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Abstract. The Isabelle Collections Framework (ICF) provides a unified
framework for using verified collection data structures in Isabelle/HOL
formalizations and generating efficient functional code in ML, Haskell,
and OCaml. Thanks to its modularity, it is easily extensible and supports
switching to different data structures any time. For good integration with
applications, a data refinement approach separates the correctness proofs
from implementation details. The generated code based on the ICF lies
in better complexity classes than the one that uses Isabelle’s default
setup (logarithmic vs. linear time). In a case study with tree automata,
we demonstrate that the ICF is easy to use and efficient: An ICF based,
verified tree automata library outperforms the unverified Timbuk/Taml
library by a factor of 14.

1 Introduction

Isabelle/HOL [15] is an interactive theorem prover for higher order logic. Its
code generator [7] extracts (verified) executable code in various functional lan-
guages from formalizations. However, the generated code often suffers from being
prohibitively slow. Finite sets and maps are represented by chains of pointwise
function updates, whose memory usage and run time are unacceptable for larger
collections in practice. For example, to obtain an operative implementation, de
Dios and Peña manually edited their generated code such that it used a balanced-
tree data structure from the Haskell library [5, Sec. 5]. Not only are such manual
changes cumbersome and error-prone as they must be redone each time the code
is generated, they in fact undermine the trust obtained via formal verification.

There are some Isabelle/HOL formalizations of efficient collection data struc-
tures such as red-black trees (RBT), AVL trees [16], and unbalanced binary-
search trees [11], each providing its own proprietary interface. This forces the
user to chose the data structures at the start of formalization, and severely hin-
ders switching to another data structure later. Moreover, wherever efficient data
structures replace the standard types for sets and maps, one runs the risk of
cluttering proofs with details from the data structure implementation, which
obfuscates the real point of the proof. Furthermore, ad-hoc implementations of
efficient data structures are scattered across other projects, thus limiting code
reuse. For example, Berghofer and Reiter implemented tries for binary strings
(called BDDs there), within a solver for Presburger arithmetic [2].

This paper presents the Isabelle Collections Framework (ICF) that addresses
the above problems. The main contribution is a unified framework (Sec. 2) to



define and use verified collection data structures in Isabelle/HOL and extract
verified and efficient code. As it works completely inside the logic, it neither in-
creases the trusted code base, nor does it require editing the extracted code. The
ICF integrates both existing (red-black trees, associative lists) and new (hash-
ing, tries, array lists) formalizations of collection data structures. It provides a
unified abstract interface that is sufficient for defining and verifying algorithms
– independently of any concrete data structure implementation. This permits to
change the actual data structure at any point without affecting the correctness
proofs. To easily integrate existing data structures, the ICF contains a library
of generic algorithms that implement most operations from a few basic opera-
tions. The ICF uses a data refinement approach that transfers the correctness
statements from the abstract specification level to the concrete data structure
implementation; Sec. 3 contains a small, but non-trivial example. With this ap-
proach, the ICF integrates well in existing formalizations.

Another contribution is our evaluation of the ICF (Sec. 4): (i) To benchmark
its performance, we compared the ICF to the standard code generator setup
and to library data structures of Haskell, OCaml, and Java. (ii) To demonstrate
its usability in a case study, we implemented a formally verified tree-automata
library [13] based on the ICF, using the data refinement approach. The ICF based
tree-automata library outperforms the OCaml-based Timbuk/Taml library [6]
by a factor of 14 and is competitive with the Java library LETHAL [14].

The ICF is published electronically in the Archive of Formal Proofs [12]. As
the AFP is only updated with new Isabelle releases, a more recent version may
be available at http://cs.uni-muenster.de/sev/projects/icf/.

1.1 Related Work

Most interactive theorem provers provide some efficient data structures in their
libraries. The Coq standard library [4] features a modular specification for maps
and sets that mirrors OCaml’s library except for iterators. There are implemen-
tations based on strictly ordered (association) lists and on AVL trees for both
sets and maps. There is also a trie implementation for maps with binary strings
as keys. Coq’s type system and code extraction facility allow the inclusion of
data structure invariants (orderedness for lists and the search tree property for
AVL trees) in the type definition without losing the capability to generate code.
At present, Isabelle does not support this, i.e., the data structure invariants
must be carried through all theorems explicitly. For ACL2 [10], there is a set
implementation based on ordered lists, too.

For Haskell, Peyton Jones [17] proposes an elegant collections framework that
uses type constructor classes and multi-parameter constructor classes. Unfortu-
nately, Isabelle’s type system supports neither of them.

The C++ Standard Template Library (STL) [18] provides the abstract con-
cepts for the ICF: concepts (= ADTs), container classes (= implementations),
algorithms (= generic algorithm), and iterators. In the STL, iterators are first-
class objects that represent the state of an iteration. In ICF, iterators are realized
as combinators. While the first approach is more general (e.g., it allows one to
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Fig. 1. The structure of the Isabelle Collections Framework

iterate simultaneously over multiple data structures), ours is more convenient for
use with a functional language. In C++, the compiler instantiates the templates
automatically. This is not possible in Isabelle/HOL. Instead, the ICF contains
(automatically generated) explicit instantiations of the generic algorithms. The
user has to select the appropriate instantiation, which is easy due to a uniform
naming scheme.

As for Java, the Java Collections Framework [9] provides an object-oriented
approach. Interfaces describe ADTs. Concrete data structures implement them
in classes. Generic algorithms are provided by means of static methods (in the
java.util.Collections class) and abstract collection classes, which provide
default implementations for most operations based on just a few basic ones (e.g.
java.util.AbstractSet). Dynamic dispatch takes the role of instantiating the
generic algorithms.

2 Overview of the Framework

Figure 1 outlines the structure of the Isabelle Collections Framework (ICF). Its
main components are abstract data types (Sec. 2.1), generic algorithms (Sec. 2.4),
and implementations (Sec. 2.6). An abstract data type (ADT) specifies a set of
operations and their behavior (e.g. a set with empty, member, insert, delete and
iteration operations) w.r.t. a base type in Isabelle (Sec. 2.2). ADTs can extend
other ADTs, denoted by solid lines. An implementation provides an actual data
structure with operations (dashed lines), and proves that they match the specifi-
cation of the ADT (e.g. HashSet implements the ADT set). A generic algorithm
implements some operation via other ADT operations (dotted lines) – indepen-



dently of the concrete implementation. For this, the iterators (Sec. 2.3) that each
ADT provides are extremely useful.

2.1 Abstract Data Types

The ICF currently supports three different abstract data types:

Maps A map is a partial function from keys to values with finite domain. The
operations include the empty map constructor, emptiness check, lookup,
update, deletion, composition, iteration, conversion to associative lists, and
quantification and choice over the domain. Ordered maps extend maps in
that they require a linear order on the keys and provide operations to iterate
over the keys in ascending and descending order. Currently, there are map
implementations using association lists, red-black trees (RBT), hashing, and
tries. The RBT implementation is also an ordered map.

Sets A finite set with empty set constructor, insertion, intersection, union, dif-
ference, emptiness, membership and subset checks, cardinality, iteration, im-
age, and choice operations. Like for maps, the ICF specifies ordered sets that
require a linear order on the elements and provide ordered iteration. Except
for ListSet, the set implementations are derived from the corresponding map
implementations via the generic algorithm Map2Set.

Sequences A finite sequence. Unlike sets and maps, the insertion order deter-
mines the iteration order. Implementations are a queue LFIFO with amortized
constant-time enqueue and dequeue as well as push and pop operations, and
a resizable array implementation that provides access by index positions.

2.2 Data Refinement

The operations of an ADT are specified by its intended behavior w.r.t. an ab-
straction mapping α that abstracts from the concrete implementation to the so
called base type of the ADT. The base type of sets is Isabelle/HOL’s type ′a set,
maps have the base type ′k → ′v option3, and sequences have the base type
′a list. For example, the empty, memb, and ins operations of the ADT set are
specified as follows:4

empty-correct : α empty = {}
memb-correct : memb x s⇔ x ∈ (α s)
ins-correct : α (ins x s) = {x} ∪ (α s)

A proposition that involves ADT operations is usually proved in two steps:

1. Transform it into a proposition that only involves operations on the base
type. This is straightforward using the specifications of the ADT’s operations
and usually done automatically by Isabelle’s simplifier.

3 The data type ′a option = None | Some ′a corresponds to Maybe a in Haskell.
4 To simplify the presentation, we omitted the data structure invariant invar, which

guards all specifications for abstract data types (cf. Sec. 2.5).



2. Prove the transformed proposition. Since it only involves base types, this
proof enjoys the full support of Isabelle’s automated proof methods and is
completely independent of the ICF.

For example, the proposition memb y (ins x (ins y (ins z empty))) is first trans-
formed to y ∈ {x, y, z} and then proved automatically by the method auto.

Hence, when using the ICF to implement some algorithm, the algorithm is
first formalized and proved correct on the base type – independently of the ICF.
In a second (straightforward) step, definitions are transformed to use the ADTs
of the ICF, and correct data refinement is shown. This approach also simplifies
porting existing formalizations to the ICF, which requires only the second step,
while the existing correctness proofs remain untouched. Section 3 presents an
example of this approach in detail.

2.3 Iterators

Iterators are one of the ICF’s key concepts. An iterator over a finite set or map
is a generalized fold combinator: It applies a state-transforming function to all
elements of a set (entries of a map, resp.), starting with an initial state and re-
turning the final state. Additionally, the iteration is interrupted if a continuation
condition on the state no longer holds. The iteration order is unspecified.

The Isabelle/HOL standard library provides an uninterruptible fold combi-
nator for finite sets that requires the state-transformer to be left-commutative5

to ensure that the iteration result does not depend on the iteration order. How-
ever, generic algorithms in the ICF typically use state-transformers that are not
left-commutative. Consider, e.g., a generic algorithm for coercion between set
implementations. It iterates over the source set and inserts each element into
the target set which is initially empty. Although inserting is left-commutative
on the base type, the shape of the target set’s data structure usually depends
on the insertion order, i.e. inserting is not left-commutative for data structures.
Hence, ICF iterators do not require left-commutativity.

An iterator iterate on a set data structure of type ′s has the type (′σ →
bool) → (′a → ′σ → ′σ) → ′s → ′σ → ′σ. It takes a continuation condition
c, a state transformer f , the set s, and the initial state σ. For reasoning, the
following rule is used, which requires an iteration invariant I:

[iterate-rule]

I (α s) σ0

∀x i σ. c σ ∧ x ∈ i ∧ i ⊆ α s ∧ I i σ =⇒ I (i− {x}) (f x σ)
∀σ. I {} σ =⇒ P σ

∀σ i. i ⊆ α s ∧ i 6= {} ∧ ¬c σ ∧ I i σ =⇒ P σ

P (iterate c f s σ0)

The iteration invariant I :: ′x set → ′σ → bool takes two parameters: (i) the
iteration state i denotes the set of elements that still needs to be iterated over,
and (ii) the computed state σ of type ′σ. To establish a property P of the
resulting state, it must be shown that:
5 A function f :: ′a→ ′σ → ′σ is called left-commutative iff ∀x y. f x◦f y = f y ◦f x.



1. the iteration invariant I holds for the initial state σ0 with the whole set α s
unprocessed,

2. the state transformer f preserves I for any removal of any element from any
subset of α s, and

3. I i σ implies P σ, when the iteration stops either normally (i = {}) or
prematurely (¬c σ, i 6= {}).

Example 1. The following algorithm copy copies a set from a source implemen-
tation (indexed 1) to a target implementation (indexed 2).

copy s1 = iterate1 (λσ. True) ins2 s1 empty2

The continuation condition (λσ. True) ensures that iteration does not stop pre-
maturely. The iteration state is the data structure of the target implementation.
The initial state is the empty set empty2, and the state transformer function is
the insert function ins2 of the target implementation. To prove copy correct –
i.e. if invar1 s1, then invar2 (copy s1) and α2 (copy s1) = α1 s1 – we use the
iteration invariant I i s2 = (α2 s2 = (α1 s1)− i ∧ invar2 s2).

Example 2. Bounded existential quantification (∃x ∈ s. P x) can be imple-
mented via iteration: bex s P = iterate (λσ. ¬σ) (λx σ. P x) s False. The state
of this iteration is a Boolean that becomes true when the first element satisfying
P is found. The iteration stops prematurely when the state becomes true.

For proving bex correct – i.e. if invar s, then bex s P = (∃x ∈ α s. P x) –
we use the iteration invariant I i σ = (σ = (∃x ∈ (α s)− i. P x)).

2.4 Generic Algorithms

A generic algorithm implements and proves correct a target operation by means
of a set of source operations, independently from the actual data structure. To
obtain an implementation of the target operation together with its correctness
statement, the generic algorithm and its correctness statement are instantiated
with actual implementations of the source operations.

Generic algorithms reduce redundancy because an algorithm needs to be
proved correct only once and is then instantiated for various implementations of
the involved ADTs. For example, the map-to-nat function computes a bijective
map from a finite set into an initial segment of the natural numbers. It is defined
and proved correct independently of the actual map and set implementations.

Generic algorithms are also used to reduce the effort of creating a new imple-
mentation. The ADTs provide generic algorithms to derive most operations from
a small set of basic operations, using iterators as a key concept. For example, all
specified map and set operations can be implemented by iterators and four basic
operations: the empty map or set constructor, lookup or membership test, inser-
tion, and deletion. In a later development stage, these generic implementations
may be replaced by versions optimized for the actual data structure. However, as
the generic algorithms are reasonably efficient, this is often not necessary. As a
special case, the ICF contains generic algorithms to derive a set implementation
from a map implementation by using a map with value type unit, whose only
element is ().



2.5 Realization within Isabelle/HOL

In this section, technical details and challenges of the ICF’s realization within
Isabelle/HOL are discussed.

Abstract Data Types. The ICF uses Isabelle/HOL’s locale mechanism6 [1] to
specify an ADT. For each ADT, a base locale fixes the data structure invari-
ant and the abstraction function. Each operation is specified by its own locale,
which extends the base locale, fixes the operation and specifies its behavior. For
example, the following locales specify the ADT set and its delete operation:

locale set = fixes α :: ′s→ ′a set and invar :: ′s → bool

locale set-delete = set +
fixes delete :: ′a→ ′s→ ′s
assumes delete-correct :

invar s =⇒ α (delete x s) = (α s)− {x}
invar s =⇒ invar (delete x s)

Note that the data structure invariant invar guards all specification equations
to allow for ADT implementations that require invariants.

Implementations. An implementation interprets the locales with the opera-
tions it provides, thereby showing that they satisfy the ADT’s specification.
The HashSet implementation, e.g., defines the functions hs-α, hs-invar, and hs-
delete and proves the lemma hs-delete-impl: set-delete hs-α hs-invar hs-delete
where set-delete denotes the assumption predicate of the locale set-delete. From
this lemma, interpretation produces the lemma hs.delete-correct, which is delete-
correct with the parameters instantiated by hs-α, hs-invar, and hs-delete. Note
that the dot (instead of a dash) in hs.delete-correct has technical reasons.

Naming Conventions. The ICF uses several naming conventions that simplify
its usage: The locale specifying an operation op for an ADT adt is named adt-op
(e.g., set-delete). The correctness assumption is called op-correct (e.g., delete-
correct). Each implementation of an ADT has a short (usually two letters) prefix
(e.g., hs for HashSet). An implementation with prefix pp provides a lemma pp-
op-impl and interprets the operation’s locale with the prefix pp, yielding the
lemma pp.op-correct.

Data Refinement. The proof of the data refinement step is, in many cases, per-
formed automatically by the simplifier. In some complex cases, involving, e.g.,
recursive definitions or nested ADTs, a small amount of user interaction is nec-
essary. Section 3 contains an example for such a complex case.

6 Locales provide named local contexts with fixed parameters (fixes) and assump-
tions (assumes). They support inheritance (+) and interpretation (i.e., parameter
instantiation), which requires to discharge the assumptions. A predicate with the
locale’s name collects all assumptions of the locale.



Generic Algorithms. A generic algorithm is defined as a function that takes the
source operations as arguments. The correctness lemma shows that the target
operation meets its specification if the source operations meet theirs.

Example 3. Reconsider the bounded existential quantification from Ex. 2, where
an iterate operation was used. In a generic algorithm, this operation becomes
an additional parameter:

bex iterate s P = iterate (λσ. ¬σ) (λx σ. P x) s False

Assume that the locale set-bex specifies bounded existential quantification. Then,
we prove the correctness lemma

bex-correct: set-iterate α invar iterate =⇒ set-bex α invar (bex iterate)

An instantiation then sets the parameters α, invar, and iterate to its opera-
tions. In Isabelle/HOL, this is easily done with the OF and folded attributes, as
illustrated in the following example, that instantiates the algorithm for HashSets:

definition hs-bex = bex hs-iterate
lemmas hs-bex-impl = bex-correct[OF hs-iterate-impl, folded hs-bex-def ]

where hs-iterate-impl: set-iterate hs-α hs-invar hs-iterate. Hence, we get the
lemma hs-bex-impl: set-bex hs-α hs-invar hs-bex.

Unfortunately, Isabelle cannot generate instantiations of a generic algorithm
automatically like Coq with its implicit arguments or C++ with its template
mechanism. Instead, the ICF contains (automatically generated) explicit instan-
tiations for each combination of generic algorithm and implementation, using
a uniform naming scheme. It remains up to the user to select the appropriate
instantiation, which is easy due to the uniform naming scheme. For example, to
compute the union of a list-based set with a hash set, yielding a hash set, the
user has to pick the function lhh-union, where the prefix lhh selects the right
instantiation of the union-algorithm.

When implementing an algorithm using the ICF, the user must choose be-
tween writing a generic algorithm or fixing the data structures in advance. A
generic algorithm needs to be parameterized over all used operations. If an algo-
rithm uses only a few operations, the parameterization may be done explicitly,
as in Ex. 3. If many different operations are involved, parameterization can be
hidden syntactically in locale context, in order not to mess up the definitions
with long parameter lists. However, due to restrictions in Isabelle/HOL’s poly-
morphism, every collection with different element type requires its own operation
parameters. Similarly, one has to specify one monomorphic instantiation for each
iterator with different state. Alternatively, a record can collect all required ADT
operations, but the monomorphism issue remains.

When a generic algorithm is not required, one can fix the used data struc-
tures beforehand, either by making alias definitions for the concrete operations
and lemmas at the beginning of the theory, or by directly using the concrete



operations and lemmas throughout the theory. This avoids the above-mentioned
problems with polymorphism. Thanks to the consistent naming conventions used
in the ICF, switching to another implementation is as easy as replacing the pre-
fixes of constant and lemma names (e.g., replacing rs- by ts- to switch from
RBTs to Tries).

An alternative approach (similar to Peyton Jones’ XOps route that auto-
matically selects the data type implementation [17, Sec. 3]) is to hide ADT
implementations completely from the ADT inside the logic. To that end, we in-
troduce a new type for each ADT which is isomorphic to its base type. In the
generated code, the new type becomes a data type with one constructor for each
implementation. The abstract operations then pattern match on the ADT and
dispatch to the correct implementation – emulating dynamic dispatch of the Java
Collection Framework. Concrete implementations are selected by choice of the
constructor, and, thanks to dynamic dispatch, manual instantiation or selection
of generic algorithms is no longer necessary. However, this approach currently
only works for ADT implementations that do not require invariants. Thus, it is
only implemented for tries and array-based hashing. Yet, the Isabelle developers
are working on the code generator such that it can handle such invariants.7

2.6 Implementations for ADTs

The ICF implementations for the ADTs use four basic data structures: lists,
arrays, red-black trees, and tries. Inside Isabelle/HOL, arrays are isomorphic to
lists, but for Haskell code, we use the Data.Array.Diff.DiffArray implemen-
tation from the Haskell library, which supports in-place updates while provid-
ing the immutable (functional) interface. To our knowledge, ML’s and OCaml’s
standard libraries do not feature a similar implementation, so we fall back on
a list-based implementation. Red-black trees are taken from the Isabelle/HOL
standard library and extended with the iterator concept. A trie (prefix tree) is
a search tree for strings where the key string identifies the path from the root
to the node that stores the value. In contrast to RBTs, tries do not need data
structure invariants. Our implementation improves upon and substantially ex-
tends the one in [15, Ch. 3.4.4]. The implementations for the ADTs use these
data structures to implement maps, sets and sequences (cf. Fig. 1).

Maps. There are four implementations for finite maps: association lists (ListMap),
red-black trees (RBTMap), hashing (HashMap, based on either RBTs or arrays),
and tries (TrieMap).

Association lists have the data structure invariant that every key is unique
in the list. While not being necessary, this allows for a simpler and more effi-
cient implementation of iterators. Association lists work for all key types with
executable equality test.

Red-black trees require that the key type is linearly ordered; the invariant
ensures that it is a correct RBT, i.e., it has no two consecutive red nodes on a
path, balanced height, the root is black, and the entries are ordered by their key.
7 Personal communication with F. Haftmann.



If a key type does not have a canonical linear order, one can still use red-
black trees by prefixing a hash operation hashcode that maps keys to integers.
Then, the RBT maps an integer (the key’s hashcode) to a bucket, which stores
the key-value pairs for all keys with that hashcode in an association list. We
use Isabelle’s type classes to overload the hashcode function for different types
and provide instantiations for all standard Isabelle type constructors except for
functions (because they cannot be tested for equality). The invariant for hashing
backed by RBTs is (i) the invariant for the RBT itself and (ii) that the keys in
any bucket (i.e. association list) are distinct and have the bucket’s hashcode.

The ICF also offers hashing backed by an array, which is currently only
sensible with Haskell code (cf. above). This provides access in constant time,
but requires to grow the array and rehash all data in the map when the load
increases beyond a certain threshold. Our implementation triggers a rehash when
the number of keys reaches 75% of the array size, a standard load factor threshold
for open hashing.

By definition, keys for tries must be strings. For all other types, we use an
encoding function encode into strings of integers, which must be injective. For
natural numbers, e.g., we compute the 16-adic representation starting with the
lowest digit, i.e. 1000 = 3 ·162 + 14 ·16 + 8 is encoded as [8, 14, 3]. The type class
for this encoding pairs every encode function with a left-inverse partial function
decode that decodes the strings. Since encode is one-to-one, only countable types
may be used as keys in a trie. Like for hashing, the ICF provides instantiations
for all countable types predefined in Isabelle/HOL.

Sets. A map whose value type is the singleton type unit is isomorphic to a set,
where mapping a key k to () means that the set contains k. The ICF provides
generic algorithms (Map2Set) such that an implementation for the ADT map
easily yields one for the ADT set. The RBT, hashing, and trie implementation
for maps use this setup to define the set implementations.

Sequences. Sequences are typically used in two different styles: array-like and
stack- or queue-like. In the array-like style, elements are accessed by index, and
new elements are appended at the end. If implemented with a linked-list data
type, these operations take linear time. The ICF therefore provides an array-
based implementation ArrayList, which provides index and appending operations
in amortized constant time (for Haskell), enlarging the array as necessary. How-
ever, prepending an element must shift all elements, which takes linear time.

In case a stack or queue is needed, the ICF contains an amortized constant-
time queue implementation LFIFO that also provides constant-time stack opera-
tions. However, access by index is implemented by iteration, which takes linear
time on average.

3 An Example Application

In this section, we demonstrate how to use the ICF in an example application
inspired by the Sieve of Eratosthenes. Whereas the traditional Sieve produces a



sieve n ≡ sieve1 n 2 (λ . {})
sieve1 n i M ≡ if n < i then M

else sieve1 n (i+ 1) (if M i = {} then addp n i i M else M)

addp n p j M ≡ if j > n then M else addp n p (j + p) (M(j := {p} ∪M j))

Fig. 2. The modified Sieve of Eratosthenes to compute sets of prime divisors.

list of prime numbers less than n, we produce a map from numbers less than n
to their set of prime divisors, ignoring their multiplicity. A tail-recursive imple-
mentation is shown in Fig. 2, where sieve n runs the function sieve1 for the first
n numbers and returns a function M of type nat → nat set such that for all i
within 2 and n, M i is the set of all prime divisors of i. sieve1 n i M iterates
from i up to n and, whenever it encounters a new prime number i (M i = {}),
it adds i to the set M j of all multiples j of i up to n via the function addp.

However, this implementation is not executable, because it contains the test
M i = {} (i.e. a function equality8). One solution is to change M ’s type to nat→
nat set option and replace {} with None, but this is very inefficient because the
function M is built from pointwise updates, i.e. a function application M i takes
time linear in the number of updates. Since the number of prime divisors ω(n)
of n is in O(log(log(n))) [8], there are O(n · log(log(n))) updates and the above
application executes O(n) times. Since sets and maps are coded as functions,
insertion and update only add function closures and therefore require constant
time. Hence, the overall run time is in O(n2 · log(log(n))).

We now reformulate the sieve as a generic algorithm by replacing the map M
and the sets in the range of M by ICF ADTs (and implementations). Note that
the Sieve could be implemented much more efficiently using an array monad and
lists instead of sets. Yet, it still is a good non-trivial example to illustrate how
to integrate the ICF in one’s formalization, because the set ADT is nested in
the map ADT. Following the data refinement approach from Sec. 2.2, the Sieve
integrates with the ICF in three steps:

1. For code generation, we define new functions that operate on ADTs (Fig. 3).
2. We show that the new functions preserve the data structure invariants.
3. We show transfer equations between original and new functions.

The equations proved in step 3 are then used to transfer correctness theorems
from the original functions to the new functions.

The sieve is defined as a generic algorithm, i.e. the definitions are (implic-
itly) parameterized over the used operations. The implicit parameterization is
achieved by combining the locales for maps and sets, thereby prefixing the map
and set operations with m- and s- resp., to avoid name clashes. Fig. 3 shows
the new implementation. Note that the algorithm is structurally the same, but
the operations on sets and maps have been replaced by the ADT operations, for

8 In Isabelle/HOL, a set is represented by its characteristic function.



sieve′ n ≡ sieve′
1 n 2 m-empty

sieve′
1 n i M ≡ if n < i then M

else sieve′
1 n (i+ 1) (if m-lookup i M = None then addp′ n i i M else M)

addp′ n p j M ≡ if n < j then M

else addp′ n p (j + p) (m-update j (s-ins p (opt-dest (m-lookup j M))) M)

opt-dest None ≡ s-empty opt-dest (Some A) ≡ A

Fig. 3. Implementation of the modified Sieve with the ICF.

which no syntactic sugar is currently available. The new function opt-dest stems
from replacing the function M by a map where None represents the empty set.

Since the ADTs are nested, their abstraction functions and invariant predi-
cates are combined into new ones:

α M ≡ s-α (opt-dest (m-α M))
invar M ≡ m-invar M ∧ (∀n S. m-α n = Some S =⇒ s-invar S ∧ s-α S 6= {})

Note that we exclude empty sets being stored in M , because None already rep-
resents them. Next, we show that addp’ and sieve’ preserve the data structure
invariant invar. This is straightforward because they only use the abstract oper-
ations that preserve the invariants by assumption. Finally, proving the following
transfer equations is also straightforward under the assumption invar M :

α (addp′ n p M) = addp n p (α M) (1)
α (sieve′

1 n i M) = sieve1 n i (α M) (2)
α (sieve′ n) = sieve n (3)

Since invar (sieve′ n) holds, m-lookup j (sieve′ n) returns the set of j’s prime
divisors for all 2 ≤ j ≤ n.

To obtain an executable implementation with concrete data structures, e.g.
RBTs, we simply interpret our locale. The ICF is set up such that all proof
obligations are discharged automatically. For the run time complexity of the
RBT implementation, the map operations dominate the set operations because
the set size is limited by O(log(log(n))). Since M is updated O(n · log(log(n)))
times, the overall run time is in O(n · log(n) · log(log(n))).

4 Evaluation

This section reports on some performance measurements. In Sec. 4.1, we compare
the generated code using the ICF with the code generated from the Isabelle/HOL
default set representation, and with the tree data structures from the standard
libraries of Haskell and OCaml.9 Then, we briefly describe a tree automata
9 Unfortunately, the SML standard library contains no tree structure.
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Fig. 4. Comparison of ICF data structures with code generator defaults and with Java

library that is based on the ICF and compare its performance to a well-known
OCaml library and a Java library (Sec. 4.2).

All tests where done on a 2.66 GHz x86/64 dual-core machine with 4 GB
of memory. We used Poly/ML 5.2, OCaml 3.09.3, GHC 6.10.4, and OpenJDK
1.6.0-b09. The run time values are averages over three test runs.

4.1 Basic Operations

For comparing the performance of basic set operations, we ran a simple pro-
gram that starts with an empty set, then inserts n times a random number in
the range [0, 2n), then removes n times a random number in the range [0, 2n),
then tests n times a random number in the range [0, 2n) for membership in
the set, and finally iterates over each element in the set. As iteration is not
executable in Isabelle/HOL’s default code generator setup, we omitted the last
phase when comparing with the default setup. This program exercises exactly
the basic operations (empty, member, insert, delete, iterate) from which the
other set operations may be (and actually are) derived by generic algorithms.

The left part of Figure 4 shows the runtimes of the code generated by Isabelle
from a set-based formalization using the standard code generator setup and of the
code that uses ICF data structures. The x axis shows the test size n and the y axis
the required time in milliseconds. This test was done on the Poly/ML platform,
which was faster than OCaml and GHC for this kind of tests. Clearly, the run
time of the code generated from the default setup grows significantly faster
(theoretically O(n2)) than the code using the ICF red-black trees (theoretically
O(n log n)). However, even the list-based ICF set implementation (also O(n2)) is
significantly faster than the default setup, because the latter’s chain of pointwise
function updates grows also with every delete operation.

The right part of Fig. 4 compares ICF’s red-black trees to Java’s TreeSet
and HashSet classes. Java’s HashSet class is backed by an array, and thus more
efficient than the tree implementations, whose overhead per operation is much
larger. Moreover, Java uses destructive updates whereas the ICF is purely func-
tional. The ICF test was, again, run on the Poly/ML platform. Java’s TreeSet
is, on average, 3.7 times faster than the RBTs from the ICF – the ratio decreases
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from 5.0 for n = 105 to 3.2 for n = 106. Java’s HashSet is even 15.2 times faster
on average. These results show how much room there is for speed-up, when one
is not bound to platform constraints.

In order to capture the potential for improvement on a functional language
platform (to which the Isabelle/HOL code generator is restricted), we compare
the red-black trees from the ICF with tree data structures from the Haskell
and OCaml standard libraries. The results are shown in Fig. 5. For OCaml, the
standard library is, on average, 34% faster than the ICF – the ratio increases
from 25% for n = 104 to 38% for n = 105. For Haskell, the difference is even
more significant. Here, the standard library is, on average, about 2.6 times faster
– the value increases from 2.0 for n = 104 to 3.0 for n = 105. The significant
super-linear increase for Haskell also results from lazily evaluated tail-recursive
functions.10

Currently, the ICF tree data structure uses RBTs from the Isabelle standard
library. Our results show that there is still room for improvement on the data
structure’s efficiency. On the other hand, the ICF data structures are formally
verified, whereas those of the Haskell and OCaml standard libraries are not.
Moreover, it would also be possible to configure the code generator to use the
data structures from the standard library instead of the verified ones.

4.2 Case Study: An ICF-based Tree Automata Library

The first author has implemented a formally verified tree automata library [13].
It uses the ICF to derive efficient code and the data refinement approach to
verify algorithms on an implementation independent (and thus simpler) level.
We compared the generated code to Timbuk/Taml [6], a tree automata library
for OCaml, and to LETHAL [14], a tree automata library for Java that has been
developed as a students’ project in our group.

The test consisted of intersecting seven pairs of randomly generated tree
automata (with a few hundred rules and up to one hundred states each), and
10 Up to a certain extent, strict evaluation in Haskell can be forced by the seq-operator.

However, we did not include such platform specific optimizations into the ICF.



ICF ICF ICF ICF Taml LETHAL
Language Haskell SML OCaml OCaml(i) OCaml(i) Java

complete 1.5s 6.1s 12.5s 121s 1923s 0.456s
reduced 73ms 407ms 522ms 4983ms 71636ms 120ms

Table 1. Tree Automata Library using the ICF compared to other libraries

then checking the results for emptiness. Table 1 shows the run time for var-
ious platforms. All ICF versions used RBT-based hashing. Most notably the
ICF library running on Haskell is three orders of magnitude faster than Tim-
buk/Taml. However, this mainly results from comparing compiled Haskell with
interpreted OCaml (marked as OCaml(i) in the table header). Another issue is
that the ICF-based library uses a different algorithm for checking emptiness that
performs better for automata with non-empty languages. However, even when
comparing the ICF-based library and Timbuk/Taml both on interpreted OCaml,
with a reduced test set (second row) where the tested automata’s languages are
all empty, the ICF based library is still about 14 times faster. We conjecture that
Timbuk/Taml’s use of plain lists for sets and maps – which is common practice
in functional programming – explains that difference.

For the complete test set, the Java-based LETHAL library is about three
times faster than the ICF-based library running on Haskell. For the reduced
test set, the latter is even a bit faster than the Java implementation. These
encouraging results demonstrate that it is possible to use the ICF to develop
efficient verified algorithms that are competitive with existing unverified ones.

5 Conclusion

The Isabelle Collections Framework is a unified, easy-to-use framework for using
verified data structures in Isabelle/HOL formalizations. Abstract data types for
common Isabelle types provide the option to generate efficient code for a wider
class of operations than the default setup. Data refinement allows one to transfer
correctness results from existing formalizations to efficient implementations by
means of transfer equations. The ICF implementations vastly outperform the
standard code generator setup. The ICF proved its usability and efficiency in a
verified tree automata library: The generated code outperforms the well-known
(unverified) Timbuk/Taml library by a factor of 14, and is even competitive with
the Java-based (also unverified) LETHAL library.

However, a lot remains to be done. The evaluation shows that the data struc-
tures are not yet optimally efficient. Some data structures, like heaps and priority
queues, are still missing. Concerning usability, Isabelle’s code generator currently
poses the biggest limitation. When it will support invariants for data types, the
ICF will integrate much more smoothly into existing formalizations.

Another approach to make functional code more efficient are state monads
that support, e.g., arrays with destructive updates. The Imperative HOL frame-



work [3] adds support for monads to Isabelle/HOL. It remains future work to
implement and verify monadic collection data structures.
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