
Towards abstract and executable
multivariate polynomials in Isabelle

Florian Haftmann Andreas Lochbihler Wolfgang Schreiner

Institute for Informatics Institute of Information Security RISC

TU Munich ETH Zurich Johannes Kepler University Linz

Isabelle 2014

Motivation

A cultural
”
gap“ between two communities.

I Theorem proving:
I Sound formal development of theories on top of a small trusted kernel.
I Computations reduced to logical inferences.
I Correct but inconvenient to use and painfully slow.

I Computer algebra:
I Elaboration of mathematics by paper-and-pencil or TP software.
I Separate implementation in mathematical software systems.
I Convenient to use and reasonably fast but highly untrustworthy.

How can we bridge this gap?

Lochbihler, Schreiner Multivariate polynomials Isabelle 2014 2 / 14

Our Starting Point: Polynomial Algebra

An Isabelle package in which the working mathematician can develop

I Mathematical theories based on an abstract view of polynomials.
I Type-checked definitions and theorems.
I Computer-supported/mechanically verified proofs.

I Algorithms based on the defined mathematical notions.
I Executable with

”
reasonable“ efficiency (rapid prototyping).

I Formal specification and computer-supported verification.

A single computer-supported formal framework for proving and computing
with (multivariate) polynomials.

Lochbihler, Schreiner Multivariate polynomials Isabelle 2014 3 / 14

Polynomials

What is the polynomial written as 2x3 − 5x + 7?

I Traditional: the symbolic expression itself.(∑n
i=0 aix

i
)
·
(∑m

j=0 bjx
j
)

=
∑m+n

k=0

(∑i+j=k
i∈N0,j∈N0

ai · bj

)
· xk

I Computer science: an array [7, 5, 0, 3]

int[] mult(int[] a, int[] b)

{

int m = a.length-1; int n = b.length-1;

int[] c = new int[m+n+1];

for (int i = 0; i <= m; i++)

for (int j = 0; j <= n; j++)

c[i+j] += a[i]*b[j];

return c;

}

Two representations of a more fundamental concept.

Lochbihler, Schreiner Multivariate polynomials Isabelle 2014 4 / 14

Polynomials

The more fundamental concept is the modern view of polynomials.

I Polynomial: a function [0 7→ 7, . . . , 3 7→ 3, 4 7→ 0, 5 7→ 0, . . .]

Let R be a ring. A (univariate) polynomial over R is a
mapping p : N0 → R, n 7→ pn, such that pn = 0 nearly
everywhere, i.e., for all but finitely many values of n.

I Elegant mathematics:

· : (N0 → R)× (N0 → R)→ (N0 → R)

a · b := k ∈ N0 7→
∑i+j=k

i∈N0,j∈N0
ai · bj

I Polynomial ring: R[x]

The set of polynomials with (+) and (·); variable x just
denotes the polynomial [0 7→ 0, 1 7→ 1, 2 7→ 0, 3 7→ 0, . . .].

See e.g. [Winkler, 1996].

Lochbihler, Schreiner Multivariate polynomials Isabelle 2014 5 / 14

Multivariate Polynomials

What is a polynomial 3x2y + 5yz in variables x , y , z?

I Polynomial: a function [(1, 1, 0) 7→ 3, (0, 1, 1) 7→ 5, (0, 0, 0) 7→ 0, . . .]

An n-variate polynomial over the ring R is a mapping
p : Nn

0 → R, (i1, . . . , in) 7→ pi1,...,in , such that pi1,...,in = 0 nearly
everywhere.

I Polynomial ring: R[x1, . . . , xn]

The set of all n-variate polynomials over R; variable xi
denotes the polynomial [. . . , i 7→ 1, . . .].

I Isomorphism: R[x1, . . . , xn] ' (R[x1, . . . , xn−1])[xn].

Recursive algorithms may be devised for many (not all)
computational problems on multivariate polynomials.

I Polynomial division is defined on K [x] where K is a field.
I But K [x1, . . . , xn−1] is only a ring.
I Multivariate polynomials thus only support

”
pseudo-division“.

Lochbihler, Schreiner Multivariate polynomials Isabelle 2014 6 / 14

Computer Representation

I Prune mapping:
I Represent only exponents/monomials with non-zero coefficients.

I Univariate polynomial representations:
I Dense: coefficient sequence [c0, . . . , cn]
I Sparse: exponent/coeff. sequence [(e0, c0), . . . , (er , cr)] with ei < ei+1.

I n-variate polynomial representations:
I Recursive: univariate polynomial whose coefficients are (n − 1)-variate

polynomials (represented densely or sparsely).
I Distributive: monomial/coefficient sequence [(m0, c0), . . . , (mr , cr)]

(typically represented sparsely).
I Total order on monomials required for unique representation.

I Algorithmic efficiency:
I Recursive algorithms based on isomorphism operate most efficiently

with recursive representation.
I Buchberger’s Gröbner bases algorithm processes terms in any given

”
admissible“ order and profits from distributive rep. in that order.

Lochbihler, Schreiner Multivariate polynomials Isabelle 2014 7 / 14

General Approach

abstract type

representations dense sparse
recursive

distributive

Map from monomials to coefficients

• Elegantly define basic operations
• Conveniently express algorithms,

theorems, and proofs

refinement • Theorems are preserved

• Representation values can instantiate
variables of abstract type.

executable
codegeneration

Every abstract algorithm is executable
with every representation type.

Lochbihler, Schreiner Multivariate polynomials Isabelle 2014 8 / 14

General Approach

abstract type

representations dense sparse
recursive

distributive

Map from monomials to coefficients

• Elegantly define basic operations
• Conveniently express algorithms,

theorems, and proofs

refinement • Theorems are preserved

• Representation values can instantiate
variables of abstract type.

executable
codegeneration

Every abstract algorithm is executable
with every representation type.

Lochbihler, Schreiner Multivariate polynomials Isabelle 2014 8 / 14

General Approach

abstract type

representations dense sparse
recursive

distributive

Map from monomials to coefficients

• Elegantly define basic operations
• Conveniently express algorithms,

theorems, and proofs

refinement • Theorems are preserved

• Representation values can instantiate
variables of abstract type.

executable
codegeneration

Every abstract algorithm is executable
with every representation type.

Lochbihler, Schreiner Multivariate polynomials Isabelle 2014 8 / 14

General Approach

abstract type

representations dense sparse
recursive

distributive

Map from monomials to coefficients

• Elegantly define basic operations
• Conveniently express algorithms,

theorems, and proofs

refinement • Theorems are preserved

• Representation values can instantiate
variables of abstract type.

executable
codegeneration

Every abstract algorithm is executable
with every representation type.

Lochbihler, Schreiner Multivariate polynomials Isabelle 2014 8 / 14

General Approach

abstract type

representations dense sparse
recursive

distributive

Map from monomials to coefficients

• Elegantly define basic operations
• Conveniently express algorithms,

theorems, and proofs

refinement • Theorems are preserved

• Representation values can instantiate
variables of abstract type.

executable
codegeneration

Every abstract algorithm is executable
with every representation type.

Lochbihler, Schreiner Multivariate polynomials Isabelle 2014 8 / 14

Implementation in Isabelle

typedef ′a ⇒0
′b = { f :: ′a ⇒ ′b | almost-everywhere-zero f }

′a mpoly

′a poly-rec ′a poly-distr

∼=
(nat ⇒0 nat) ⇒0

′a

datatype

= Coeff ′a
| Rec (nat ⇒0

′a poly-rec)

∼=
′a mpoly × monom-order

((nat ⇒0 nat) × ′a) list × monom-order

Rep

Rec Distr

factor out dense &
sparse implementations

Lochbihler, Schreiner Multivariate polynomials Isabelle 2014 9 / 14

Implementation in Isabelle

typedef ′a ⇒0
′b = { f :: ′a ⇒ ′b | almost-everywhere-zero f }

′a mpoly

′a poly-rec ′a poly-distr

∼=
(nat ⇒0 nat) ⇒0

′a

datatype

= Coeff ′a
| Rec (nat ⇒0

′a poly-rec)

∼=
′a mpoly × monom-order

((nat ⇒0 nat) × ′a) list × monom-order

Rep

Rec Distr

factor out dense &
sparse implementations

Lochbihler, Schreiner Multivariate polynomials Isabelle 2014 9 / 14

Implementation in Isabelle

typedef ′a ⇒0
′b = { f :: ′a ⇒ ′b | almost-everywhere-zero f }

′a mpoly

′a poly-rec ′a poly-distr

∼=
(nat ⇒0 nat) ⇒0

′a

datatype

= Coeff ′a
| Rec (nat ⇒0

′a poly-rec)

∼=
′a mpoly × monom-order

((nat ⇒0 nat) × ′a) list × monom-order

Rep

Rec Distr

factor out dense &
sparse implementations

Lochbihler, Schreiner Multivariate polynomials Isabelle 2014 9 / 14

Implementation in Isabelle

typedef ′a ⇒0
′b = { f :: ′a ⇒ ′b | almost-everywhere-zero f }

′a mpoly

′a poly-rec ′a poly-distr

∼=
(nat ⇒0 nat) ⇒0

′a

datatype

= Coeff ′a
| Rec (nat ⇒0

′a poly-rec)

∼=
′a mpoly × monom-order

((nat ⇒0 nat) × ′a) list × monom-order

Rep

Rec Distr

factor out dense &
sparse implementations

Lochbihler, Schreiner Multivariate polynomials Isabelle 2014 9 / 14

Implementation in Isabelle

typedef ′a ⇒0
′b = { f :: ′a ⇒ ′b | almost-everywhere-zero f }

′a mpoly

′a poly-rec ′a poly-distr

∼=
(nat ⇒0 nat) ⇒0

′a

datatype

= Coeff ′a
| Rec (nat ⇒0

′a poly-rec)

∼=
′a mpoly × monom-order

((nat ⇒0 nat) × ′a) list × monom-order

Rep

Rec Distr

factor out dense &
sparse implementations

Lochbihler, Schreiner Multivariate polynomials Isabelle 2014 9 / 14

Implementation in Isabelle

typedef ′a ⇒0
′b = { f :: ′a ⇒ ′b | almost-everywhere-zero f }

′a mpoly

′a poly-rec ′a poly-distr

∼=
(nat ⇒0 nat) ⇒0

′a

datatype

= Coeff ′a
| Rec (nat ⇒0

′a poly-rec)

∼=
′a mpoly × monom-order

((nat ⇒0 nat) × ′a) list × monom-order

Rep

Rec Distr

factor out dense &
sparse implementations

Lochbihler, Schreiner Multivariate polynomials Isabelle 2014 9 / 14

Implementation in Isabelle

typedef ′a ⇒0
′b = { f :: ′a ⇒ ′b | almost-everywhere-zero f }

′a mpoly

′a poly-rec ′a poly-distr

∼=
(nat ⇒0 nat) ⇒0

′a

datatype

= Coeff ′a
| Rec (nat ⇒0

′a poly-rec)

∼=
′a mpoly × monom-order

((nat ⇒0 nat) × ′a) list × monom-order

Rep

Rec Distr

factor out dense &
sparse implementations

Lochbihler, Schreiner Multivariate polynomials Isabelle 2014 9 / 14

Implementation in Isabelle

typedef ′a ⇒0
′b = { f :: ′a ⇒ ′b | almost-everywhere-zero f }

′a mpoly

′a poly-rec ′a poly-distr

∼=
(nat ⇒0 nat) ⇒0

′a

datatype

= Coeff ′a
| Rec (nat ⇒0

′a poly-rec)

∼=
′a mpoly × monom-order

((nat ⇒0 nat) × ′a) list × monom-order

Rep

Rec Distr

factor out dense &
sparse implementations

Lochbihler, Schreiner Multivariate polynomials Isabelle 2014 9 / 14

Design choice: number of variables

Should the number of variables show up in the type?

′a mpoly vs. ′a poly poly . . . poly vs. (′a, 7) mpoly

I Algorithms change number of variables dynamically.

I No computation on types

(′a, 4 + 3) mpoly 6= (′a, 2 + 5) mpoly

I Polynomials over an unbounded number of variables

Derived notion variable number:
the highest index of a variable with non-zero coefficient.

Implicitly extend polynomials as needed.

Lochbihler, Schreiner Multivariate polynomials Isabelle 2014 10 / 14

Design choice: number of variables

Should the number of variables show up in the type?

′a mpoly vs. ′a poly poly . . . poly vs. (′a, 7) mpoly

I Algorithms change number of variables dynamically.

I No computation on types

(′a, 4 + 3) mpoly 6= (′a, 2 + 5) mpoly

I Polynomials over an unbounded number of variables

Derived notion variable number:
the highest index of a variable with non-zero coefficient.

Implicitly extend polynomials as needed.

Lochbihler, Schreiner Multivariate polynomials Isabelle 2014 10 / 14

Design choice: number of variables

Should the number of variables show up in the type?

′a mpoly vs. ′a poly poly . . . poly vs. (′a, 7) mpoly

I Algorithms change number of variables dynamically.

I No computation on types

(′a, 4 + 3) mpoly 6= (′a, 2 + 5) mpoly

I Polynomials over an unbounded number of variables

Derived notion variable number:
the highest index of a variable with non-zero coefficient.

Implicitly extend polynomials as needed.

Lochbihler, Schreiner Multivariate polynomials Isabelle 2014 10 / 14

Design choice: number of variables

Should the number of variables show up in the type?

′a mpoly vs. ′a poly poly . . . poly vs. (′a, 7) mpoly

I Algorithms change number of variables dynamically.

I No computation on types

(′a, 4 + 3) mpoly 6= (′a, 2 + 5) mpoly

I Polynomials over an unbounded number of variables

Derived notion variable number:
the highest index of a variable with non-zero coefficient.

Implicitly extend polynomials as needed.

Lochbihler, Schreiner Multivariate polynomials Isabelle 2014 10 / 14

Design choice: number of variables

Should the number of variables show up in the type?

′a mpoly vs. ′a poly poly . . . poly vs. (′a, 7) mpoly

I Algorithms change number of variables dynamically.

I No computation on types

(′a, 4 + 3) mpoly 6= (′a, 2 + 5) mpoly

I Polynomials over an unbounded number of variables

Derived notion variable number:
the highest index of a variable with non-zero coefficient.

Implicitly extend polynomials as needed.

Lochbihler, Schreiner Multivariate polynomials Isabelle 2014 10 / 14

Exploit the Representation in Abstract Algorithms

Example:

I Gröbner bases algorithm depends on a monomial order.

I Efficiency relies on fast access to leading monomial in that order.

′a mpoly vs. ′a mpoly × monom-order

I Algebraic type classes require uniqueness of polynomials.

I Algorithm receives representational details as parameter.

I If polynomial’s representation fits to the parameter, execution is fast.

Otherwise, convert polynomial . . . or search . . .

I No static checks, no efficiency guarantees!

Lochbihler, Schreiner Multivariate polynomials Isabelle 2014 11 / 14

Exploit the Representation in Abstract Algorithms

Example:

I Gröbner bases algorithm depends on a monomial order.

I Efficiency relies on fast access to leading monomial in that order.

′a mpoly vs. ′a mpoly × monom-order

I Algebraic type classes require uniqueness of polynomials.

I Algorithm receives representational details as parameter.

I If polynomial’s representation fits to the parameter, execution is fast.

Otherwise, convert polynomial . . . or search . . .

I No static checks, no efficiency guarantees!

Lochbihler, Schreiner Multivariate polynomials Isabelle 2014 11 / 14

Exploit the Representation in Abstract Algorithms

Example:

I Gröbner bases algorithm depends on a monomial order.

I Efficiency relies on fast access to leading monomial in that order.

′a mpoly vs. ′a mpoly × monom-order

I Algebraic type classes require uniqueness of polynomials.

I Algorithm receives representational details as parameter.

I If polynomial’s representation fits to the parameter, execution is fast.

Otherwise, convert polynomial . . . or search . . .

I No static checks, no efficiency guarantees!

Lochbihler, Schreiner Multivariate polynomials Isabelle 2014 11 / 14

Open Problem: Controlling Representations

I What happens when we combine two polynomials?

+ Rec Distr.
Rec Rec ???

Distr ??? Distr

How can we make contextual information available?

I How can the user specify the representations?

value (2 :: int poly) * 3

Recursive or distributive? Dense or Sparse? Which monomial order?

In CAS, the user declares his choice as a configuration option.
Can we mimick this in Isabelle?

Lochbihler, Schreiner Multivariate polynomials Isabelle 2014 12 / 14

Open Problem: Controlling Representations

I What happens when we combine two polynomials?

+ Rec Distr.
Rec Rec ???

Distr ??? Distr

How can we make contextual information available?

I How can the user specify the representations?

value (2 :: int poly) * 3

Recursive or distributive? Dense or Sparse? Which monomial order?

In CAS, the user declares his choice as a configuration option.
Can we mimick this in Isabelle?

Lochbihler, Schreiner Multivariate polynomials Isabelle 2014 12 / 14

The Ubiquituous Type Class zero

typedef ′a ⇒0
′b = { f :: ′a ⇒ ′b :: zero | almost-everywhere-zero f }

There is no map function for ′b that satisfies

map f ◦ map g = map (f ◦ g)

BNF ⇒0 is not a BNF!
Must construct ′a poly-rec manually

Lifting Quotient theorem only for relations that respect zero
No parametrised correspondence relations

Transfer Transfer rules must restrict function space
===> is too weak

Library Re-implement finite maps with the invariant 0 /∈ ran m
How can we improve reuse?

Lochbihler, Schreiner Multivariate polynomials Isabelle 2014 13 / 14

The Ubiquituous Type Class zero

typedef ′a ⇒0
′b = { f :: ′a ⇒ ′b :: zero | almost-everywhere-zero f }

There is no map function for ′b that satisfies

map f ◦ map g = map (f ◦ g)

BNF ⇒0 is not a BNF!
Must construct ′a poly-rec manually

Lifting Quotient theorem only for relations that respect zero
No parametrised correspondence relations

Transfer Transfer rules must restrict function space
===> is too weak

Library Re-implement finite maps with the invariant 0 /∈ ran m
How can we improve reuse?

Lochbihler, Schreiner Multivariate polynomials Isabelle 2014 13 / 14

Summary

Current state of multivariate polynomials in Isabelle:

Design seems good

Prototype of abstract and representation types with minimal set of
operations

Lemmas and algorithm implementations are still missing

Up for discussion:

I User-friendliness/convenience for the working mathematician.

I Control of representations

I Better integration with Isabelle packages

Lochbihler, Schreiner Multivariate polynomials Isabelle 2014 14 / 14

Summary

Current state of multivariate polynomials in Isabelle:

Design seems good

Prototype of abstract and representation types with minimal set of
operations

Lemmas and algorithm implementations are still missing

Up for discussion:

I User-friendliness/convenience for the working mathematician.

I Control of representations

I Better integration with Isabelle packages

Lochbihler, Schreiner Multivariate polynomials Isabelle 2014 14 / 14

