correct.

Subject reduction may
assume type-correct reads

Andreas Lochbihler (ETH Zürich) Making the Java Memory Model Safe 7 / 9



Type safety for fields

Accessed fields exist and
contain only type-conform values.

progress subject reduction

Java memory model
legality constraints

pair read and write ops

set of well-formed
candidate executions

{
[t1 : α1, t2 : α2, . . .],
[t ′1 : α′

1, t
′
2 : α′

2, . . .],
[t ′′1 : α′′

1 , t
′′
2 : α′′

2 , . . .], . . .
}

operational
semantics

t : α
Subject reduction fails,
when read op returns
value of wrong type.

Show that reads in legal
executions are type-correct.

Subject reduction may
assume type-correct reads

Andreas Lochbihler (ETH Zürich) Making the Java Memory Model Safe 7 / 9



Type safety for allocation

No statement about allocation!

There are legal executions in which some objects are never allocated . . .

r1 = x; r2 = y; b = true;

if (!b) r1 = new C(); x = r2
y = r1;

initially: b = false; x = y = null;

allowed: x,y != null, if condition is false.

. . . because the allocation happened in another execution.

Variations on this program allow you to
forge (type-correct) references.

Andreas Lochbihler (ETH Zürich) Making the Java Memory Model Safe 8 / 9



Type safety for allocation

No statement about allocation!

There are legal executions in which some objects are never allocated . . .

r1 = x; r2 = y; b = true;

if (!b) r1 = new C(); x = r2
y = r1;

initially: b = false; x = y = null;

allowed: x,y != null, if condition is false.

. . . because the allocation happened in another execution.

Variations on this program allow you to
forge (type-correct) references.

Andreas Lochbihler (ETH Zürich) Making the Java Memory Model Safe 8 / 9



Type safety for allocation

No statement about allocation!

There are legal executions in which some objects are never allocated . . .

r1 = x; r2 = y; b = true;

if (!b) r1 = new C(); x = r2
y = r1;

initially: b = false; x = y = null;

allowed: x,y != null, if condition is false.

. . . because the allocation happened in another execution.

Variations on this program allow you to
forge (type-correct) references.

Andreas Lochbihler (ETH Zürich) Making the Java Memory Model Safe 8 / 9



Beyond type safety [TOPLAS 2014]

Goals of the Java memory model:

λ
→

∀
=Is

ab
el
le

β

α

HOL

Type safety holds despite forging of references

Semantics for all Java program achieved.
Main reason for technical complexity

Security architecture (sandboxing)
compromised by forged references

DRF guarantee
Interleaving semantics for programs without data races proved.

Compiler optimisations [Ševč́ık et al.]

JMM fails to allow common optimisations.

Work on another JMM revision has started (JEP 188).

Andreas Lochbihler (ETH Zürich) Making the Java Memory Model Safe 9 / 9



Beyond type safety [TOPLAS 2014]

Goals of the Java memory model:

λ
→

∀
=Is

ab
el
le

β

α

HOL

Type safety holds despite forging of references

Semantics for all Java program achieved.
Main reason for technical complexity

Security architecture (sandboxing)
compromised by forged references

DRF guarantee
Interleaving semantics for programs without data races proved.

Compiler optimisations [Ševč́ık et al.]

JMM fails to allow common optimisations.

Work on another JMM revision has started (JEP 188).

Andreas Lochbihler (ETH Zürich) Making the Java Memory Model Safe 9 / 9



Beyond type safety [TOPLAS 2014]

Goals of the Java memory model:

λ
→

∀
=Is

ab
el
le

β

α

HOL

Type safety holds despite forging of references

Semantics for all Java program achieved.
Main reason for technical complexity

Security architecture (sandboxing)
compromised by forged references

DRF guarantee
Interleaving semantics for programs without data races proved.

Compiler optimisations [Ševč́ık et al.]

JMM fails to allow common optimisations.

Work on another JMM revision has started (JEP 188).

Andreas Lochbihler (ETH Zürich) Making the Java Memory Model Safe 9 / 9



Beyond type safety [TOPLAS 2014]

Goals of the Java memory model:

λ
→

∀
=Is

ab
el
le

β

α

HOL

Type safety holds despite forging of references

Semantics for all Java program achieved.
Main reason for technical complexity

Security architecture (sandboxing)
compromised by forged references

DRF guarantee
Interleaving semantics for programs without data races proved.

Compiler optimisations [Ševč́ık et al.]

JMM fails to allow common optimisations.

Work on another JMM revision has started (JEP 188).

Andreas Lochbihler (ETH Zürich) Making the Java Memory Model Safe 9 / 9



Beyond type safety [TOPLAS 2014]

Goals of the Java memory model:

λ
→

∀
=Is

ab
el
le

β

α

HOL

Type safety holds despite forging of references

Semantics for all Java program achieved.
Main reason for technical complexity

Security architecture (sandboxing)
compromised by forged references

DRF guarantee
Interleaving semantics for programs without data races proved.

Compiler optimisations [Ševč́ık et al.]

JMM fails to allow common optimisations.

Work on another JMM revision has started (JEP 188).

Andreas Lochbihler (ETH Zürich) Making the Java Memory Model Safe 9 / 9



Beyond type safety [TOPLAS 2014]

Goals of the Java memory model:

λ
→

∀
=Is

ab
el
le

β

α

HOL

Type safety holds despite forging of references

Semantics for all Java program achieved.
Main reason for technical complexity

Security architecture (sandboxing)
compromised by forged references

DRF guarantee
Interleaving semantics for programs without data races proved.

Compiler optimisations [Ševč́ık et al.]

JMM fails to allow common optimisations.

Work on another JMM revision has started (JEP 188).

Andreas Lochbihler (ETH Zürich) Making the Java Memory Model Safe 9 / 9


