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Chapter 1

Introduction

As software is becoming more and more widespread and complex, ensuring correct
software behaviour is more difficult than ever. Testing a software, i. e. running
it on a collection of inputs and checking whether the observed output meets the
requirements, can never prove its correctness and incurs nonnegligible costs in the
software development process. In safety-critical applications, however, proofs for
the software meeting its specification are often required. One aspect in this con-
text is information flow control [Com99]. Software developers must make sure that
agents, neither internal nor external, may not illicitly influence critical computa-
tions and that there are no leaks for confidential information to the environment.
For example, the control software for fuel rods in a nuclear power plant had better
not been influenced by external manipulations. Equally, in a professional mea-
surement system, the data path from the sensor to the value display must not be
manipulated. Regarding information leaks, in an information system for instance,
some data must not be retrievable unless a correct password has been correctly
entered.

Many formal security models and methods have been developed to control
information flow in software systems, e. g. introducing security levels [BLP73]
or partitioning a software system into security domains that may not influence
each other [GM84]. Although there are sophisticated guidelines for developing
safety-critical software systems (e. g. the common criteria [Com99]) that define
applicable rules to ensure information flow control, we sometimes, in particular for
existing software, have to analyze programs to see whether they meet the criteria
such as security levels or noninterference partitioning: First, we need to determine
which program parts can influence others. Second, we must decide whether any
of these influences is a safety violation.

Obviously, the first part is undecidable in general, so we have to settle with
approximations. Slicing [Wei84] determines which program parts can influence
a given statement or be influenced by it, and which definitely do not so. Cur-
rent implementations of slicing (e. g. ValSoft [KSR99, KS98, Kri03]) reduce the
computation of slices to reachability analysis in the program or system depen-
dence graph. [SRK] explains the relation between slicing and noninterference
according to [GM84]. Today, slicing can be applied to medium-sized programs in
reasonable time, but slices are pretty imprecise in practice and they do not give

1



2 CHAPTER 1. INTRODUCTION

any information on the conditions necessary for the influence happening between
two statements. In [Sne96], Snelting proposed to compute a necessary Boolean
condition for every path π : s I∗ t between two given statements s and t in
the system/program dependence graph that must hold whenever information can
possibly flow along π. After having been simplified the constraint is given to a
constraint solver which either proves the influence being impossible in the case the
condition is unsatisfiable or returns a necessary condition over input variables for
the influence to happen. When input values that satisfy the condition are given to
the program, the influence from s to t will hopefully become visible, e. g. as a wit-
ness for the illegal influence in the safety-critical setting. Meanwhile, this idea has
been developed further [Rob04, SRK] and is now applicable to real programming
languages. However, solving for input variables is still a challenge [Sne05].

Unfortunately, Boolean path conditions are not able to capture temporal as-
pects of programs. Hence, loops and recursion are handled only rudimentarily
which may ruin their precision. Equally, it is not possible to express that some
(sub)condition must be satisfied only after some other condition. In this thesis,
we explore how these issues can be addressed by using linear temporal logic (LTL)
for a simple imperative programming language.

Model checking has become a very popular static program analysis tool over
the last decade. Today, professional model checkers such as SPIN [Hol03] or
NuSMV [CCGR99] are powerful enough to be applied to industrial-sized programs
[HRV+03]. But they serve not only as simple verifiers of handcrafted specifications,
they are applied in a large number of program analysis and verification approaches,
e. g. for solving iterative data flow problems [SS98] and test data generation
[HCL+03, GH99]. Similarly to constraint solvers being used for Boolean path
conditions, we show how to use model checkers to find program traces that show
precisely how information and what piece of information flows along the influence
path. Moreover, we can also use model checking to compute a constraint over
input variables which are necessary conditions for the influence happening.

Hence, this thesis’ goals are:

• Rules for generating necessary LTL path conditions,

• Some ideas on how to simplify them,

• The link between model checking and temporal path conditions, and

• A number of small application examples.

This thesis is organized as follows: Chapter 2 gives an informal overview about
path conditions and the issues that have to be resolved in their context. Both
syntax and semantics of linear temporal logic (LTL) are presented in chapter 3. We
introduce our imperative programming language IMP and a number of dependence
graphs in chapter 4. In chapter 5, we revise Boolean path conditions. Chapter
6 contains generation and simplification rules for temporal path conditions for
IMP programs and compares them to Boolean path conditions. The connection
to model checking is established in chapter 7. We conclude with some examples
in chapter 8 and a conclusion (chapter 9).



Chapter 2

Overview

This chapter gives an informal introduction to path conditions and outlines what
issues arise in their context. We present the details more formally in the subse-
quent chapters. Here, we only explain what types of constraints temporal path
conditions are composed of before we mention what can be done with LTL path
conditions.

In general, path conditions are conditions for a single path or a set of paths in
the program or system dependence graph, which is a combination of the control
and the data dependence graph, such that the path condition is satisfiable if the
path or one of them can be executed. In this thesis, we concentrate on imperative
programs with structured control flow.

Example 1
Figure 2.1 shows an example program and its program dependence graph (PDG).
If we want to know whether line 1 can influence line 7, we see that there is a path
1,5,7 in the PDG, i. e. slicing says: Yes, possibly there is such an influence.

A necessary condition for this path in the PDG is that lines 1, 5, and 7 must
be executed in this order. Obviously, for line 5 being executed, n < 6 must hold.
The same argument gives that 6 ≤ n < 7 must hold when line 7 is executed.
However, we cannot satisfy both constraints simultaneously, even though – if we
run the program – the lines are executed in the correct order.

Figure 2.1 An imperative example program and its PDG.

1 c := 1;
2 n := 0;
3 while (n < 7) {
4 if (n < 6) {
5 b := c;
6 } else {
7 d := b;
8 }
9 n := n + 2;

10 }

entry

c:=1;

(n<7) n:=n+2;
T

(n<6) b:=c;

d:=b;

T F

T
n:=0;

1

2

3

4 5

79

3



4 CHAPTER 2. OVERVIEW

This is because a single program variable can take multiple values in the course
of execution. By transforming the program into static single assignment form
(SSA) [CFR+91], in which every variable occurs at most once on the left-hand
side of an assignment statement, we introduce new program variables such that
we can always safely refer to a variable’s value that has been assigned to it during
the last execution of a specific assignment statement (cf. section 5.1). This way,
we know that the execution condition, which is made up of control predicates
surrounding the statement, always holds at the statement itself.1 Unfortunately,
this does not save us in the case when we want to combine execution conditions
from different statements, i. e. from different execution points, as we do with the
execution conditions for lines 5 and 7. The flow dependence edge between nodes
5 and 7 in the PDG is loop-carried, thus even the SSA variables may change their
value while execution proceeds from line 5 to line 7.

Boolean path conditions (cf. chapter 5) can handle loop-carried data depen-
dences only unsatisfactorily. In LTL path conditions, eventually ♦ and until U
operators model that two conditions must hold at different points in execution.
Additionally, these operators model the nodes’ ordering on the path in the path
condition.

As we allow non-scalar variables, i. e. variables that are composed of multi-
ple subcomponents, we also want to make sure that if we write to a variable’s
component and later read from the variable, then it must be the same component
both times for a flow of information taking place, e. g. for arrays, it must be the
same array cell that is accessed (cf. section 6.2.2.3). Thus, we include additional
constraints for data dependences to ensure this. Moreover, we also require that
the array cell must not be overwritten by some other access to the array between
the write and read accesses of interest.

Example 2
For the following program, we are interested whether line 1 influences line 3, i. e.
whether the value of b stored in cell 2∗i+1 of array a reaches line 3 and is actually
read there.

1 a[2 * i + 1] := b;
2 a[3 * j] := c;
3 if (a[k] == d) {
4 ...
5 }

Hence, we essentially add the data dependence constraint

(2 ∗ i + 1 = k) ∧ (2 ∗ i + 1 6= 3 ∗ j)

to the path condition, appropriately distributed over the until operators in it.

Similarly, for scalar variables, we have necessary constraints, so-called Φ con-
straints from data dependence (cf. section 5.3), to ensure that the SSA variant’s

1Note that – without SSA form – if we moved line 9 in figure 2.1 before line 4, the constraint
n < 7 would not necessarily hold in line 7.
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value of the data dependence’s source variable does reach the SSA variant read at
its target, i. e. that the scalar variable has not been overwritten on the way.

Example 3
Consider the following program.

1 if (b) { x := 1; }
2 if (b) { x := 0; }
3 if (x < 1) { ... }

Here, we obviously have that line 1 (x := 1) cannot influence line 3, but from a
control flow graph point of view without optimizations, there does exist a direct
data dependence from line 1 to line 3. Example 20 (p. 78) deals with this program
in more detail.

We also use the until operator to account for cycles in the PDG. Since we do
want to generate path conditions for all paths between two statements, if there is
a cycle on the way, the number of different paths is infinite, so we cannot simply
take the disjunction over the path conditions for every single path (cf. section
6.3). Our aim is to restrict ourselves to cycle-free paths. For constraints with
execution conditions only, this is pretty simple, but as we have data dependence
conditions, too, things get more complex. While Boolean path conditions opted
for ignoring cycles [Rob04], thereby reducing precision (cf. example 25 (p. 86)),
we show that we can address this problem at little extra cost. For most types of
cycles, we simply introduce an additional until operator, which – in many cases –
disappears again during simplification, but there is one specific type of cycles that
we must handle separately. Nevertheless, the number of paths still remains finite.

Apart from execution conditions from control dependence and conditions for
data dependence edges, we also include constraints to model that a loop that
precedes a statement must terminate before the statement can be executed, i. e.
the negated loop predicate must hold after the loop (cf. section 6.2.1.1). (This
does not mean that we consider a non-termination sensitive control dependence
or influence definition.) Equally, when a data dependence exits a loop, we know
that the affected loop must terminate in between (cf. section 6.2.2.1). Temporal
logic is ideal to incorporate both types of constraints in path conditions, Boolean
logic lacks the temporal dimension for that.

At last, we also introduce a new constraint on the statement level to ensure that
an incoming data dependence can effect the evaluation at all (cf. section 6.2.3).
For instance, if the predicate (x > 5)||(c) is the target of a data dependence with
respect to variable x, then c must be false so that x can influence the evaluation.

Once we have generated the LTL condition for a path or set of paths, we almost
always must simplify the LTL formula to be understandable. Simplification can
happen in two ways:

• There are congruences and implications that are valid for all LTL formulae
and all models, i. e. we can simplify the formula without using additional
knowledge from the analyzed program (cf. sections 3.1.3 and 3.2.4). For
example, we have the law that ♦ is idempotent.
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• Substantial simplification can also be achieved by statically analyzing at
the program in the sense that some subformulae of the condition are not
satisfiable over any model for the program and can therefore be eliminated
(cf. section 6.4).

We will give some examples and ideas on that, but a comprehensive exposé on
how to simplify a particular constraint best is beyond the scope of this thesis.

However, when looking carefully at the constraint does not give sufficient in-
sight, model checking is another option to learn more. Since classic model checking
can handle only finite state systems, we have designed our programming language
to account for this, although all of the constraint types work, of course, for Turing-
complete imperative programming languages, too.

In chapter 7, we show how to extract the correct finite state model from the
program to be analyzed to which we can then apply either explicit state or symbolic
model checking. If we are interested in finding any state sequence that satisfies the
LTL formula and thus is a witness for the (illegal) influence, either approach works
fine. In explicit state model checking, the LTL formula is also translated into a
finite state machine which is then run in parallel with the program’s machine.
Any accepting infinite run contains a satisfying state sequence. Symbolic model
checking converts the LTL formula into a µ-calculus formula with two nested
fixpoint operators whose solution is the set of satisfying states. Explicit state
model checking tends to produce longer witnesses than symbolic model checking
does, but this can sometimes be very useful, too (cf. section 8.3). If, however, we
are keen on solving the LTL formula for input variables of the program, symbolic
model checking is clearly superior to explicit state model checking. Unfortunately,
we have not been able to find a professional LTL model checker that is able to
perform this type of model checking.

Thus, model checkers can be regarded as the equivalent to constraint solvers
as is done with Boolean path condition. In contrast to quantifier elimination
[Sne05], arbitrary program expressions in the LTL formula are no problem for
model checkers as they work “inside” the program. They only have to be adapted
to fit the model checker’s modelling language. Moreover, due to the finite state
assumption, every LTL path condition is decidable and – if space and time permit
– solvable.

The snag with model checking is the state explosion problem: The number of
states in the finite state representation of a program is exponential in the number
of its variables. In the worst case, all of them have to be searched when proving
that an LTL formula is not satisfiable over the model. Thus, in order to keep model
checking feasible, we must use design abstractions when extracting the program
model from the program. Although section 7.5 refers to some ideas on this, we
are unable to address this issue in this thesis.



Chapter 3

Linear temporal logic (LTL)

Formulae in linear temporal logic (LTL) define predicates over infinite sequences
of states. Propositional LTL formulae use the Boolean operators ¬, ∧, ∨, and
→, and the four temporal operators always ¤, eventually ♦, until U , and next
© to connect propositional variables and the Boolean constants true and false.
States are assignments to these variables. In LTL formulae over languages, atomic
formulae over a language take the place of propositional variables and states assign
values to the variables in the atomic formulae.

Pnueli was the first to propose temporal logic for analyzing distributed systems
[Pnu77] and temporal semantics for reactive programs [Pnu81]. Since then, linear
temporal logic has become very popular in specifying and verifying concurrent
systems, in particular in connection with model checking.

In this chapter, we first introduce notation for well-known concepts before we
define linear temporal logic over propositional variables, also known as propo-
sitional linear time logic. In the last part, we introduce the notions of typed
variables, expressions, and atomic formulae, and present how they can be incor-
porated into linear time logic.

3.0 Preliminary definitions and notation

In this section, we give some well-known definitions and notations. Even though
they are standard in literature, we provide them here to make this thesis self-
contained. The notation defined here can also be found in the glossary at the
end.

Definition 1 (Unions)
Let M be a set of sets. The union of M , denoted by

⋃
M , is

⋃
M := { a | ∃A ∈ M : a ∈ A } .

If (Mλ)λ∈Λ is a family of sets, their union
⋃

λ∈Λ Mλ is defined as
⋃

λ∈Λ Mλ :=⋃ {Mλ | λ ∈ Λ }. If Λ is finite, say Λ = { λ1, . . . , λn }, we write Mλ1 ∪ . . . ∪Mλn

for
⋃

λ∈Λ Mλ.

7



8 CHAPTER 3. LINEAR TEMPORAL LOGIC (LTL)

The disjoint union .
⋃

M of M is the set

.
⋃

M :=
{

(a,A) ∈
(⋃

M
)
×M

∣∣∣ a ∈ A
}

.

For A ∈ M we identify a ∈ A with (a, A) ∈ .
⋃

M and write B ⊆ .
⋃

M for B ⊆⋃
M . Equally, the disjoint union for (Mλ)λ∈Λ is the set .

⋃
λ∈Λ Mλ :=

⋃
λ∈Λ Mλ ×

{ λ }. If Λ = { λ1, . . . , λn } is finite, we write Mλ1
·∪ . . . ·∪ Mλn for .

⋃
λ∈Λ Mλ. For

λ ∈ Λ we identify a ∈ Mλ with (a, λ) ∈ .
⋃

µ∈Λ Mµ and write B ⊆ .
⋃

µ∈Λ Mλ for
B ⊆ ⋃

λ∈Λ Mλ.c For a ∈ .
⋃

λ∈Λ Mλ, we can always find exactly one λ ∈ Λ such
that a comes from Mλ, i. e. a ∈ M × λ.

Definition 2 (Relations and functions)
Let X and Y be sets. Let R ⊆ X × Y be a binary relation and let A ⊆ X. The
image R(A) of A under relation R is R(A) :=

⋃
a∈A { y ∈ Y | (a, y) ∈ R }. The

inverse relation R−1 to R is defined as R−1 := { (b, a) ∈ Y ×X | (a, b) ∈ R }.
Y X denotes the set of all mappings f : X 7→ Y . Let f : X 7→ Y be such a

mapping and let y ∈ Y . The image f(A) of A under f is f(A) := { f(a) | a ∈ A }.
The inverse image f−1(y) of y under f is f−1(y) := { x ∈ X | f(x) = a }. If f
bijective, we also write f−1(y) for the image of y under the inverse function of
f . The partition on X induced by f is X/f =

{
f−1(y)

∣∣ y ∈ f(X)
}
. The

restriction fA of f on A is fA : A 7→ Y , a 7→ f(a) for a ∈ A.

Definition 3
The set of natural numbers N is N := { 0, 1, 2, . . . }. The set of integers is
denoted by Z. The set of 32 bit integers Z is Z :=

{−231, . . . , 231 − 1
}
. The

set of Boolean truth values B is B := { T, F }.
Let X be a set. The power set P (X) of X is P (X) := { Y ⊆ X }. X+

denotes the set
⋃∞

i=1 Xi of all nonempty finite words or nonempty tuples
over the alphabet X. X∗ denotes the set X+ ∪{ ε } of all finite words (inclusively
the empty word ε) or the set X+ ∪ { () } set of all tuples (including the empty
tuple ()) over the alphabet X. Xω denotes the set XN of all infinite words or
infinite tuples over alphabet X.

Definition 4 (Graphs and multigraphs)
A graph G is represented as a tuple G = (V,E) where V is the set of nodes or
vertices and the set of edges E ⊆ V × V is a binary relation on V . If G is a
graph, we write V (G) for the set of nodes in G and E (G) for the set of edges in
G. The set pred(v) of predecessor nodes for v ∈ V is pred(v) := E−1({ v }).
The set succ(v) of successor nodes to v ∈ V is succ(v) = E({ v }) .

A multigraph G is represented by a quadruple G = (V,E,¯ Â, Â̄ ) where
V is the set of nodes, E the set of edges, and ¯ Â, Â̄ : E 7→ V are the source
and target node mappings that assign each edge its source and target node. G
is a graph iff (¯ Â, Â̄ ) : E 7→ V × V , e 7→ (¯ Â(e), Â̄ (e)), is injective. In
this case, we identify e ∈ E with (¯ Â(e), Â̄ (e)), i. e. E ⊆ V × V and write
G = (V,E) as shorthand. Conversely, every graph G = (V,E) can be considered
as a multigraph with ¯ Â((v, w)) := v and Â̄ ((v, w)) := w being implicitly
defined for (v, w) ∈ E.
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Let now G = (V, E,¯ Â, Â̄ ) denote a multigraph and let W ⊆ V . The
multigraph GW generated by W is GW := (W,E′,¯ Â E′ , Â̄ E′) where E′ :=
¯ Â−1(W ) ∩ Â̄ −1(W ).

Let G1 = (V1, E1,¯ Â1
, Â̄

1
) and G2 = (V2, E2,¯ Â2

, Â̄
2
) be two multi-

graphs. G1 is a subgraph of G2, denoted by G1 ⊆ G2, iff V1 ⊆ V2, E1 ⊆ E2,
¯ Â

1
= ¯ Â

2 E1 , and Â̄
1

= Â̄
2 E1 .

Definition 5 (Paths in graphs)
Let G = (V, E,¯ Â, Â̄ ) be a multigraph. A path π in G is a finite sequence of
edges π := e1, . . . , en such that ¯ Â(ei+1) = Â̄ (ei). If n = 0, identify π with
some v ∈ V . If G is a graph (i. e. E ⊆ V ×V ), we identify π with the sequence of
nodes v0, . . . , vn via the bijection v0, . . . , vn ↔ (v0, v1), . . . , (vn−1, vn). The start
node of π is ¯ Â(π) := ¯ Â(e1), the target node of π is Â̄ (π) := Â̄ (en).
We write ρ : v GI∗ w for a path ρ in G with ¯ Â(ρ) = v and Â̄ (ρ) = w.

Let now π = e1, . . . , en be a path in G. We define the set of path nodes V(π)
of π as V(π) :=

{ Â̄ (π)
} ·∪ .

⋃n
i=1

{¯ Â(ei)
}

and the set of path edges E(π)
of π as E(π) := .

⋃n
i=1 { ei }.

A path ρ = f1, . . . , fm in G is a subpath of π iff there is a i ∈ N, i ≤ n−m such
that fi+j = ej for 1 ≤ j ≤ m. ρ is contained in π iff there exists a strictly isotone
mapping µ : { 1, . . . , m } 7→ { 1, . . . , n }, i. e. µ(i) < µ(j) for all 1 ≤ i < j ≤ m,
such that fj = eµ(j) for 1 ≤ j ≤ m.

The length |π| of π is the number of edges in π, i. e. |π| = n.
For 1 ≤ i < n, the successor edge succπ(ei) to ei in π is ei+1. For 1 < i ≤ n,

the predecessor edge predπ(ei) to ei in π is ei−1. If it is clear from the context,
we omit writing the subscript π.

We say π is

• node disjoint or cycle free iff ¯ Â(ei) 6= ¯ Â(ej) for i 6= j and ¯ Â(ei) 6=
Â̄ (en) for 1 ≤ i, j ≤ n,

• edge disjoint iff ei 6= ej for all 1 ≤ i, j ≤ n,

• closed iff ¯ Â(π) = Â̄ (π),

• cycle disjoint iff ρ 6= ρ′ for all closed subpaths ρ := ei, . . . , ei+j and ρ′ :=
ei′ , . . . , ei′+j of π with i 6= i′ (1 ≤ i, i′ < n, 1 ≤ j ≤ |π|).

Let v, w ∈ V(π) be two nodes in π. We write v ≺π w iff v comes before w in
π, i. e. let ei be the edge responsible for v ∈ V(π) and ej the one for w, then we
demand that i < j, or i = j = n and v = ¯ Â(en) and w = Â̄ (en). We write
v ¹π w iff v comes no later than w in π, i. e. v = w or v ≺π w.

If there exists a path ρ : v GI∗ w in G from v to w, we say v reaches

w and w is reachable from v, denoted by v
GÃ w. Let W ⊆ V be a set of

nodes. W+
E′ :=

⋃
u∈W

{
u′ ∈ V

∣∣ ∃π : u GI∗ u′ : E(π) ⊆ E′ } denotes the set of
nodes reachable from W in G via edges E′.
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Definition 6 (Strongly connected components)
Let G = (V, E,¯ Â, Â̄ ) be a multigraph. A set of nodes W ⊆ V is strongly

connected iff u
GWÃ v for all u, v ∈ W . If every W ′ ⊆ V with W ′ % W is not

strongly connected, W is a strongly connected component of G.

3.1 LTL formulae over propositional variables

Usually, LTL formulae contain only propositional variables that can only take
the Boolean truth values T and F. Syntactically, these variables and the Boolean
constants true and false are combined with the four temporal operators ¤, ♦, U ,
and ©, and with the usual Boolean connectives to form LTL formulae. Some
dialects of LTL also provide past temporal operators (see e. g. [MP91]), but here,
we consider only the future segment.

After having defined the syntax of LTL formulae over propositional variables,
we give a semantics for them over infinite state sequences, and introduce the
concepts of equivalence and implication along with some ideas on how to simplify
such formulae.

3.1.1 Syntax

Let W be the countable set of propositional variables. Later, we will use these
variables to represent atomic formulae (cf. section 3.2.1). We usually write Hebrew
letters (ℵ, i, ,ג k, . . . ) to denote propositional variables.

We now define the syntax of LTL formulae over propositional variables. The
alphabet for them is given by ZLTL := OLTL ∪W ∪ { (, ),≡ }∪ { , } where OLTL :=
{ ¬,∧,∨,→,©, ¤, ♦,U } is the set of LTL operators.

Definition 7 (LTL formulae)
The set LTL of LTL formulae (over propositional variables) is inductively
defined as follows:

1. Every propositional variable is an LTL formula: W ⊆ LTL.

2. The Boolean constants true and false are LTL formulae: true , false ∈ LTL.

3. If θ, θ′ ∈ LTL are LTL formulae, so are ¬(θ), (θ)∧ (θ′), (θ)∨ (θ′), (θ) → (θ′) ∈
LTL.

4. If θ, θ′ ∈ LTL are LTL formulae, so are ©(θ), ¤(θ), ♦(θ), (θ) U (θ′) ∈ LTL.

If an LTL formula θ is constructed with rules 1, 2, and 3 only, θ is called a
state formula. We write SF for the set of all state formulae.

In order to save brackets in LTL formulae, we define precedence rules for the
operators: We order them as:

¬ © ¤ ♦ U ∧ ∨ →
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where ¬ binds most strongly and→ least strongly. For instance, we write ¤(true →
i) ∧ ♦i for (¤((true) → (i))) ∧ (♦(i)). Moreover, for the binary operators ∧,
∨, and →, we allow sequences of them without brackets and consider it to be
bracketed right-associatively. For example, ℵ → i→ k stands for ℵ → (i→ k).

Next, we inductively define the set of propositional variables W (θ) of an LTL
formula θ ∈ LTL over propositional variables:

• If θ ∈ W is a propositional variable, then W (θ) := { θ }.
• If θ ∈ { true , false } is a Boolean variable, then W (θ) := ∅.
• If θ is of the form ◦(η) where η ∈ LTL and ◦ ∈ { ¬,¤,♦,©}, then W (θ) :=
W (η).

• If θ is of the form (η) ◦ (η′) where η, η′ ∈ LTL and ◦ ∈ { ∧,∨,→,U }, then
W (θ) := W (η) ∪W (η′).

In this thesis, we make heavy use of substitution. We define two types thereof:
We want to

• substitute an LTL formula for every occurrence of a propositional variable,
or

• identify a subformula of an LTL formula and replace it by another LTL
formula.

Definition 8 (LTL formula substitution for propositional variables)
Let θ ∈ LTL be an LTL formula over propositional variables, and W ⊆ W be a
nonempty, finite set of propositional variables, say W = { i1, . . . ,in }, and let
θ1, . . . , θn ∈ LTL. Then, θ[θ1/i1, . . . , θn/in] is the LTL formula that we define
recursively by:

• If θ ∈ { true , false } is a Boolean constant, then

θ[θ1/i1, . . . , θn/in] := θ.

• If θ ∈ W is a propositional variable in W , say θ = ii, then

θ[θ1/i1, . . . , θn/in] := θi.

• If θ ∈ W −W is a propositional variable not in W , then

θ[θ1/i1, . . . , θn/in] := θ.

• If θ is of the form ◦(η) where ◦ ∈ { ¬,©, ¤, ♦ } and η ∈ LTL, then

θ[θ1/i1, . . . , θn/in] := ◦(η[θ1/i1, . . . , θn/in]).

• If θ is of the form (η) ◦ (η′) where ◦ ∈ { ∧,∨,→,U } and η, η′ ∈ LTL, then

θ[θ1/i1, . . . , θn/in] := (η[θ1/i1, . . . , θn/in]) ◦ (η′[θ1/i1, . . . , θn/in]).
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If we want to simultaneously substitute the same LTL formula ϑ ∈ LTL for all
propositional variables of a finite set W ⊆ W, say W = { i1, . . . ,in }, in θ ∈ LTL,
we write as shorthand:

θ[ϑ/W ] := θ[ϑ/i1, . . . , ϑ/in]

Definition 9 (Substituting formulae for formulae)
Let θ ∈ LTL be an LTL formula and let i ∈ W (θ) be a propositional variable
which occurs exactly once in θ. Let ◦ ∈ { ∧,∨,→,U } be a binary LTL operator.
Then, θ 〈〈◦,i〉〉 denotes the pair of LTL formulae which are the operands for the
innermost ◦ operator either of which contains i:

• If θ does not contain a subformula of the form (η) ◦ (η′) such that i ∈
W (η) ∪W (η′), then, there is no such pair and we set θ 〈〈◦,i〉〉 := (ε, ε)

• If θ is of the form (η) ◦ (η′) for some η, η′ ∈ LTL and there do not exist
ζ, ζ ′ ∈ LTL with i ∈ W (ζ) ∪ W (ζ ′) such that (ζ) ◦ (ζ ′) is a subformula of
either η or η′, then θ 〈〈◦,i〉〉 := (η, η′).

• If θ is not of the form (η) ◦ (η′) for some η, η′ ∈ LTL, but θ contains a
subformula ϑ of the form (ζ) ◦ (ζ ′) for some ζ, ζ ′ ∈ LTL where i ∈ W (ζ) ∪
W (ζ ′), then θ 〈〈◦,i〉〉 := ϑ 〈〈◦,i〉〉.2

Let κ ∈ LTL be an LTL formula and let k ∈ W − W (θ) be a propositional
variable. Suppose (ε, ε) 6= θ 〈〈◦,i〉〉 =: (η, η′). There exists exactly one LTL formula
ϑ ∈ LTL such that ϑ[(η) ◦ (η′)/k] = θ. If we replace (η) ◦ (η′) by κ in θ, we obtain
the LTL formula ϑ[κ/k], which we denote by θ 〈〈◦,i |κ〉〉. If θ 〈〈◦,i〉〉 = (ε, ε), we
set θ 〈〈◦,i |κ〉〉 := κ.

Example 4
Let us consider the formula

θ := ℵ ∧ i ∧ false U (k ∨ ג) ∧ ℵ)).

Then, θ 〈〈U , 〈〈ג = (false ,k ∨ ג) ∧ ℵ)) and

θ 〈〈U ,k |k U ג) ∧ i)〉〉 = ℵ ∧ i ∧ k U ג) ∧ i).

If we take the operator ∧ and the propositional variable i, we obtain θ 〈〈∧,i〉〉 =
(i, false U (k∨ (((ℵ∧ג) because we agreed upon ∧ being right-associative. Hence,

θ 〈〈∧,i | true〉〉 = ℵ ∧ true
2 Note that, although ϑ may not be uniquely determined, θ 〈〈◦,i〉〉 is nevertheless well-defined:

We show this by induction on the length of θ. If θ has length 1, then θ 〈〈◦,i〉〉 = (ε, ε). For the
other two cases, θ 〈〈◦,i〉〉 is always well-defined. So suppose ϑ = (ζ) ◦ (ζ′) and ϑ′ = (β) ◦ (β′) are
subformulae of θ such that i ∈ W (ϑ) and i ∈ W (ϑ′). Since i occurs exactly once in θ, ϑ is
a subformula of ϑ′ or vice versa. Without loss of generality, let ϑ be a subformula of ϑ′. Then,
either ϑ = ϑ′ or ϑ is shorter than ϑ′. In the latter case, ϑ 〈〈◦,i〉〉 is well-defined by induction
hypothesis and by definition of ϑ′ 〈〈◦,i〉〉: ϑ′ 〈〈◦,i〉〉 = ϑ 〈〈◦,i〉〉.
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This way, we can replace subformulae without spelling them out exactly. Since
the propositional variable to identify the subformula of interest occurs exactly
once, the subformula to be replaced is uniquely determined. However, not every
subformula can be replaced in a single step in this way. Consider, for instance

ϑ := false U (true U (ℵ U i))

Then, there is no direct way to replace true U (ℵ U i) in this setting. Nevertheless,
we could replace ℵ U i by a new propositional variable k first and then replace
true U k: (ϑ 〈〈U ,ℵ |k〉〉) 〈〈U ,k | ℵ〉〉 = false U ℵ.

3.1.2 Semantics

LTL formulae are used to express temporal properties. While in Boolean proposi-
tional logic, a formula’s truth value is defined with respect to an assignment to the
propositional variables in it, this is not sufficient for the temporal case. The central
notion here is an infinite sequence of states, i. e. of assignments to propositional
variables. State sequences that satisfy an LTL formula are its models.

Definition 10 (State and state sequence)
Let W ⊆ W be a finite set of propositional variables. A state ξ over W is a
mapping ξ : W 7→ B that assigns a Boolean truth value to each propositional
variable in W . We write SW for the set BW of all states over W .

A state sequence over W is an infinite sequence Ξ = (ξi)i∈N of states over
W . We consider the index i ∈ N as time scale. We write MW for the set
(SW )N =

(
BW

)N of all state sequences over W .

Definition 11 (Model)
Let W ∈ W be a finite set of propositional variables and let θ ∈ LTL be an LTL
formula with W (θ) ⊆ W . Let Ξ = (ξi)i∈N ∈MW be a state sequence over W . We
inductively define the notion of θ holding in Ξ at time i, denoted by (Ξ, i) ² θ:

• If θ ∈ W is a propositional variable, then (Ξ, i) ² θ iff ξi(θ) = T.

• If θ ∈ { true , false } is a Boolean constant, then (Ξ, i) ² θ iff θ = true.

• If θ = ¬(η) for some η ∈ LTL: (Ξ, i) ² θ iff not (Ξ, i) ² η.

• If θ = (η) ∧ (η′) for some η, η′ ∈ LTL, then (Ξ, i) ² θ iff (Ξ, i) ² η and
(Ξ, i) ² η′.

• If θ = (η)∨(η′) for some η, η′ ∈ LTL, then (Ξ, i) ² θ iff (Ξ, i) ² η or (Ξ, i) ² η′.

• If θ = (η) → (η′) for some η, η′ ∈ LTL, then (Ξ, i) ² θ iff not (Ξ, i) ² η or
(Ξ, i) ² η′.

• If θ = ©(η) for some η ∈ LTL, then (Ξ, i) ² θ iff (Ξ, i + 1) ² η.

• If θ = ¤(η) for some η ∈ LTL, then (Ξ, i) ² θ iff (Ξ, i + k) ² η for all k ∈ N.
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• If θ = ♦(η) for some η ∈ LTL, then (Ξ, i) ² θ iff (Ξ, i+k) ² η for some k ∈ N.

• If θ = (η) U (η′) for some η, η′ ∈ LTL, then (Ξ, i) ² θ iff (Ξ, i + k) ² η′ for
some k ∈ N and (Ξ, i + j) ² η for all j ∈ N with 0 ≤ j < k.

We say Ξ satisfies (is a model for) θ, denoted by Ξ ² θ, iff (Ξ, 0) ² θ.

Lemma 1 (LTL formula substitution)
Let θ, η ∈ LTL be LTL formulae with W (θ) ∪ W (η) ⊆ W , let i ∈ W be a
propositional variable and let Ξ = (ξi)i∈N, Ψ = (ψi)i∈N ∈ MW be state sequences
such that ξi(i) = T iff (Ψ, i) ² η for all i ∈ N, and such that ξi(k) = ψi(k) for all
k ∈ W − { i } and all i ∈ N. Then Ξ ² θ iff Ψ ² θ[η/i].

Proof. We show (Ξ, i) ² θ iff (Ψ, i) ² θ[η/i] (for i ∈ N) by induction on the
structure of θ:

• If θ = i is the propositional variable i itself, then θ[η/i] = η and
(Ξ, i) ² i iff ξi(i) = T iff (Ψ, i) ² η.

• If θ ∈ W − { i }, say θ = ℵ, then Ξ(θ[η/i]) = Ξ(ℵ) = Ψ(ℵ) and
(Ξ, i) ² ℵ iff (Ψ, i) ² ℵ.

• If θ is of the form ¬(θ′) for some θ′ ∈ LTL, then θ[η/i] = ¬(θ′[η/i]) and
(Ξ, i) ² θ iff not (Ξ, i) ² θ′ iff (by induction hypothesis) not (Ψ, i) ² θ′[η/i]
iff (Ψ, i) ² θ[η/i].

• If θ is of the form (θ1) ◦ (θ2) where θ1, θ2 ∈ LTL and ◦ ∈ { ∧,∨,→}, then
θ[η/i] = (θ1[η/i]) ◦ (θ2[η/i]) and (Ξ, i) ² θ iff (Ξ, i) ² θ1 and/or/implies
(Ξ, i) ² θ2 iff (by induction hypothesis) (Ψ, i) ² θ1[η/i] and/or/implies
(Ψ, i) ² θ2[η/i] iff (Ψ, j) ² θ[η/i].

• If θ is of the form ©(θ′) (♦(θ′)), then θ[η/i] = ©(θ′[η/i]) (θ[η/i] =
♦(θ′[η/i])) and (Ξ, i) ² θ iff (Ξ, i + 1) ² θ′ ((Ξ, i + k) ² θ′ for some k ∈ N)
iff (by induction hypothesis) (Ψ, i + 1) ² θ′[η/i] ((Ψ, i + k) ² θ′[η/i]) iff
(Ψ, i) ² θ[η/i].

• If θ is of the form ¤(θ′), then θ[η/i] = ¤(θ′[η/i]) and (Ξ, i) ² θ iff (Ξ, i+k) ²
θ′ for all k ∈ N iff (by induction hypothesis) (Ψ, i+k) ² θ′[η/i] for all k ∈ N
iff (Ψ, i) ² θ[η/i].

• If θ is of the form (θ1) U (θ2), then θ[η/i] = (θ1[η/i]) U (θ2[η/i]) and
(Ξ, i) ² θ iff (Ξ, i+k) ² θ2 for some k ∈ N and (Ξ, i+j) ² θ1 for all 0 ≤ j < k
iff (by induction hypothesis) (Ψ, i + k) ² θ2[η/i] and (Ψ, i + j) ² θ1[η/i] for
0 ≤ j < k iff (Ψ, i) ² θ[η/i].

¤
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3.1.3 Implication and equivalence

Our interest is focused on whether an LTL formula holds for a state sequence
or whether there exists a model at all rather than on the specific syntax of the
formula. Hence, we say two formulae are equivalent if they have the same models:

Definition 12 (Equivalence)
Let W ⊆ W be a finite set of propositional variables. We say θ, η ∈ LTL with
W (θ) ∪W (η) ⊆ W are equivalent iff for every Ξ ∈ MW : Ξ ² θ iff Ξ ² η. We
denote this by θ ≺ Â η.

Note that θ ≺ Â η iff Ξ ² ((θ → η) ∧ (η → θ)) for every Ξ ∈ MW . Later, we
will use equivalences to simplify LTL formulae. Sometimes, however, equivalences
can not deliver us the desired extent of simplification. In this case, we may want
to weaken the LTL formula using implications:

Definition 13 (Implication)
Let W ⊆ W be a finite set of propositional variables. For θ, η ∈ LTL with W (θ)∪
W (η) ⊆ W , we say θ implies η iff Ξ ² (θ → η) for every Ξ ∈ MW . We denote
this by θ ÂÂ η.

Lemma 2 (Implication and equivalence patterns)
Let W ⊆ W be a finite set of propositional variables. Let θ, η ∈ LTL such that
W (θ) ∪ W (η) ⊆ W and θ ÂÂ η. Then θ[ϑ/i] ÂÂ η[ϑ/i] for every i ∈ W and
every ϑ ∈ LTL with W (ϑ) ⊆ W . If θ ≺ Â η, then also θ[ϑ/i] ≺ Â η[ϑ/i].

Proof. Without loss of generality, we may assume i ∈ W . For sake of contra-
diction, assume that θ[ϑ/i] ÂÂ η[ϑ/i] does not hold, i. e. there exists a state
sequence Ξ = (ξi)i∈N ∈ MW such that Ξ ² θ[ϑ/i], but not Ξ ² η[ϑ/i]. There
exists a sequence Ψ = (ψi)i∈N ∈ MW such that ψi(i) = T iff (Ξ, i) ² ϑ and
ψiW−{ i } = ξiW−{ i } for all i ∈ N. Then, by lemma 1, Ψ ² θ, but not Ψ ² η,
a contradiction to θ ÂÂ η. θ[ϑ/i] ≺ Â η[ϑ/i] if θ ≺ Â η follows from θ ≺ Â η iff
θ ÂÂ η and η ÂÂ θ. ¤

If we know that two formulae are equivalent, we can always substitute one with
the other. For example, consider the two formulae θ := ¤¬i and η := ¬♦i. It
follows directly from the definition of ¤ and ♦ that θ ≺ Â η. Hence, whenever we
encounter an LTL formula of type ¤¬ϑ where ϑ ∈ LTL we can instead evaluate
¬♦ϑ. By default, we can do this kind of simplification for whole formulae only.
The next lemma shows that we may also perform this inside other LTL formulae:

Lemma 3 (Congruence)
Let W ⊆ W be a finite set of propositional variables. Let θ, η, ϑ ∈ LTL such that
W (θ)∪W (η)∪W (ϑ) ⊆ W and θ ≺ Â η. Then, ϑ[θ/i] ≺ Â ϑ[η/i] for every i ∈ W .

Proof. This follows directly from the inductive definition of ² and the observation
that for every Ξ = (ξi)i∈N ∈MW and every j ∈ N, Ψ = (ξi+j)i∈N ∈MW . ¤
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θ η

Associativity (ℵ ∧ i) ∧ k ℵ ∧ (i ∧ k)
(ℵ ∨ i) ∨ k ℵ ∨ (i ∨ k)

Commutativity ℵ ∧ i i ∧ ℵ
ℵ ∨ i i ∨ ℵ

Absorption ℵ ∧ (ℵ ∨ i) ℵ
ℵ ∨ (ℵ ∧ i) ℵ

¤♦ ¤ℵ ♦ ¤ℵ
♦¤♦ℵ ¤ ♦ℵ

Distributivity (ℵ ∧ i) ∨ k (ℵ ∨ k) ∧ (i ∨ k)
(ℵ ∨ i) ∧ k (ℵ ∧ k) ∨ (i ∧ k)
©¬ℵ ¬©ℵ

©(ℵ ∨ i) ©ℵ ∨©i
¤(ℵ ∧ i) ¤ℵ ∧¤i
♦(ℵ ∨ i) ♦ℵ ∨ ♦i
ℵ U (i ∨ k) (ℵ U i) ∨ (ℵ U k)
(ℵ ∧ i) U k (ℵ U k) ∧ (i U k)
¤♦(ℵ ∨ i) ¤♦ℵ ∨¤♦i
♦¤(ℵ ∧ i) ♦¤ℵ ∧ ♦¤i

Idempotence ℵ ∧ ℵ ℵ
ℵ ∨ ℵ ℵ
¤¤ℵ ¤ℵ
♦♦ℵ ♦ℵ

ℵ U (ℵ U i) ℵ U i
(ℵ U i) U i ℵ U i

true, false ℵ ∧ true ℵ
ℵ ∨ true true
ℵ ∧ false false
ℵ ∨ false ℵ

Complement ¬(¬ℵ) ℵ
ℵ ∧ ¬ℵ false
ℵ ∨ ¬ℵ true

De Morgan ¬(ℵ ∧ i) (¬ℵ) ∨ (¬i)
¬(ℵ ∨ i) (¬ℵ) ∧ (¬i)

Implication ℵ → i ¬ℵ ∨ i
ℵ → ℵ true
ℵ → true true
ℵ → false ¬ℵ

Expansion ¤ℵ ℵ ∧©¤ℵ
♦ℵ ℵ ∨©♦ℵ
ℵ U i i ∨ (ℵ ∧©(ℵ U i))

Temporal operators ¤ℵ ¬(♦¬ℵ)
♦ℵ true U ℵ

Until ℵ ∧ ℵ U (ℵ ∧ i) ℵ U (ℵ ∧ i)
ℵ U (ℵ ∧ ℵ U i) ℵ ∧ ℵ U i

♦(ℵ U i) ♦i
ℵ U ♦i ♦i

Table 3.1: List of LTL formulae θ and η such that for every row θ ≺ Â η. Some
equivalences are taken from [MP91].



3.2. LTL FORMULAE OVER STRUCTURES 17

θ η

Boolean implications ℵ true
ℵ ∧ i i
ℵ ℵ ∨ i

Temporal implications ¤ℵ ℵ
ℵ i U ℵ

ℵ U i ℵ ∨ i
i ℵ U i

ℵ U i ♦i
ℵ U i ∨ k U i (ℵ ∨ k) U i
ℵ U (i U k) (ℵ ∨ i) U k

Table 3.2: List of LTL formulae θ and η such that for every row θ ÂÂ η.

Table 3.1 lists pairs (θ, η) of LTL formulae each of which represents an equiv-
alence θ ≺ Â η. Apart from the usual equivalences for the Boolean operators ∧, ∨,
→, and ¬ which also hold in LTL, we also provide a number of equivalences for
temporal operators. Under the heading “Temporal operators”, we note that we
can express the operators ¤ and ♦ in terms of the U operator, so for every LTL
formula, there exists an equivalent one that contains neither ¤ nor ♦ operators.
Table 3.2 contains some LTL formulae θ, η such that θ ÂÂ η. Obviously, these
lists can not be exhaustive. We only give a selection of those we think to apply in
later chapters.

3.2 LTL formulae over structures

Usually, not all variables in a program are Boolean, we also have integers, arrays
and the like. As we use LTL formulae to characterize program executions, we want
to express constraints over program variables of all types. Hence, we define the
concepts of atomic formulae, which take the position of propositional variables in
LTL formulae, and structures over which we interpret atomic formulae. Regarding
simplification of LTL formulae, we, of course, want to exploit constraints between
atomic formulae to simplify the LTL formulae further than this would be possible
with equivalences as defined in definition 12 (p. 15). Thus, we refine the concepts
of equivalence and implication, in order to be able to simplify formulae like (x <
y) ∧ (y < x) to false.

We start by informally defining atomic formulae and related notions. Then,
we incorporate these syntactically into LTL formulae and give a semantics for
them. At last, we show how to define equivalence and congruence, implication
and entailment for LTL formulae over structures and how they fit in with the
former notions thereof.
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3.2.1 Typed variables, expressions and atomic formulae

We now briefly sketch what we name typed variables, expressions and atomic
formulae. For those who are interested in a formal definition, [SW05] contains a
formal definition of these concepts. The extension to multi-sorted languages and
structures, which we use here, is straightforward.

On the syntactic level, we assume that we have a set of types T , a countable
set of typed variable identifiers V and a typing function L·M : V 7→ T such that
V ∩W = ∅, some function operators (denoted by the set F) and some predicate
operators (denoted by the setR) each of which has fixed arity with fixed parameter
(and return) types where F ∩ R = ∅. We write Fi (Ri) for function (predicate)
operators with arity i, i ∈ N. We group function and predicate operators and
their type and arity specification under the concept of a language L.

Then, we call some words over the alphabet Z = F ∪R∪ V ∪ { (, ),≡ } ∪ { , }
expression or atomic formula. More precisely, the set of expressions E ⊆ Z∗ is
the smallest set of words over Z such that V ∪ F0 ⊆ E and that is closed under
the application of function operators where type constraints are respected. The
set of variables V (e) of an expression e ∈ E is the set of all variable identifier
letters in e. We extend the typing function L·M to expressions in the obvious way.
The set of atomic formulae A ⊆ Z∗ is the smallest set of words over Z such
that if e1, e2 ∈ E with Le1M = Le2M then e1 ≡ e2 ∈ A and such that if r ∈ Rn is a
predicate operator of arity n ∈ N, then r(e1, . . . , en) ∈ A for all e1, . . . , en ∈ E of
appropriate type.

If we want to substitute an expression e′ ∈ E for a typed variable identifier
x ∈ V in another expression e ∈ E where Le′M = LxM, we write e[e′/x] for the
expression we obtain by substituting e′ for all occurrences of x in e. We write
e[e1/x1, . . . , en/xn] for the expression we obtain by substituting simultaneously ei

for xi, 1 ≤ i ≤ n if LeiM = LxiM for all 1 ≤ i ≤ n. We extend this notation to atomic
formulae, too.

Regarding the semantics of expressions and atomic formulae over a language
L, we assume that we have structure A = (A, τT , ιF , ιR) with a universe A that
contains all possible values for expressions. A typing function τT assigns to each
element of the universe its type, the interpretation functions ιF and ιR assign
each function and predicate operator a function on an appropriate subset of the
universe. Interpreted function operators map to elements of the universe whose
type matches its return type, predicate operators to B. For an expression e ∈ E,
we write LeMA as shorthand for τ−1

T (LeM).
When we interpret expressions e ∈ E or atomic formulae a ∈ A as LeMA-valued

and B-valued functions over A, we always assume that we have an extension, i. e.
a total order v on some finite set V ⊆ V that contains V (e) and V (a) respectively,
to fix the variable ordering. The interpretations eA and aA are defined inductively:
If e ∈ V, then e ∈ V and eA projects (a1, . . . , an) to the value at the position at
which x occurs in the extension. If e = f(e1, . . . , em) for some function operator
f ∈ Fm, we set

eA := (a1, . . . , an) 7→ ιF (f)(eA
1 (a1, . . . , an), . . . , eA

m(a1, . . . , an))



3.2. LTL FORMULAE OVER STRUCTURES 19

for aj ∈ LxjMA, (1 ≤ j ≤ n) where we assume that e1, . . . , em have the same
extension as e. For atomic formulae, we have that (e1 ≡ e2)A(a1, . . . , an) yields T
iff eA

1 (a1, . . . , an) = eA
2 (a1, . . . , an). For atomic formulae with predicate operators,

we set

(r(e1, . . . , em))A := (a1, . . . , an) 7→ ιR(r)(eA
1 (a1, . . . , an), . . . , eA

m(a1, . . . , an))

for aj ∈ LxjMA, (1 ≤ j ≤ n). Note that interpretation and substitution are
compatible, i. e.

e[e1/x1, . . . , en/xn]A = eA ◦ (
eA
1 , . . . , eA

n

)

For the rest of this section, let L be a fixed language and A a structure over
L.

3.2.2 Syntax

As before, we first define the syntax:

Definition 14 (LTL formulae over L)
The set of LTL formulae over L, denoted by LTLL, or – if it is clear from the
context – simply by LTL, is inductively defined as follows:

1. Every atomic formula is an LTL formula over L: A ⊆ LTLL.

2. Every propositional variable is an LTL formula over L: W ⊆ LTLL.

3. The Boolean constants true and false are LTL formulae over L: true , false ∈
LTLL.

4. If θ is an LTL formula over L, so are ¬(θ), ¤(θ), ©(θ), and ♦(θ).

5. If θ and θ′ are LTL formulae over L, so are (θ) ∧ (θ′), (θ) ∨ (θ′), (θ) → (θ′),
and (θ) U (θ′).

As before, if θ ∈ LTLL does not contain temporal operators, we say θ is a state
formula over L. We write SFL for the set of all state formulae over L.

Again, we introduce the same precedence rules to save brackets: We order the
operators as:

¬ © ¤ ♦ U ∧ ∨ →
where ¬ binds most strongly and → least strongly. As for the variables we natu-
rally extend the definition of typed and propositional variables in a formula θ to
LTL formulae over L:

• If θ ∈ A is an atomic formula, then we take the old definition for V (θ) and
set W (θ) := ∅.3

3Although we treat atomic formulae like propositional variables, we do not include them in
the set W (θ).
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• If θ ∈ { true , false } ∪ W, then we take the old definition for W (θ) and set
V (θ) := ∅.

• If θ is of the form ◦(η) where ◦ ∈ { ¬,©, ¤, ♦ } and η ∈ LTLL, then V (θ) :=
V (η) and W (θ) := W (η).

• If θ is of the form (η) ◦ (η′) where ◦ ∈ { ∧,∨,→,U } and η, η′ ∈ LTLL, then
V (θ) := V (η) ∪ V (η′) and W (θ) := W (η) ∪W (η′).

Next, we extend the concept of term substitution to arbitrary LTL formulae
over L. As with expressions and atomic formulae, we want to be able to substi-
tute expressions of appropriate type for typed variables inside an LTL formula
over L. Again, if types match, we write θ[e1/x1, . . . , en/xn] for the LTL formula
over L we obtain by simultaneously substituting every atomic formula a in θ by
a[e1/x1, . . . , en/xn].

Equally, we extend LTL formula substitution for propositional variables (cf.
definition 8 (p. 11)) to LTL formulae over L: We add one more item to definition 8
(p. 11): If θ ∈ A is an atomic formula, we set θ[θ1/i1, . . . , θn/in] := θ. We extend
definition 9 (p. 12) to LTL formulae over L in the same way. If θ ∈ LTLL, we write
θ as an abbreviation for θ[true /W (θ)].

3.2.3 Semantics

Next, we define the semantics of an LTL formula over L. First, we need to
adapt the notion of a state. Let X ⊆ V be a finite set of typed variables.
Let EX denote the set of all expressions with variables from X, i. e. EX :=
{ e ∈ E | V (e) ⊆ X }, and let AX denote the set of all atomic formulae with vari-
ables from X, i. e. AX := { a ∈ A | V (a) ⊆ X }. For W ⊆ W we write LTLLX,W for
the set

{
θ ∈ LTLL

∣∣ V (θ) ⊆ X ∧W (θ) ⊆ W
}

of LTL formulae with typed vari-
ables from X and propositional variables from W . The set LTLLX := LTLLX,∅ of LTL
formulae over X denotes the set of all LTL formulae over L with typed variables
from X and no propositional variables. We use the analogous notation for sets
of state formulae, SFLX,W and SFLX . Without loss of generality we assume in this
section that X = { x1, . . . , xn } with the order xi v xj iff 1 ≤ i ≤ j ≤ n.

Definition 15 (States and state sequences)
Let X be a finite set of typed variables and W a finite set of propositional variables.
An extended state ξ over X and W is a mapping ξ : X∪W 7→ A ·∪ B that assigns
each typed variable x ∈ X a value of its appropriate domain, i. e. ξ(x) ∈ LxMA,
and to each propositional variable i ∈ W a Boolean value, i. e. ξ(i) ∈ B. Let
SA

X,W denote the set of all extended states over X and W for structure A.
For e ∈ EX we write ξ(e) for eA(ξ(x1), . . . , ξ(xn)), and for a ∈ AX we write

ξ(a) for aA(ξ(x1), . . . , ξ(xn)).
A sequence of extended states Ξ over X and W is an infinite sequence

Ξ = (ξi)i∈N of extended states ξi over X and W . We denote the set of all sequences
of extended states over X and W by MA

X,W .
If W = ∅, we say ξ is a state over X and Ξ is a state sequence over X. We

write SA
X for SA

X,∅ and MA
X for MA

X,∅.
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Definition 16 (Model)
Let Ξ = (ξi)i∈N ∈ MA

X,W be a sequence of extended states over X and W and
let θ ∈ LTLLX,W be an LTL formula over L with propositional variables from W
and typed variables from X. Let A(θ) ⊆ A be the set of all atomic formulae that
are contained in θ. Let Ξ′ = (ξ′i)i∈N be the sequence defined by ξ′i : A(θ) ·∪ W 7→
B, a 7→ ξi(a). We treat atomic formulae in A(θ) like propositional variables. Then,
Ξ′ is a state sequence in the sense of LTL formulae over propositional variables
and we set (Ξ, i) ² θ iff (Ξ′, i) ² θ and Ξ ² θ iff Ξ′ ² θ. If Ξ ² θ, we say Ξ is an
extended model for θ. If W = ∅, we omit “extended.”

3.2.4 Equivalence, congruence, and entailment

We want to extend the notions of equivalence and implication to LTL formulae
over L. Therefore, we generalize the definitions as follows:

Definition 17 (Equivalence, congruence, implication, and entailment)
Let X ⊆ V be a finite set of typed variables and W a finite set of propositional
variables. Let θ, η ∈ LTLLX,W be two LTL formulae over L with typed variables
from X and propositional variables from W . Let M ⊆MA

X be a nonempty set of
state sequences and set

MW :=
{

(ξi)i∈N ∈MA
X,W

∣∣ (ξiX)i∈N ∈ M
}

.

We say

• θ implies η with respect to M , denoted by θ ÂMÂ η iff for all Ξ ∈ MW :
Ξ ² (θ → η),

• θ entails η with respect to M , denoted by θ
MÂ=⇒ η iff for all Ξ ∈ MW :

Ξ ² ¤(θ → η),

• θ is equivalent to η with respect to M , denoted by θ ≺MÂ η iff θ ÂMÂ η
and η ÂMÂ θ,

• θ is congruent to η with respect to M , denoted by θ
M⇐⇒ η iff θ

MÂ=⇒ η and

η
MÂ=⇒ θ.

If M = MA
X , we omit writing the M on the relation symbol: ÂÂ, Â=⇒, ≺ Â, and

⇐⇒.

Lemma 4 (LTL formulae over propositional variables and over languages)
Let W ⊆ W be finite, say W = { i1, . . . ,in } and θ, η ∈ LTL be two LTL formulae
over propositional variables such that W (θ)∪W (η) ⊆ W and θ ÂÂ η. Let X ⊆ V
be a finite set of typed variables and for 1 ≤ i ≤ m ≤ n let ϑi ∈ LTLLX,W . Then

θ[ϑ1/i1, . . . , ϑm/im], η[ϑ1/i1, . . . , ϑm/im] ∈ LTLLX,W and

θ[ϑ1/i1, . . . , ϑm/im] Â=⇒ η[ϑ1/i1, . . . , ϑm/im].
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Proof. Let Ξ ∈ MA
X,W and let i ∈ N. Since θ ÂÂ η, we have (Ξ, i) ² θ → η.

From the inductive definition of LTL formulae and their semantics, it follows
immediately that (Ξ, i) ² θ[ϑ1/i1, . . . , ϑm/im] ÂÂ η[ϑ1/i1, . . . , ϑm/im]. ¤

Definition 18 (Positive and negative occurrence)
Let θ ∈ LTLL be an LTL formula over L and let i ∈ W (θ). If i occurs in an
even number of (implicit or explicit) negations, i is said to occur positively. If
i occurs in an odd number of (implicit or explicit) negations, i is said to occur
negatively. i occurring inside the antecedent of an implication (i. e. inside
η in η → η′) counts as an implicit negation. The ¬ operator generates explicit
negations.

Lemma 5 (Entailment and Congruence)
Let W ⊆ W be a finite set of propositional variables, say W = { i1, . . . ,in }.
Let X ⊆ V be a finite set of typed variables, M ⊆ MA

X nonempty, and for

1 ≤ i ≤ m ≤ n let θi, ηi ∈ LTLLX,W such that θi
MÂ=⇒ ηi. Let ϑ ∈ LTLLX,W .

• If ii does not occur negatively in ϑ for all 1 ≤ i ≤ m, then

ϑ[θ1/i1, . . . , θm/im]
MÂ=⇒ ϑ[η1/i1, . . . , ηm/im].

• If ii does not occur positively in ϑ for every 1 ≤ i ≤ m, then

ϑ[η1/i1, . . . , ηm/im]
MÂ=⇒ ϑ[θ1/i1, . . . , θm/im].

• If additionally ηi
MÂ=⇒ θi for 1 ≤ i ≤ m, then also

ϑ[θ1/i1, . . . , θm/im] M⇐⇒ ϑ[η1/i1, . . . , ηm/im].

Proof. This can be easily shown by induction on the structure of ϑ. ¤

Lemma 6
Let M = MA

X . Then the notions of implication and entailment coincide. The
same is true for equivalence and congruence.

Proof. If θ Â=⇒ η, we also have θ ÂÂ η by applying the rule ¤ℵ ÂÂ ℵ from
table 3.2 (p. 17). So, suppose θ ÂÂ η. Let W = W (θ) ∪W (η). Let Ξ = (ξi)i∈N ∈
MA

X,W . Let i ∈ N and Ψi = (ξi+j)j∈N be the subsequence of Ξ starting at i. Then
Ψi ∈ MA

X,W and thus Ψj ² (θ → η). So (Ξ, i) ² (θ → η) for every i ∈ N. Hence
Ξ ² ¤(θ → η). ¤

Lemma 7
Let θ entail η with respect to M , θ

MÂ=⇒ η. Then θ ∨ η
M⇐⇒ η and θ ∧ η

M⇐⇒ θ.



Chapter 4

IMP – An imperative
programming language

In this chapter, we present a simple imperative programming language called
IMP and a number of graph types that are designed to model different aspects
of such an imperative program: The control flow, control dependence, and data
dependence graph, and, at last, the program dependence graph, which is the base
data structure for our path conditions’ construction and reasoning.

4.1 Syntax, the language LIMP, and structures AIMP

and A′
IMP

We start by introducing IMP. Apart from assignments, it features two control
statements: the conditional statement if and the loop statement while for arbi-
trary loops. Formally, a program p in IMP is a word produced by the following
context-free grammar with start symbol S :

A ::= Vi C I (A)+(A) -(A) (A)*(A) (A)/(A)
B ::= true false Vb

(A)==(A) (A)!=(A) (A)<=(A) (A)<(A)
(A)>=(A) (A)>(A)
!(B) (B)&&(B) (B)||(B)

C ::= Va[A]
I ::= . . . -3 -2 -1 0 1 2 3 . . .

S ::= C:=A; Vb:=B; Vi:=A;
if (B) {S} if (B) {S} else {S}
while (B) {S} SS

Va ::= variables of type array

Vb ::= variables of type bool

Vi ::= variables of type int

23
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Expressions in IMP are all words that can be derived by the grammar when
we start with the nonterminal symbols A or B . We will omit brackets in programs
whenever the syntactic structure is obvious even without brackets. As usual we
consider * and / to have higher precedence than + and -. For example, we write
x:=a[50+3*i]+(-7); for x:=(a[(50)+((3)*(i))])+(-(7));.

We have not yet specified how variables should look like in IMP programs. We
assume that they are a nonempty, but finite sequence of alphanumeric characters
and that for every program variable, we have a typed variable in V which we
identify with it. This way, we have an unlimited number of variables at our
disposal whose type (bool, int, or array) either is obvious from the context or
we state it in the text. Let V denote the set of all variables in IMP. If p ∈ IMP is
a program, we write Vp for the set of variables occurring in p.

We do not give an operational semantics for IMP programs here, we assume
that the reader is familiar with the standard semantics of the constructs in IMP.
Since we want to generate path formulae IMP programs, we now present how to
incorporate IMP expressions in the formalism presented in the previous chapter.

First, we define the language LIMP and present two structures AIMP and A′
IMP

over which we interpret temporal and Boolean path conditions respectively. For
IMP, we choose the language LIMP with function operators FIMP and predicate
operators RIMP where

FIMP := Z ∪ { true , false , +,−, ∗, /, ·[·],==, ! =, <,≤,≥, >, !, &&, ‖ } 4

and RIMP := { · }5 with types TIMP := { array, bool, int }. The arity and type
definitions for function and predicate operators are given in table 4.1.

We do not specify the set of variables V yet. Variables of type int or bool
are called scalar variables. In order to save space and keep LTL formulae over
LIMP readable, if it is obvious from the context, we write a for ·(a) for all atomic
formulae ·(a) ∈ A and use infix notation for all binary function operators.

Next, we define an appropriate structure AIMP = (AIMP, τ, ιF , ιR) over LIMP

which we will use for temporal path conditions. Since in most imperative pro-
gramming languages, the native type int can only represent a finite subset of
Z, we model this by allowing only 32 bit integers with the usual value range Z.
However, we need to lift this set to account for variables to which no value has
yet been assigned or whose value is undefined. Hence, let Z⊥ := Z∪{ ⊥i } denote
the set of values for type int. Similarly, B⊥ := B∪ { ⊥b } denotes the set of bool

4Note that we do distinguish between the operators !, &&, || on bool and the Boolean opera-
tors ¬, ∧, ∨ that are part of the logic over LIMP. Equally, we consider the arithmetic comparators
==, !=, <, ≤, ≥, > as function operators which return a value of type bool. This way we are
able to strictly separate between conjunctions and disjunctions in IMP (with their different inter-
pretation options in different structures) that form a single expression and Boolean conjunctions
and disjunctions on the logic level. Nevertheless, definition 17 (p. 21) allows us to exploit the
properties of !, &&, and || in the specific structure when we want to simplify an LTL formula
over LIMP.

5The predicate operator · is designed to map values of bool to B.
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Parameter Return
Operator s Arity types type Comment
i ∈ Z 0 int Integer constants
true, false 0 bool Boolean constants
+, ∗, / 2 int,int int
− 1 int int
·[·] 2 array,int int Array cell access operator
== 2 int,int bool Equality on int
! = 2 int,int bool Inequality on int
<, ≤, ≥, > 2 int,int bool Comparators on int
! 1 bool bool Negation on bool
&&, || 2 bool,bool bool Binary operators on bool

· 1 bool Mapping bool to B⊥

Table 4.1: Arity and type definitions for function and predicate operators in LIMP.

values and for array types we choose the set

A :=
{

a : Z⊥ 7→ Z⊥
∣∣∣ a(⊥i) = ⊥i

}

We write ⊥a for the constant map Z⊥ 7→ Z⊥, x 7→ ⊥i.
Then, the universe AIMP of AIMP is

AIMP := Z⊥ ∪ B⊥ ∪ A

We write ⊥ for the set { ⊥a,⊥b,⊥i }. The type function τ is uniquely determined
by τ

(
Z⊥

)
= { int }, τ

(
B⊥

)
= { bool }, and τ (A) = { array }.

We omit the formal definitions for the interpretation functions. +, −, ∗ and
/ are interpreted as usual with + meaning addition, − computing the additive
inverse, ∗ meaning multiplication and / division, always within Z. The undefined
value ⊥i is propagated from every parameter, division by 0 yields 0. Similarly, ==
(!=) yields T iff both parameter values are in Z and (not) equal. They yield ⊥b iff
at least one parameter is ⊥i. Analogous definitions hold for the other comparators
<, ≤, ≥, and >. For the connectives over bool, they have the usual semantic, but
they, too, propagate ⊥b from parameters to results. The array cell access operator
·[·] is defined by a[x] := a(x) for a ∈ A and x ∈ Z⊥. The only relational symbol ·
is interpreted as the map ·AIMP : B⊥ 7→ B, ·AIMP(x) = T iff x = T.

Boolean path conditions do not model temporal aspects of program execution.
Hence, there is no need for undefined variable values. Thus, we define A′

IMP to

be the structure for LIMP whose universe A′IMP = Z ∪ B ∪ ZZ is AIMP without
lifted values. The typing function and interpretation functions for function and
predicate symbols are the functions from AIMP which are appropriately restricted
to the smaller universe A′IMP.
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4.2 The control flow graph

As a first level of abstraction from the program source code, control flow graphs,
which were first proposed by Allen [All70], are widely used in compilers and opti-
mization as an intermediate representation of a program. Unlike in these applica-
tions do we neither merge several statements into so-called basic blocks nor do we
have multiple nodes for a single statement. In our setting, each node corresponds
to a single statement and edges represent the control flow between nodes.

Definition 19 (Control flow graph)
Formally, a control flow graph (CFG), represented as a 5-tuple (V, E, ve, vx, α),
is a directed graph (V, E) with two distinguished nodes (the entry node) ve ∈ V
and (the exit node) vx ∈ V and such that pred(ve) = ∅ = succ(vx) and that there
exists a path from ve to every node v ∈ V , and a labelling function α : E 7→
{ true , false , ε }.

If CFGp is the control flow graph for a program p ∈ IMP, each node v ∈
V − { ve, vx } represents a statement or branching / looping condition of p, each
edge e ∈ E represents a possible flow of control from the source node to the target
node, i. e. no other statement is executed between e’s source node ¯ Â(e) and
its target node Â̄ (e) when the control flow passes along e. If e’s source node
represents a branching / looping condition, α(e) is this condition’s evaluation
result that makes the control flow take e. Otherwise, we set α(e) = ε. In addition,
we require (ve, vx) ∈ E for every control flow graph.

Note that for a program p ∈ IMP, we have that all strongly connected com-
ponents in CFGp = (V,E, ve, vx, α), which correspond to while loops, have a
single entry and exit node, namely the node corresponding to the while predicate
because IMP allows only programs with structured control flow, i. e. no gotos,
exceptions and the like are part of IMP. A back edge e ∈ E is an edge that
returns to a while loop node. More formally, a back edge is a retreating edge in
the spanning tree computed by a depth-first search starting at ve. Due to the
structure of CFGp, this spanning tree is uniquely determined, so back edges are
well-defined. We say, a back edge e ∈ E belongs to Â̄ (e). See figure 6.1 (p. 48)
for an example CFG. There, the edge (5, 4) is a back edge that belongs to node 4.

4.2.1 Dominance

Dominators and postdominators [Pro59, LM69] are used to characterize the nodes
in a CFG at which control flow branches or at which different control flow paths
are joined again.

Definition 20 (Dominance and postdominance)
We say that for a CFG G = (V, E, ve, vx, α), node v ∈ V dominates w ∈ V
iff every path π : ve GI∗ w from entry to w contains v, denoted by v DOMw.
Conversely, v postdominates w iff every path π : w GI∗ vx from w to exit
contains v, denoted by v PDOMw. We write DOM (w) = { w′ ∈ V | w′DOMw }
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for the set of nodes that dominate w and PDOM (w) = { w′ ∈ V | w′ PDOMw }
for the set of nodes that postdominate w.

Note that every node dominates and postdominates itself. Moreover, domi-
nators in G = (V, E, ve, vx) are exactly the postdominators in the reverse graph
G−1 = (V, E−1, vx, ve) and vice versa. A stronger notion is the concept of imme-
diate dominators:

Definition 21 (Immediate dominators)
A node v ∈ V immediately dominates w ∈ V , denoted by v IDOMw, iff v 6= w,
v DOMw and w′DOM v holds for every w′ ∈ DOM (w)− { w }.

Intuitively, v immediately dominates w if v is the closest proper dominator of
w. Note that every node has exactly one immediate dominator.

4.2.2 Control dependence

Usually, one says a node v ∈ V is control dependent on w ∈ V if w corresponds
to a control statement in p and v being executed depends on the evaluation of w
[LM69]. If we abstract from loops not necessarily terminating, then only the nodes
that are in a loop’s body ought to be control dependent on the loop’s condition
node. Otherwise, each statement outside a while loop that can be reached from
this loop becomes control dependent on this loop, too, because its execution may
depend on that loop terminating. [RAB+05] discusses this issue in detail and
presents a number of different notions of control dependence. Although non-
termination is an issue in the context of influence analysis, we stick to the old-
fashioned definition of control dependence (see below) because non-termination
sensitive control dependence would make path conditions much more complicated
as the control dependence graph is no longer a tree. Instead, we include extra
generation rules for path conditions to require preceding loops having terminated.
Note however that this does not capture influences that arise from a loop not
terminating.

Definition 22 (Control dependence)
For an IMP program p, we say v ∈ W is control dependent on w ∈ W (denoted
by w cd

p . v) iff

• there exists a path w CFGp
I∗ v from w to v in CFGp,

• v is a postdominator for some w′ ∈ succ(w), and

• v is not a postdominator for some w′′ ∈ succ(w).

In terms of the CFG, v is control dependent on w if w has multiple outgoing
edges. Following one of them we ultimately reach v, following another we can
avoid reaching v. We will write cd

p .∗ to denote the reflexive and transitive closure
of the relation cd

p .. The control dependence relation is represented by the control
dependence graph:
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Definition 23 (Control dependence graph)
The control dependence graph CDGp for the control flow graph CFGp =
(V, E, ve, vx, α) is the graph CDGp = (V − { vx } , C, ve, α) where

• (v, w) ∈ C iff v cd
p . w,

• α : C → P (α(E)) is a labelling function such that

α((v, w)) =
{

α((v, w′))
∣∣ w′ ∈ succ(v) ∧ w PDOMw′

}
,

i. e. α collects all labels of outgoing edges from v which lead to successors
of v that are postdominated by w.

As IMP allows only structured control flow, the control dependence graph
CDGp is a tree for all programs p ∈ IMP.

4.3 The data dependence graph

Apart from control dependences there are also data dependences in a program. In
the broadest sense, a data dependence occurs if two statements s and t access the
same variable or memory location. Four different types of data dependences are
distinguished [Wol96]: Let statement s precede t in the execution order.

• If both s and t are read accesses with respect to the memory location con-
sidered, the dependence is called an input dependence.

• If both s and t write to it, it is called an output dependence.

• If s reads from and t writes to it, anti dependence.

• If s writes to and t reads from the memory location, we call it a true
dependence.

A data dependence is called direct if there is no operation r between s and
t which modifies this memory location. A direct true dependence is called flow
dependence.

Here, we are only interested in direct output and flow dependences. More pre-
cisely, we ought to consider operation instances instead of statements in a program
p ∈ IMP, because if a statement accessing an array cell in a loop is executed mul-
tiple times, the cell accessed at the first time (and thus the memory location we
are looking at) may be different from the one affected in later iterations. Hence,
we would have to define flow dependences over operation instances which may
be infinitely many in the case of a nonterminating loop. Instead of representing
operation instances separately, we subsume all of a statement in a single node and
conservatively approximate the data dependence relation: If there can possibly
be a data dependence between two operation instances of two statements, then
there must be a data dependence edge between both statements’ nodes. Since we
will create far too many data dependences this way, we will formulate necessary
conditions over the program’s variables for every such dependence edge being real.
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To define these data dependences more formally, we consider again a program
p ∈ IMP and its control flow graph CFGp = (V, E, ve, vx, α). For every node
v ∈ V , we define the set def(v) of variables which are defined (written) at v and
the set use(v) of variables which used (read) at v. Moreover, we also define a set
reuse(v) ⊆ def(v) that contains all array variables which are written to at v.

First, we inductively define use sets for expressions in IMP, i. e. for subpro-
grams that are produced by the nonterminal symbols A, and B .

• If e is a variable, i. e. e is produced by one of the nonterminal symbols Va ,
Vb , and Vi , we set use(e) := { e }.

• If e is a constant, i. e. e is produced by the nonterminal symbol I or e ∈
{ true, false }, we set use(e) := ∅.

• If e = ◦(f) where ◦ ∈ { −, ! } and f is another IMP expression, we set
use(e) := use(f).

• If e = (f1) ◦ (f2) where ◦ ∈ {+, ∗, /, ==, ! =, <=, <, >, >=, &&, ‖ } and f1,
f2 are IMP expressions, we set use(e) := use(f1) ·∪ use(f2).

• If e = a[f ] where a is a variable of type array and f an IMP expression, we
set use(e) := { a } ·∪ use(f).

Next, we define the def , reuse and use sets for all nodes in the CFG. For
the entry and exit nodes ve and vx, set def(ve) := reuse(ve) := use(ve) := ∅ =:
def(vx) =: reuse(vx) =: use(vx). For every other node v ∈ V , we have:

• If v corresponds to an assignment x:=e; where x is a Boolean or integer
variable, we set def(v) := { x }, reuse(v) := ∅, and use(v) := use(e).

• If v corresponds to an assignment a[i]:=e; where a is an array variable,
i ∈ E is the index expression and e ∈ E is the expression whose value
is assigned to the array cell a[i], we set def(v) := { a } , reuse(v) :=
{ a } , and use(v) := use(i) ·∪ use(e).

• If v is a branching node with condition b, we set def(v) := ∅, reuse(v) := ∅,
and use(v) := use(b).

Note that we consider def(v) and use(v) to be always disjoint.
We now are able to define the notions of data dependences we are interested

in. First, we consider data dependences along a given path in the control flow
graph.
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Definition 24 (Flow and def-def dependence for CFG paths)
Let π be a path in CFGp and v, w ∈ π such that v ≺π w. If x ∈ def(v)∩use(w) 6=
∅, then w is flow dependent on v with respect to x if x /∈ def(w′) for every
w′ ∈ V(π) with v ≺π w′′ ≺π w. We denote this dependence by v fd

x,π. w.6

Similarly, if x ∈ def(v) ∩ reuse(w), we say w is def-def dependent7 on v
with respect to x if x /∈ def(w′) for every w′ ∈ V(π) with v ≺π w′ ≺ πw. We
denote this kind of dependence by v dd

x,π. w.

We can distinguish further between loop-carried and loop-independent flow
and def-def dependences [HRB88].

Definition 25 (Loop-carried and loop-independent data dependence)
Let v fd

x,π. w (v dd
x,π. w) be a flow (def-def) dependence between v and w with

respect to x. We say v fd
x,π. w (v dd

x,π. w) is loop carried by loop u if there is
a back edge e ∈ E(π) with u = Â̄ (e) such that

• e is between v and w in π, i. e. v ¹π ¯ Â(e) and Â̄ (e) ¹π w,

• both u cd
p .∗ v and u cd

p .∗ w, and

• for every further back edge e′ ∈ E(π)− { e } we have not Â̄ (e′) cd
p .∗ u.

We denote this by v fd
x,π,u. w (v dd

x,π,u. w). If v fd
x,π. w (v dd

x,π. w) is not loop
carried by some u ∈ V , we say v fd

x,π. w (v dd
x,π. w) is loop independent.

In other words, if u is the loop node for the loop-carried dependence edge
v fd

x,π. w, u is the node that corresponds to the loop predicate of the outermost
loop among all loops to which a back edge belongs that is contained in E(π)
between v and w.

By joining all flow dependences over all paths between two statements v and
w we abstract data dependence from concrete CFG paths:

Definition 26 (Flow and def-def dependence)
We say w is flow dependent on v with respect to variable x, denoted by v fd

x. w,
iff there exists a path π : v CFGp

I∗ w such that v fd
x,π. w. Similarly, we say w

is def-def dependent on v with respect to variable x, denoted by v dd
x . w, iff

there exists a path π : v CFGp
I∗ w such that v dd

x,π. w.
Let

Π :=
{

π : v CFGp
I∗ w

∣∣∣ ∀w′ ∈ V(π)− { v, w } : x /∈ def(w′)
}

6Note that x ∈ def(v)∩use(w) not only represents a simple program variable but also encodes
both the exact occurrence of x in v responsible for defining x and the occurrence of x in w that
has generated x ∈ use(w). In this sense, we may even have def(v) ∩ use(v) 6= ∅.

7Notice that def-def dependence is a special case of output dependence: If we consider a
whole array as a single memory location, every direct output dependence with respect to an
array variable is also a def-def dependence.
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be the set of all paths from v to w in CFGp where no redefinition of x occurs. For
a flow (def-def) dependence v fd

x. w (v dd
x . w) we write

Lc
(
v fd

x. w
)

:=
{

u ∈ V
∣∣∣ ∃π ∈ Π : v fd

x,π,u. w
}

(
Lc

(
v dd

x . w
)

:=
{

u ∈ V
∣∣∣ ∃π ∈ Π : v dd

x,π,u. w
})

for the set of loop predicate nodes in CFGp which may carry a flow (def-def)
dependence from v to w with respect to x.

Note that if v fd
x,π. w (v dd

x,π. w) for every path π ∈ Π is loop independent,
then Lc

(
v fd

x. w
)

= ∅ (Lc
(
v dd

x . w
)

= ∅). Besides the notions of loop-carried
and loop-independent dependences, we also want to know whether a flow (def-
def) dependence v fd

x. w (v dd
x . w) leaves a loop u or not.

Definition 27 (Data dependences leaving loops)
We say v fd

x. w (v dd
x . w) leaves loop u iff

• u is a loop predicate node,

• v is transitively control dependent on u: u cd
p .∗ v, and

• w is not transitively control dependent on u: not u cd
p .∗ w.

Let Lx
(
v fd

x. w
)

(Lx
(
v dd

x . w
)
) denote the set of all loop nodes u that are left

by v fd
x. w (v dd

x . w).

As with control dependence, the flow and def-def dependence relation can
be represented as a graph, the so-called data dependence graph (DDG). Note
that neither entry nor exit node participates in either flow or def-def dependence
because their def , reuse, and use sets are all empty.

Definition 28 (Data dependence graph)
The data dependence graph (DDG) for a program p ∈ IMP is a multi-graph
DDGp = (V, D,L) where

• V := V ′ − { ve, vx } is the set of nodes as in the control flow graph CFGp =
(V ′, E, ve, vx, α) of p except for the entry and exit nodes,

• D is the set of all flow and def-def dependences, i. e. ¯ Â and Â̄ are
implicitly defined as v fd

x. w 7→ v, v dd
x . w 7→ v and v fd

x. w 7→ w,
v dd

x . w 7→ w, respectively, and

• L : D 7→ P (V ) × P (V ) is the labelling function that assigns each flow
dependence v fd

x. w ∈ D the tuple of sets

L(v fd
x. w) :=

(
Lc

(
v fd

x. w
)
,Lx

(
v fd

x. w
))

and each def-def dependence v dd
x . w ∈ D the tuple of sets

L(v dd
x . w) :=

(
Lc

(
v dd

x . w
)
, Lx

(
v dd

x . w
))

.
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4.4 The program dependence graph

The program dependence graph [FOW87] combines both control and data depen-
dence in an imperative program.

Definition 29 (Program dependence graph)
The program dependence graph (PDG) for a program p ∈ IMP is a multi-
graph PDGp = (V,C, D, ve, α,L) where

• V := V ′ − { vx } is the set of nodes from the control flow graph CFGp =
(V ′, E, ve, vx, α) except for the exit node vx,

• C is the set of control dependence edges from the control dependence graph
CDGp = (V, C, ve, α),

• D is the set of flow and def-def dependence edges from the data dependence
graph DDGp = (V, D,L)

• ve is the entry node of the CFG and the root of the CDG

• α the labelling function for control dependence edges in C, and

• L is the labelling function for flow and def-def dependence edges in D.

Without loss of generality, we assume C ∩D = ∅. Then, the mappings ¯ Â and
Â̄ are the combined versions of ¯ Â and Â̄ from the CDG and DDG.



Chapter 5

Boolean path conditions for
IMP

We now present Boolean path conditions as proposed by Snelting, Krinke and
Robschink in [Sne96, RS02, Rob04, SRK]. Since there have been proposed a large
number of variants, we pick one that is easy to understand and that fits well into
our setting and adopt it to our programming language and notation. Note however
that there are numerous optimizations in [Rob04, SRK] that we have not included
here.

Definition 30 (Boolean path condition)
A Boolean path condition for two statements s and t of an IMP program p is
a Boolean formula θ over atomic formulae over LIMP, i. e. θ ∈ SFLIMP , such that
if there is an influence from s to t then there is a state ξ ∈ SA′

IMP

V(θ) with ξ(θ) = T,
i. e. ξ is an assignment to variables V (θ) that satisfies θ.

Obviously, true is always a path condition, but this gives exactly the infor-
mation slicing also provides. We therefore want that Boolean path conditions are
almost always unsatisfiable if there is no influence.

This chapter is organized as follows: First, we present three different types of
constraints that are the basic components of Boolean path conditions:

• Φ constraints generated by the SSA transformation of IMP programs,

• Execution conditions from control dependence, and

• Φ constraints from data dependence edges.

Next, we combine these elements to define Boolean path conditions for IMP pro-
grams with scalar variables. Before we discuss how to handle cycles in the PDG,
we show how arrays and the additional constraints we generate for them can be
incorporated into Boolean path conditions.

33
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5.1 Static single assignment form

In an IMP program, variables can occur multiple times on the left-hand side of an
assignment, i. e. a variable can have different values at different program points.
Therefore, for Boolean path conditions, all programs are transformed to static sin-
gle assignment form (SSA, [CFR+91]): A program is in SSA form if every program
variable appears at most once on the left-hand side of an assignment. At nodes
where control flow paths meet, Φ functions are introduced which dynamically
select the right source variable.

Figure 5.1 A program and its SSA transformation on the right.
1 a := 1;
2 i := 1;
3 if (b) {
4 i := 2;
5 }

6
7 while (i < 3) {

8 a := a * 2;
9 i := i + 1;

10 }
11 y := a;

1 a1 := 1;
2 i1 := 1;
3 if (b) {
4 i2 := 2;
5 }
i3 := Φ(i1, i2)

6
7 while (i4 := Φ(i3, i5),

a2 := Φ(a1, a3),
i4 < 3) {

8 a3 := a2 * 2;
9 i5 := i4 + 1;
10 }
11 y := a2;

Example 5 (SSA)
Let us take a look at the program shown in figure 5.1 on the left. There are two
lines where control flow paths can meet: line 5 (at the end of the if statement)
and line 7 (at the while loop predicate).

At line 5, we have more than one possible def node only for variable i, so
we introduce a single Φ function which selects the correct definition at runtime.
Inside the while loop variables i and a are redefined. Therefore, we need to include
in the loop predicate their Φ functions.

Since we do not need a minimal SSA form, i. e. one that avoids unnecessary
indices and Φ functions, we can consider our approach of distinguishing all occur-
rences of a variable as an SSA form, too. In fact, ValSoft, a slicer for full ANSI
C [KSR99, KS98, Kri03], contains an implementation of Boolean path conditions
that does distinguish all occurrences of a variable and generates all necessary Φ
functions.

For Boolean path conditions, Φ functions are translated into additional con-
straints. Suppose we have a Φ function of the form xi0 := Φ(xi1 , . . . , xik) for SSA
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variants xi0 , xi1 , . . . , xik of program variable x. This generates the constraint

Φ(xi0 , xi1 , . . . , xik) :=
k∨

j=1

(
xi0 ≡ xij

)
. (5.1)

5.2 Execution conditions from control dependence

Execution conditions from control dependence are based on the observation that
if statement s is to be executed, then there must be a CDG path ve CDGp

I∗ s

where all control conditions are satisfied [Sne96]. More precisely, on at least one
CDG path ve CDGp

I∗ s all control conditions must be satisfied the last time the
corresponding statements have been executed. Since we assume that the program
is in SSA form, these conditions are also satisfied when s is executed.

Definition 31 (Execution condition from control dependence)
Let Π′s :=

{
π : ve CDGp

I∗ s
}

be the set of paths from the entry node ve to s in
CDGp = (V, C, ve, α).

Let (v, w) ∈ C be a control dependence edge. The execution condition for edge
(v, w) and label λ ∈ α((v, w)) is given by

E((v, w), λ) :=





true if λ = ε

·(v) if λ = true
·(!(v)) if λ = false

where we identify v with the control predicate of the statement that v belongs to.
The execution condition E(π) for s along a control dependence path π ∈ Π′s is

defined as

E(π) :=
∧

e∈E(π)


 ∨

λ∈α(e)

E(e, λ)


 .

Then, the execution condition from control dependence Ecd(s) for s is de-
fined as the disjunction over all paths in Π′s:

Ecd(s) :=
∨

π∈Π′s

E(π) =
∨

π∈Π′s

∧

e∈E(π)

∨

λ∈α(e)

E(e, λ) (5.2)

Note that we generate for every edge e ∈ E(π) the term
∨

λ∈α(e)

E(e, λ) only

once since, due to idempotence of the Boolean ∧ operator, the formula we obtain
is equivalent. Since ∨ is idempotent, too, we can restrict ourselves to edge-disjoint
paths. This means that in any case Ecd(s) can be written as a formula of finite
length. Furthermore, it is even sufficient to consider only node-disjoint, i. e. cycle-
free, paths

π ∈ Πs :=
{

v1, . . . , vn ∈ Π′s
∣∣ vi 6= vj for 1 ≤ i < j ≤ n

}
:



36 CHAPTER 5. BOOLEAN PATH CONDITIONS FOR IMP

Let ρ ∈ Π′s − Πs be a path containing cycles and let ρ′ ∈ Π be the path obtained
from ρ by removing all cycles. The execution condition for ρ can then be written
as

E(ρ) ⇐⇒

 ∧

e∈E(ρ′)

∨

λ∈α(e)

E(e, λ)




︸ ︷︷ ︸
=E(ρ′)

∧

 ∧

e∈(E(ρ)−E(ρ′))

∨

λ∈α(e)

E(e, λ)




Absorption law (ℵ ∨ (ℵ ∧ i)) ⇐⇒ ℵ gives that Ecd(s) ⇐⇒
∨

π∈Πs

E(π). See exam-

ple 10 (p. 49) for an example for execution conditions.

5.3 Φ constraints for data dependence edges

Suppose we have a flow (def-def) dependence edge v fd
x. w (v dd

x . w) with respect
to variable x. Let xv ∈ def(v) denote the occurrence of x in v and xw ∈ use(w)
(xw ∈ reuse(w)) the occurrence of x in w. w being influenced by v with respect
to x depends on the value stored in xv being passed to xw. Hence a necessary
constraint for the influence is that xv has the same value as xw [SRK].

Definition 32 (Φ contraints for data dependence edge)
Let the identifiers v, w, x, xv and xw be as above. The Φ constraint vΦw

x for
v fd

x. w (v dd
x . w) is then defined as

• If x is of type int, i. e. LxM = int, we set

vΦw
x := (xv == xw).

• If x is of type bool, i. e. LxM = bool, we set

vΦw
x := (xv&&xw)||(!(xv)&&!(xw))).

• If x is of type array, i. e. LxM = array, let iv be the index expression of
array x in node v and iw the one in node w. We set

vΦw
x := (xv[iv] == xw[iw]). (5.3)

5.4 Boolean path conditions without arrays

For now, we only consider programs that do not make use of arrays.
The fundamental formula for a Boolean path condition for s and t has been

introduced by Snelting [Sne96]: For a path π : s PDGp
I∗ t, we set

BPC(π) :=
∧

v∈V(π)

Ecd(v) (5.4)
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where Ecd(v) is the execution condition for node v as defined in 5.2. Then

BPC(s, t) :=
∨

π:s PDGp
I∗t

BPC(π). (5.5)

However, different SSA variants of a program variable x are still unrelated.
Hence, we include some additional constraints:

1. We know that if we have xi0 := Φ(xi1 , . . . ,xik), then xi0 does have one of
the values of xi1 , . . . , xik . Therefore, we can conjunctively add the constraint
Φ(xi0 , xi1 , . . . , xik) from equation 5.1 (p. 35) to the path condition:

Let π : s PDGp
I∗ t be a path from s to t and let Φπ denote the set of all

Φ conditions Φ(xi0 , xi1 , . . . , xik) for program p that contain variables which
occur in

∧
v∈V(π) Ecd(v), i. e.

V (Φ(xi0 , xi1 , . . . , xik)) ∩
⋃

v∈V(π)

V (Ecd(v)) 6= ∅

Then, an improved version of equation 5.4 is

BPC(π) :=
∧

v∈V(π)

Ecd(v)∧
∧

Φπ (5.6)

where for a finite set M of Boolean formulae
∧

M :=
∧

m∈M m.

2. We also include Φ constraints for data dependence edges: For every data
dependence edge v fd

x. w ∈ E(π), let

Φ(v fd
x. w) := vΦw

x .

We then rewrite equation 5.6 to obtain:

BPC(π) :=
∧

v∈V(π)

Ecd(v)∧
∧

Φπ ∧
∧

e∈E(π)∩D

Φ(e) (5.7)

Since we interpret Boolean path conditions over A′
IMP where ·A′IMP◦ ==A′

IMP

behaves identically to ≡ for expressions of type int we can immediately simplify
the formula by identifying xi and xj whenever we add a Φ constraint of the form
(xi == xj).

Unfortunately, SSA form is not sufficient to generate correct path conditions.

Example 6 (SSA form is not sufficient)
Consider, for example, the program [Kri03] and its PDG in figure 5.2:

This program fragment is already in SSA form, i. e. we do not need to include
Φ constraints, but if we compute BPC(1, 10) we obtain

BPC(1, 10) = true ∧ ((n > 0) ∧ (x > 0)) ∧ ((n > 0)∧!(x > 0)) ∧ true
≺ Â(n > 0) ∧ (x > 0)∧!(x > 0) ≺ Â false
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Figure 5.2 Program fragment in SSA from with a loop carried flow dependence
and its PDG.

1 a := y;
2 while (n > 0) {
3 x := ...;
4 if (x > 0) {
5 b := a;
6 } else {
7 c := b;
8 }
9 }

10 z := c;

entry

a:=y;

(n>0)

x:=...;

z:=c;

T

1

2

3

5

(x>0)

b:=a;

c:=b;

T

F

T4

710

a - a

b - b

c - c

x - x

Obviously, BPC(1, 10) is incorrect. The reason for this is that the flow de-
pendence edge 5 fd

b . 7 is loop carried and x > 0 and !(x > 0) refer to different
runtime instances of variable x.

One solution to this [Kri03] is to separate all variables whenever a path passes
along a loop carried edge. Let π : s PDGp

I∗ t be a PDG path such that π =
(π1, e1, π2, e2, . . . , en−1, πn) where, for 1 ≤ i ≤ n, πi is a subpath of π that does
not contain loop carried data dependence edges, i. e. Lc(E(πi)) = { ∅ }, and, for
1 ≤ j < n, ej is a loop carried data dependence edge. Then we set

BPC(π) :=
n∧

i=1

BPC(πi, i) (5.8)

where BPC(πj , j) is the path condition for πj from equation 5.7 where every typed
variable x ∈ V (BPC(πj)) has been replace by xj , a new instance of x.

In the example above, BPC(1, 10) becomes [Kri03]:

BPC(1, 10) = true ∧ ((n1 > 0) ∧ (x1 > 0)) ∧ ((n2 > 0)∧!(x2 > 0)) ∧ true

Robschink [Rob04] proposes another option: Instead of separating the vari-
ables we can also replace all execution constraints that cause a contradiction
by true. Suppose we generate a path condition BPC(π) for a cycle-free path
π = e1, e2, . . . , en : s PDGp

I∗ t and we have already generated BPC(πi) for
πi := ei, ei+1, . . . , en (i > 1).8 Let θ := Ecd

(¯ Â(ei−1)
)∧BPC(π′). If we have

not Ecd

(¯ Â(ei−1)
)
≺ Â false and not BPC(π′) ≺ Â false, we set

BPC(ei−1, πi) :=

{
BPC(πi) if θ ≺ Â false
θ otherwise

(5.9)

8Here we assume that we have not yet added Φ constraints to BPC(πi), i. e. BPC(πi) has
been generated as described in equation 5.4 (p. 36). The Φ constraints are included in a second
generation step.
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else we have BPC(ei−1, πi) := false.
In the example above we obtain with this approach

BPC(1, 10) = true ∧ (n > 0)∧!(x > 0)

5.5 Arrays

We now allow p to use arrays. Then, not all paths in the PDG from s to t are
paths for potential information flow. Suppose, for example, that the last edge in
such a path is a def-def dependence edge. Then, there is no influence along this
path since the value which is “reused” in the last node does not affect the array
cell that is accessed. Therefore, we restrict ourselves to information flow paths,
i. e. the disjunction in equation 5.5 (p. 37) now ranges only over all information
flow paths between s and t.

Definition 33 (Information flow path)
A path π : s PDGp

I∗ t is called an information flow path iff for every def-def

dependence edge v dd
x . w ∈ E(π) there is a successor edge succ(v dd

x . w) in π
which is a flow or def-def dependence edge with respect to x.9 Let Π(s, t) denote
the set of all information flow paths from s to t.

From now on, “path” in the PDG always means information flow path in the PDG
unless we state it differently.

For Boolean path conditions, the execution and Φ conditions are still valid,
but now, we add extra constraints to make the conditions more precise.

Let π : s PDGp
I∗ t be a cycle-free path in the PDG from s to t and let

ρ := v0
dd
a . v1, . . . , vn−2

dd
a . vn−1, vn−1

fd
a. vn be a maximal subpath of this

form in π.
The δ constraint for ρ [Rob04] is defined as

δπ(ρ) :=
n−1∨

j=0




n−1∧

k=j+1

(ij ! = ik) ∧ (ij == in)


 (5.10)

where ij is the array index expression for array a in node vj for 0 ≤ j ≤ n.
Let ΠA(π) denote the set of all maximal subpaths of the above form in π.

Then, we can extend equation 5.7 to

BPC(π) :=
∧

v∈V(π)

Ecd(v)∧
∧

Φπ ∧
∧

e∈E(π)∩D

Φ(e) ∧
∧

ρ∈ΠA(π)

δπ(ρ). (5.11)

Here, we assume that π does not contain loop-carried data dependence edges. If π
does, we have to combine the δ constraints with the options from above to address
the problems created by these edges.

Note that we generate array conditions only for flow dependence edges v fd
a. w,

not for def-def dependences.
9Here, we require only that the successor edge is a data dependence edge with respect to the

program variable x. In general, when we consider x to encode the two occurrences of x in p, these
xes will be different.
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Example 7 (δ constraints for arrays)
1 x := b;
2 a[i] := x;
3 a[1] := 5;
4 y := a[1];

If we look at lines 1 and 4 we see that there is only one path

π := 1 fd
x. 2, 2 dd

a . 3, 3 fd
a. 4

from line 1 to line 4 in the PDG.
If we compute the δ constraint for the maximal subpath ρ := 2 dd

a . 3, 3 fd
a. 4,

we get
δπ(ρ) = (i! = 1) ∧ (i == 1) ∨ (1 == 1) (5.12)

Robschink [Rob04] also suggests another type of δ constraints for arrays: global
array constraints. They differ from the above in that they subsume all maximal
def-def paths preceding a flow dependence edge v fd

a. w for array variable a, not
only the one on the path that is currently examined. Let (ρλ)λ∈Λ denote the
family of all maximal cycle-free paths

ρλ := vλ
0

dd
a . vλ

1 , vλ
1

dd
a . vλ

2 , . . . , vλ
kλ−1

dd
a . vλ

kλ
, vλ

kλ

fd
a. w (5.13)

that are subpaths of information flow paths πλ ∈ Π(s, t) where vλ
kλ

= v. We define
the global array constraint for v fd

a. w to be

δG(v fd
a. w) :=

∨

λ∈Λ

δπλ
(ρλ) . (5.14)

Let Aa denote the set of all flow dependence edges v fd
a. w ∈ ⋃

E(Π(s, t)) with
respect to array variable a.

Equation 5.5 (p. 37) can then be rewritten as

BPC(s, t) :=


 ∨

π∈Π(s,t)

BPC(π)


∧




∨

a∈Vp,LaM=array

∨

v
fd
a.w∈Aa

δG(v fd
a. w)


 (5.15)

where BPC(π) is as in equation 5.7 (p. 37).

Example 8 (Global array constraints)
Consider the program given in figure 5.3. For 5 fd

a3−a5
. 9, we obtain the global

array constraint as

δG(5 fd
a. 9) =((3 ∗ i + 2! = 3 ∗ j) ∧ (3 ∗ i + 2! = 3 ∗ k + 1)∧

(3 ∗ i + 2 == 3 ∗ n + 2)) ∨ ((3 ∗ j! = 3 ∗ k + 1)∧
(3 ∗ j == 3 ∗ n + 2)) ∨ (3 ∗ k + 1 == 3 ∗ n + 2)
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Figure 5.3 Example program for global array constraints and its PDG.

1 o := 0;
2 while (o < 2) {
3 a[3 * i + 2] := z;
4 a[3 * j] := x;
5 a[3 * k + 1] := 8;
6 z := a[3 * m];
7 o := o + 1;
8 }
9 y := a[3 * n + 2];

entry

o1:=0;

(o2<2)

a2[3*j]:=x;

y:=
a5[3*n+2];

T

a3[3*k+1]
:=8;

T

1

2

3

4

5

6

o4:=o3+1;

a1[3*i+2]
:=z1;

T

T

9

z2:=
a4[3*m];

7

T

o1 - o2

o1 - o3

o4 - o2

o4 - o3

a3 - a5

z2 - z1a1 - a2

a2 - a3

a3 - a4

a3 - a1

5.6 Handling cycles in information flow paths

Unfortunately, the disjunction in equation 5.5 (p. 37) may range over infinitely
many paths, e. g. if the PDG contains a cycle which is reachable from s and
from which we can reach t. Thus, it is necessary to generate path conditions that
capture a whole class of paths in the PDG. Obviously, cycles in the PDG always
contain a loop-carried data dependence edge. With Boolean path conditions we
can separate the variable instances or omit some constraints that would make
the (unevaluated) condition false: Whenever we can insert a cycle ρ in a path
π = (π∗, π′) ∈ Π(s, t) so that (π∗, ρ, π′) ∈ Π(s, t), we distinguish the variables in
the part of the condition that belongs to π∗ from those in its part that belongs to
π′.

Let Π∗∗(s, t) denote the set of all cycle-free paths from s to t in PDGp. Then,
we have to generate path conditions only for influence paths in Π∗∗(s, t) and take
the disjunction over them:10

BPC(s, t) :=
∨

π∈Π∗∗(s,t)

BPC(π) (5.16)

The next example shows that we must use global array constraints to obtain
correct path conditions.

10In [SRK], Snelting, Robschink and Krinke present more sophisticated techniques how to
reduce the number of paths for which one has to generate path conditions and how to generate
shorter formulae by exploiting the structure of the paths and distributivity of the ∨ and ∧
operators.
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Example 9
Let us revisit example 8 from above. For Boolean path conditions, we only want
to consider cycle-free paths. There is only one cycle-free information flow path in
Π∗∗(4, 10), namely π := 4 dd

a2−a3
. 5, 5 fd

a2−a5
. 9.

If we used the path condition as described in equation 5.11 (p. 39), we would
obtain (without Φ constraints):

BPC(4, 9) =(o(1)
2 < 2) ∧ (o(2)

2 < 2)∧
(((3 ∗ j(1)! = 3 ∗ k(1) + 1) ∧ (3 ∗ j(1)! = 3 ∗ k(2) + 1)∧

(3 ∗ j(1) == 3 ∗ n(2) + 2))∨
(3 ∗ k(2) + 1 == 3 ∗ n(2) + 2))

≺ Â false

Clearly, this path condition is wrong because for j = m and i = n the value of x
in line 4 is transferred to y in line 9 via

pi2 := 4 dd
a2−a3

. 5, 5 fd
a3−a4

. 6, 6 fd
z2−z1

. 3, 3 dd
a1−a2

. 4, 4 dd
a2−a3

. 5, 5 fd
a3−a5

. 9.

If we use global array conditions instead, we get (without Φ constraints):

BPC(4, 9) =(o(1)
2 < 2) ∧ (o(2)

2 < 2) ∧ ((3 ∗ i(1) + 2! = 3 ∗ j(1))∧
(3 ∗ i(1) + 2! = 3 ∗ k(1) + 1) ∧ (3 ∗ i(1) + 2! = 3 ∗ k(2) + 1)∧
(3 ∗ i(1) + 2 == 3 ∗ n(2) + 2) ∨ (3 ∗ j(1)! = 3 ∗ k(1) + 1)∧
(3 ∗ j(1)! = 3 ∗ k(2) + 1) ∧ (3 ∗ j(1) == 3 ∗ n(2) + 2)∨
(3 ∗ k(2) + 1 == 3 ∗ n(2) + 2))

≺ Â(o(1)
2 < 2) ∧ (o(2)

2 < 2) ∧ (3 ∗ i(1) + 2! = 3 ∗ j(1))∧
(3 ∗ i(1) + 2! = 3 ∗ k(1) + 1) ∧ (3 ∗ i(1) + 2! = 3 ∗ k(2) + 1)∧
(3 ∗ i(1) + 2 == 3 ∗ n(2) + 2)

which is obviously satisfiable.



Chapter 6

Temporal path conditions

The program dependence graph contains both data and control dependences with-
in a program. Slicing [FOW87, Kri03] as reachability analysis in the PDG exploits
this property to find all statements of a program which can influence a specified
node or be influenced by it. This approach can therefore answer the question
whether a statement s can possibly influence some other statement t. However,
slices can be only a conservative approximation and, in practice, they become
very large, i. e. imprecise: In most cases, this approximation is too conservative.
Snelting [Sne96] proposed to consider all possible paths in the PDG from s to t
and generate a Boolean formula over the program variables which is a necessary
condition for any such path being executed. If this formula is not satisfiable, then
no influence is possible, even though the backward slice of t contains s. See chapter
5 for more details on Boolean path conditions. Here, we generalize this idea to
generating necessary LTL conditions.

This chapter is organized as follows: First, we define the state sequences that
can be generated by an IMP program over the structure AIMP. Next, we present
different types of constraints that are then combined to generate an LTL for an
information flow path in the PDG. In section 6.3, we show how to capture a
whole class of paths in the PDG with a single LTL influence condition. Next,
some lemmata for simplifying influence conditions are presented before we provide
some examples to justify why we have used some constructions that may be not
intuitively clear in the beginning. We conclude this chapter with a comparison
between Boolean and LTL path conditions where we see that LTL path conditions
are stronger than Boolean path conditions.

6.1 From an IMP program to state sequences

In chapter 3, we said an LTL formula is satisfiable iff there exists an infinite
sequence of states which is a model for it. However, there are infinitely many
state sequences, most of which are not related to the program for which we have
generated the LTL formula. Since we are interested in whether there is a program
execution that satisfies the LTL formula, we now define how to obtain the set of
state sequences of interest from an IMP program. We use the language LIMP to
write atomic formulae in and the structure AIMP to interpret them over.

43
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6.1.1 Transition graphs

In a state sequence for an IMP program, we want to have states only for assignment
statements because it is only them who change the program variables’ values.
Control flow statements such as if and while do not contribute directly to the
program state but decide based on the program variables’ values which state is
the next one. We use the transition graph for a program as an intermediate
representation from which we can easily construct state sequences for a program.

Definition 34 (Transition graph)
Let p ∈ IMP be an IMP program, let CFGp = (V ∪{ vx } , E, ve, vx, α) be the CFG
of p, and PDGp = (V, C, D, ve, α,L) the PDG of p. The transition graph for p
is the multigraph graph TGp = (V ′, E′,¯ Â, Â̄ , λ) where

• V ′ := { v ∈ V | def(v) 6= ∅ } ∪ { ve } is the set of assignment nodes plus the
entry node,

• E′ is the set of edges where (v, π, w) ∈ E′ iff v ∈ V ′, w ∈ V ′ ∪ { vx } and
π : v CFGp

I∗ w is a cycle-free CFG path such that u /∈ V ′ for all u ∈ V(π)
with v ≺π u ≺π w. We call an edge (v, π, w) ∈ E′ with w 6= vx transition
edge and an edge (v, π, vx) ∈ E′ idling edge.

• For (v, π, w) ∈ E′ we set

¯ Â((v, π, w)) := v and Â̄ ((v, π, w)) :=

{
w if w ∈ V ′

v if w = vx

.

• λ : E 7→ SFLIMP is the labelling function for edges that assigns every edge
e ∈ E′ a state formula over program variables as a guard:

λ((v, π, w)) :=
∧

(u,u′)∈E(π)





true if α((u, u′)) = ε

·(u) if α((u, u′)) = true
·(!(u)) if α((u, u′)) = false

.

The guards are meant as follows: If we have a program state, i. e. an assign-
ment ξ to the program variables, in some node v of the transition graph, then for
every outgoing edge e of v, we check whether ξ(λ(e)) = T holds. If so, the target
node w of e is a possible successor node to v in state ξ. If we do pass along e,
then ξ must be updated: Suppose w 6= vx. Let x := e; be the statement that
corresponds to w. Then, the new state ψ is given by ψ(x) := ξ(e) and ψ(y) := ξ(y)
for all program variables y other than x. If e is an idling edge, then ξ itself is the
successor state to ξ.

6.1.2 State sequences over LIMP

Above, we have already hinted at how to generate state sequences from a transition
graph: Start with an arbitrary assignment to program variables and follow an
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infinite path through the transition graph whose edges’ guards are all satisfied by
the correctly updated program states. However, in temporal path conditions, we
want to easily refer to a variable’s former values in a given state without using
past operators. Thus, we enlarge the set of variables we are interested in:

Definition 35 (Program variables)
Let p ∈ IMP be an IMP program and let PDGp = (V, C, D, ve, α,L) be the program
dependence graph for p. The set Vp of program variables for p is

Vp := .
⋃

v∈V

(def(v) ·∪ use(v))

=
⋃

v∈V

((def(v)× { def }) ∪ (use(v)× { use }))× { v } .

The set Vp of program variable names is

Vp := { y | ∃a ∈ { def ,use } : ∃v ∈ V : (y, a, v) ∈ Vp } .11 (6.1)

Concerning the variables’ types, we set L(x, a, v)M := type of variable x.

This definition allows us to distinguish all variables by the PDG node where
they are accessed and by whether the access is a read or a write. We may, however,
want to have extra variables at our disposal when generating formulae, e. g. to
bind a value to a variable for future use. Hence, we do not exactly specify the set
of all program variables V, we require just V ⊇ Vp ∪ Vp for the IMP program p of
interest.

Definition 36 (Rigid and flexible variables)
We distinguish between rigid and flexible variables [MP91] in V. A rigid variable
y ∈ V is a variable which can not change its value within a state sequence Ξ =
(ξi)i∈N, i. e. ξi(y) = ξi+1(y) for all i ∈ N. If a variable is not rigid, we say it is
flexible.

By convention, all program variables Vp are flexible. Unless we state it explicitly,
we assume that all variables mentioned are flexible.

The set of states as defined in section 3.2.3 is then SAIMP
V . However, not all of

these are suitable to being used as initial states. For example, it is not sensible
to have a int variable initialized to ⊥i because in an implementation of IMP, we
would not have this special value. Hence, the set of initial states for a program p
is given by

ISp :=
{

ξ ∈ SAIMP
V

∣∣∣ ξ(V − Vp) ∩ ⊥ = ∅ ∧ ξ(Vp) ⊆ ⊥
}

.

For the set of state sequences MAIMP
V we consider only state sequences that

respect the rigidity condition for rigid variables, i. e., if Vr ⊆ V−(Vp∪Vp) denotes

11In this definition, we consider the use sets to be generated with ordinary instead of disjoint
union.
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the set of rigid variables,12

MAIMP
V :=

{
Ξ = (ξi)i∈N ∈

(
SAIMP
V

)N ∣∣∣∣ ∀y ∈ Vr : ∀i ∈ N : ξi(y) = ξi+1(y)
}

.

From this set of sequences, we define a subset Mp ⊆ MAIMP
V which contains

all sequences that can be generated by program p ∈ IMP. We construct state
sequences using the transition graph TGp = (V,E,¯ Â, Â̄ , λ) of p. Let ξ0 ∈ ISp

be an initial state for p. Let v0 = ve be the entry node of the CFG CFGp =
(V ′, E′, ve, vx, α) of p. We recursively define the successor states ξi+1 of ξi and
successor nodes vi+1 of vi. Suppose that ξi is a program state in node vi. Then,
there exists at least one outgoing edge e := (vi, π, w) ∈ E of vi such that ξi(λ(e)) =
T. Pick any such e = (vi, π, w). Suppose e is a transition edge and suppose
π = e1, . . . , en. Set ψ0 = ξi. For 1 ≤ j ≤ n, define ψj recursively by

ψj(y) :=ψj−1(y) for all y ∈ Vr ∪ Vp,

ψj((y, a, v)) :=ψj−1((y, a, v)) for all (y, a, v) ∈ Vp such that v 6= Â̄ (ej),
ψj((y, a, v)) :=ψj−1(y) for all (y, a, v) ∈ Vp such that v = Â̄ (ej).

Then, ξi+1 is given by

ξi+1(y) :=

{
ψn(y) if y /∈ def(w)
y′ otherwise

for y ∈ Vp

ξi+1((y, a, v)) :=

{
ψn((y, a, v)) if y /∈ def(w)
y′ otherwise

for (y, a, v) ∈ Vp

ξi+1(y) :=ξi(y) for y ∈ Vr

ξi+1(y) ∈LyMAIMP arbitrary for y ∈ V − (Vp ∪ Vr ∪ Vp)

(6.2)

where

• for LyM ∈ { bool, int } we set

y′ := eAIMP
w (ξi(y1), . . . , ξi(yn))

where ew is the assignment expression for variable y in node w over program
variables y1, . . . , yn ∈ Vp with variable ordering y1 v . . . v yn.

• for LyM = array we set

y′ := j 7→





⊥i if j = ⊥i

q if j = eAIMP(ξi(y1), . . . , ξi(yn))
ξi(y)(j) otherwise

where q = e′AIMP(ξi(y1), . . . , ξi(yn)) is the value of the assignment expression
e′ over program variables y1, . . . , yn ∈ Vp with variable ordering y1 v . . . v yn

and e is the array cell expression over program variables y1, . . . , yn with
variable ordering y1 v . . . v yn).

Then, the set Mp of state sequences for p is the set of all such (ξi)i∈N.
12Note that this restriction on MAIMP

V does not affect the validity of lemma 6 (p. 22).



6.2. GENERATING LTL FORMULAE FOR PATHS 47

6.2 Generating LTL formulae for paths

Slicing uses the influence criterion to determine which statements can possibly be
influenced. The forward slice for a statement s contains all PDG nodes that are
reachable from s via an information flow path, the backward slice for s all PDG
nodes from which s is reachable via an information flow path, i. e. the forward
slice for s contains all statements that can be influenced by s, the backward slice
all those that can influence s. Given two statements s and t, the chop for s and
t is the PDG subgraph generated by the intersection of forward slice for s and
backward slice for t. Obviously, if the chop for s and t is empty, s cannot influence
t, and any influence from s to t must happen along some information flow path in
the chop for s and t.

However, not all paths in a chop can happen during program execution, be-
cause reachability search in the PDG can not find contradicting conditions over
variables.

Like Snelting, Krinke and Robschink did for Boolean path conditions in [Sne96,
RS02, Rob04, SRK], we now want to generate a necessary LTL condition for a
given path from s to t. Thereby, we distinguish three different kinds of dependence
constraints:

1. Execution conditions: These conditions are derived for every statement
on the path from the control dependences in the PDG. They express neces-
sary constraints for the statement to be executed.

2. Data dependence conditions: These conditions are derived for every data
dependence edge in the path. They formulate conditions for information
flowing along the edge.

3. Intrastatement conditions: These conditions impose constraints on the
single-statement level to ensure that the value that is passed along a flow
dependence edge can actually influence the target node’s evaluation.

We first present every kind on its own. Thereafter, all these conditions are
combined in a single LTL formula by Boolean and temporal connectives. Just
as we distinguish every occurrence of a program variable in terms of states and
state sequences do we use these different variants of a program variable in the LTL
condition. To keep the examples simple and readable, we index all occurrences for
every program variable with ascending numbers.

6.2.1 Execution conditions

Clearly, for a statement s to be executed, it is necessary that all control conditions
on at least one path from the entry node ve to s in CDGp are satisfied the last
time they have been executed before s is being executed [Sne96]. This forms one
part of the execution conditions we consider.

Secondly, like in Hoare logic [Hoa69], if we know that there is a loop l that
directly precedes, but does not contain s, then the loop predicate does not hold
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Figure 6.1 Example program for execution conditions and the program’s CFG.

1 i := 1;
2 if (b) {
3 if (c) {
4 while (i < 10) {
5 i := i * 2;
6 }
7 j := i / 4;
8 }
9 k := i;

10 }

entry i1:=1;

(b) (c) (i2<10)

j:=i5/4;

i4:=i3*2;

1

2 3 4 5

7

k:=i6;exit

9

T T T

F
               F

               F

when s is executed. We adapt this idea to our setting to complete the execution
condition for s.

For the first type of execution conditions, we use the execution conditions from
control dependence as defined in 5.2. Note that the Boolean absorption, associa-
tivity, and idempotence laws also hold for LTL formulae (cf. table 3.1 (p. 16)).
Hence, we can also always restrict ourselves to cycle-free control dependence paths
from the entry node to the node of interest when we generate execution conditions.

6.2.1.1 Loop predicates in execution conditions

Suppose we consider a statement s that is preceded by the loop predicate l, but
that is not inside the loop body of l. Then, we know that the loop must have
terminated when the control flow reach s, i. e. the loop predicate does not hold
in the state corresponding to s. Hence, it is safe to include this extra constraint
in the execution condition of s.

Definition 37 (Execution condition from loop predicates)
Let s ∈ V be a node in CFGp = (V, E, ve, vx, α) and let l ∈ V be a loop predicate
node with l 6= s. If l dominates s (l DOM s) and s is not control dependent on l
(not l cd

p .∗ s) we say l must terminate before s. We write Lt (s) for the set of
all such l for node s.

The execution condition from loop predicates for s is given by

Eª(s) :=
∧

l∈Lt(s)

·(!(l))

If Lt (s) = ∅, we set Eª(s) := true.

Definition 38 (Execution condition)
For every node s ∈ V −{ ve, vx } in CFGp = (V, E, ve, vx), the execution condi-
tion for s is given by

E(s) := Ecd(s)∧Eª(s)
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Line l Ecd(l) Eª(l)
1 true true
2 true true
3 (b) true
4 (b) ∧ (c) true
5 (b) ∧ (c) ∧ (i2 < 10) true
7 (b) ∧ (c) !(i2 < 10)
9 (b) true

Table 6.1: Execution conditions for the program in figure 6.1.

Example 10
Let us consider the example program p in figure 6.1. Table 6.1 lists the execution
conditions for every node of the CFG. Note that for line 7 (j := i / 4;) we have
Eª(7) =!(i2 < 10) since the loop predicate node 4 dominates 7, but 7 is not control
dependent on 4, whereas for line 9 (k := i;) we do not know whether i2 < 10
holds or not because the loop predicate 4 does not dominate node 9. Hence we
have Eª(9) = true.

In all examples that follow we will always simplify execution conditions before
we include them in other formulae. Although, strictly speaking, it is not correct
to use the equals sign = (we ought to use ⇐⇒ or ≺ Â instead), we will nevertheless
use the former since for the rest it does not matter if we use simplified formulae
or not, unless we state it differently.

6.2.2 Data dependence conditions

While execution conditions are computed for every node on a path in the PDG,
data dependence conditions are generated to describe the flow along edges in the
path. There are two types of edges: control dependence edges and data dependence
edges. We do not generate any conditions for control dependence edges as they
are already taken care of in the execution conditions of the source and target
statements. On the other hand, flow and def-def dependence edges can generate
four types of conditions:

• The Φ constraint for a data dependence edge e ensures that the variable’s
value that is written in the source node of e arrives at the target node of
e. We use the same Φ constraints for data dependence edges as we did for
Boolean path conditions (cf. section 5.3 for details) except for equation 5.3
where we use instead

vΦw
x := (xv[y] == xw[y])

where y is the rigid variable from equations 6.4 (p. 52), 6.5 (p. 52), and 6.6
(p. 52) (see below). If e is a flow dependence edge with ¯ Â(e) = Â̄ (e),
we use true as the Φ constraint for e. For examples, see examples 20 (p. 78)
and 21 (p. 79).
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Figure 6.2 Program with flow dependence 3 fd
x1−x2

. 8 which leaves the loop with
loop predicate node 2.

1 if (b) {
2 while (i < 7) {
3 x := a;
4 i := c;
5 }
6 }
7 if (i < 7) {
8 y := x;
9 }

10 z := y;

entry

(i1<7) x1:=a;

i2:=c;

(i3<7)

T

T
1 2 3

7

x1 - x2

i2 - i1

(b)
T

4

y1:=x2

z:=y2;

T

10

8

i2 - i3

y1 - y2

• Loop termination conditions for data dependence edges introduce constraints
for loops terminating. They are very similar to execution conditions from
loop predicates (cf. section 6.2.1.1).

• Execution conditions can be computed not only for nodes in the path under
consideration, but also for all nodes on all CFG paths carrying the flow de-
pendence. In other words, this type defines conditions for all states between
the source state and the target state.

• If the flow dependence v fd
a. w involves an array variable a, we want to

make sure that we formulate conditions as strong as possible to ensure that
the flow of information actually happens, i. e. we want to have that the
array cell read is the same as the one written before. Hence, this type will
specify conditions which extend their scope both on the source and target
state of the edge.

6.2.2.1 Loop termination conditions

In 6.2.1.1 we have seen that we can include negated loop predicates in execution
conditions. However, there are cases when we know that in some state we must
have left a loop l but the execution condition of that node does not contain the
negated loop predicate. Suppose we have a flow (def-def) dependence v fd

x. w

(v dd
x . w) such that Lx

(
v fd

x. w
) 6= ∅ (Lx

(
v dd

x . w
) 6= ∅). Then, we know that

every loop u ∈ Lx
(
v fd

w. x
)

(u ∈ Lx
(
v dd

w. x
)
) must have terminated between v

and w.

Example 11
Consider, for example, the program p and its PDG shown in figure 6.2. We see
that the flow dependence edge 3 fd

x1−x2
. 8 leaves the loop with loop predicate

node 2. Hence we know that if we have a state sequence that carries information
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along 3 fd
x1−x2

. 8, there is a state ξ corresponding to node 8 in it and we have
ξ(!(i1 < 7)) = T, i. e. ξ(i1) ≥ 7. From the execution condition of node 8 we know
that (i3 < 7) holds in ξ, so ξ(i3) < 7. If we look at the program at more detail,
we easily see that ξ(i3) = ξ(i1). Therefore there can be no information flow along
3 fd

x1−x2
. 8.

Note that the execution condition of node 8 is just (i3 < 7). The extra piece
of information !(i1 < 7) is not part of this condition because the while loop is
nested in a conditional statement. Hence, it is sensible to have loop termination
conditions both in execution conditions and for data dependence edges.

Definition 39 (Loop termination condition)
Let e := v fd

x. w (e := v dd
x . w) be a flow (def-def) dependence. The loop

termination condition along e is defined as:

δl (e) :=
∧

u∈Lx(e)

·(!(u)).

If Lx(e) = ∅, we set δl (e) := true.

6.2.2.2 Execution conditions along flow dependence edges

Let us look at a flow (def-def) dependence edge v fd
x. w (v dd

x . w) from v to w with
respect to variable x. Let Π denote the set of all CFG paths v CFGI∗ w carrying
the dependence. Since we do not want to generate execution conditions which
connect execution conditions for every single node on every path with temporal
operators because the formulae would become very long, or maybe even infinitely
long, we do generate a joint execution condition that is satisfied by all nodes on
all paths in Π.

Definition 40
Let VΠ := { v ∈ ⋃

V(Π) | def(v) 6= ∅ } ∪ { w } be the set of nodes of interest13 for
the flow (def-def) dependence edge v fd

x. w (v dd
x . w). We define

Eδ

(
v fd

x. w
)

:=
∨

v∈VΠ

E(v) and Eδ

(
v dd

x . w
)

:=
∨

v∈VΠ

E(v) . (6.3)

In programs with well-structured control flow (where the control dependence
graph is a tree) we can always find a node u ∈ V such that E(v′) ÂÂ E(u) for all
v′ ∈ VΠ, if we want to. For example, if v fd

x. w is loop-carried by loops L(v fd
w. x),

then the outermost loop u ∈ L(v fd
w. x) satisfies E(v′) ÂÂ E(u) for all v′ ∈ VΠ.

Thus, we can often reduce the execution condition for a flow dependence to
an ordinary execution condition. Since the condition is necessary for all nodes in
VΠ, we will use the U operator to insert this constraint.

13State sequences contain only states for assignment statements, so we do not have to care
about control statements. However, we do not know whether w is an assignment statement.
Hence, we explicitly include w in VΠ.
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6.2.2.3 Data dependence edge conditions

Suppose we have a path ρ from v0 := v to w of the form

v0
dd
x . v1, . . . , vn−1

dd
x . vn, vn

fd
x. w

for some n ∈ N. Then, x is an array variable and this path expresses a potential
flow of information from v to w via v1, . . . , vn at which this information is not
destroyed.

We now want to generate an LTL formula that expresses that v0, . . . , vn, w are
executed in this order and that the information in x written in v does reach w.
This is accomplished by the following scheme δ(ρ, η)

δ(ρ, η) := (y == i0) ∧ δ′(y, ρ, η) (6.4)

where η ∈ LTLLIMP is an arbitrary LTL formula over LIMP, y ∈ Vr − V (η)14

arbitrary, but rigid, i0 is the index expression for array variable x in node v0, and
δ′ is the scheme defined by

δ′(y, u1
fd
x. u2, η) := Eδ

(
u1

fd
x. u2

) U ((y == i2) ∧ δl

(
u1

fd
x. u2

)∧
u1Φu2

x ∧ η)
(6.5)

and

δ′(y, (u1
dd
x . u2, ρ

′), η) := Eδ

(
u1

dd
x . u2

) U ((y! = i2) ∧ δl

(
u1

dd
x . u2

)∧
u1Φu2

x ∧E(u2)∧ δ′(y, ρ′, η))
(6.6)

where i2 represents the index expression for array variable x in node u2, ρ′ is a
nonempty information flow path, and u1Φu2

x is the Φ condition for u1
fd
x. u2 or

u1
dd
x . u2.

Intuitively, δ(ρ, η) generates the complete path condition for ρ, which consists
of execution and loop termination conditions and Φ constraints, and includes η
such that η must hold in the last state of the state sequence that is constrained
by the path condition for ρ. For non-array dependence edges, we give the rules
for combining the different types of constraints in 6.2.4. We have already included
the complete generation rule here, because the rigid variable y relates all states
on ρ.

6.2.3 Intrastatement conditions

Execution conditions on the one hand are purely local, i. e. independent of the
path we are looking at. Flow dependence conditions, on the other hand, are
constraints that deal with what happens between the source and target node of a
flow dependence edge. Intrastatement conditions express constraints concerning
what happens with a value that is passed along a flow dependence condition once
it has arrived at the target node.

Suppose we are generating a path condition for a path that contains a flow
dependence edge v fd

x. w. However, whether the value of x in w indeed influences
w, i. e. the evaluation result of w, may depend on other input parameters of w.

14Note that we require that y does not occur in V (η) nor in any formula we substitute for any
propositional variable in η.
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Operator f pf,1 pf,2

+, ·[·], ==, ! =, <, > true true
−, !, · true
∗, / (x2! = 0) (x1! = 0)
≤ (x2! = 2147483647) (x1! = −2147483648)
≥ (x2! = −2147483648) (x1! = 2147483647)
&& x2 x1

|| !(x2) !(x1)

Table 6.2: Predicates pf,i for function and predicate operators in LIMP.

Example 12 (Intrastatement conditions)
Consider, for example, the following program fragment:

1 x := 5;
2 if (0 * x == 12) {
3 y := 7;
4 }

Clearly, line 1 cannot influence line 3, even though the latter is control depen-
dent on the if predicate in line 2 which itself is flow dependent on line 1. The
expression (0*x==12) always evaluates to false, no matter what the value of x is,
because the function i 7→ (∗(a, b))AIMP(0, i), i ∈ Z (for the expression ∗(a, b) ∈ E

with variable ordering a v b) is constant.

We use the symbols ⊥a, ⊥b, and ⊥i only for uninitialized variables. Since by
definition of state sequences, every variable is initialized before it is used we may
restrict interpreted function operators to non-lifted values. In the example, we can
say that the result of function (a, b) 7→ ∗ (a, b)AIMP(a, b), (a, b) ∈ Z2 only depends
on b if a 6= 0.

More generally, for every n-ary function or predicate operator f ∈ Fn∪Rn (n ∈
N − { 0 }), i. e. we consider the expression or atomic formula e := f(x1, . . . , xn)
with variable ordering x1 v . . . v xn, and for every parameter i ∈ { 1, . . . , n }
we define a predicate pf,i ∈ SFLIMP with variable ordering x1 v . . . v xi−1 v
xi+1 v . . . v xn) such that for all (a1, . . . , ai−1, ai+1, . . . , an) ∈ A1 × . . . ×
Ai−1 × Ai+1 × . . . × An (where Aj := τ−1(LfMj) − ⊥ for 1 ≤ j ≤ n) if a 7→
eAIMP(a1, . . . , ai−1, a, ai+1, . . . , an), a ∈ Ai, is not constant then

pAIMP
f,i (a1, . . . , ai−1, ai+1, . . . , an) = T.15

For IMP, we define the pf,is in table 6.2. With these predicates in mind, we
define intrastatement conditions next:

Definition 41 (Intrastatement condition)
Given a statement w and a variable x ∈ use(w) which is contained in the maxi-
mal expression e ∈ E with variable ordering x1 v . . . v xn v x, an intrastate-

15We can do something analogous for atomic formulae of the form e1 ≡ e2, too. However, as
we do not make use of ≡ in LTL path conditions, we do not give a definition for this case here.
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ment dependence condition δw
x is a state formula δw

x ∈ SFLIMP with variable
ordering x1 v . . . v xn such that for all (a1, . . . , an) ∈ ∏n

i=1

(LxiMAIMP −⊥)
if

there are a, b ∈ LxMAIMP − ⊥ with eAIMP(a1, . . . , an, a) 6= eAIMP(a1, . . . , an, b) then
(δw

x )AIMP(a1, . . . , an) = T.

For IMP, we choose the following intrastatement conditions: We first define
recursively intrastatement conditions δe

x for expressions e ∈ E. Let e be an expres-
sion and x ∈ use(e).

• If e itself is a variable, we set δe
x := true.

• If e = f(e1, . . . , en) for some n ∈ N, f ∈ Fn, and e1, . . . , en ∈ E, let j ∈
{ 1, . . . , n } be the unique index of the expression ej with x ∈ use(ej). We
then set

δe
x := pf,j [e1/x1, . . . , ej−1/xj−1, ej+1/xj+1, . . . , en/xn] ∧ δ

ej
x

Let e ∈ E be the expression to evaluate in w that contains the use of variable
x. We then set δw

x := δe
x. When we include intrastatement conditions in examples,

we feel free to simplify them before that just as we do with execution conditions.

6.2.4 Putting everything together

Above, we have defined several types of constraints that we want to include in
path conditions. We now combine them to generate an LTL formula PC(π) for
the whole path π : s PDGp

I∗ t. A path condition for path π in PDGp is an LTL
formula PC(π) that is a necessary condition for the data flow between ¯ Â(π) and
Â̄ (π) to happen along π. Necessary in this context means that if this data flow

does happen there is a sequence of states Ξ in Mp such that Ξ ² ♦PC(π).
Let PDGp = (V, C,D, ve, α, L) be the PDG for p and let π : s PDGp

I∗ t be an
information flow path in PDGp. We define PC(π) recursively:

• If |π| = 0, i. e. π = t is an empty path, we set

PC(π) := E(t) . (6.7)

• If |π| > 0 and π = e, π′ for some control dependence edge e = (s, v) ∈ C, we
set

PC(π) := E(s)∧PC(π′). (6.8)

• If |π| > 0 and π = s fd
x. v, π′ for some s fd

x. v ∈ D and x is a scalar
variable, we set

PC(π) := E(s)∧Eδ

(
s fd

x. v
) U (δl

(
s fd

x. v
) ∧ sΦv

x ∧δv
x ∧ PC(π′)) (6.9)

• If |π| > 0 and π = ρ, π′ for some

ρ = v0
dd
x . v1, v1

dd
x . v2, . . . , vn−2

dd
x . vn−1, vn−1

fd
x. vn,

some n ∈ N− { 0 }, an array variable x, and E(ρ) ⊆ D, we set

PC(π) := E(v0)∧δ(ρ, δvn
x ∧ PC(π′)) (6.10)



6.2. GENERATING LTL FORMULAE FOR PATHS 55

Figure 6.3 A simple program for computing the factorial function and its PDG.

1 i:=1;
2 a[1]:=1;
3 while (i<6) {
4 a[i+1]:=a[i]*(i+1);
5 i:=i+1;
6 }
7 o:=a[5];

entry

i1:=1;

a1[1]:=1;

(i2<6)
a3[i5+1]
:=a2[i3]
*(i4+1);

o1:=a4[5];

T

i7:=i6+1;

T

1

2

3 4

5

7

i1 - i6

i1 - i3

i1 - i4i1 - i2
a1 - a2

a1 - a3

a3 - a3

a3 - a2

a3 - a4

i7 - i2

i7 - i4
i7 - i3

a1 - a4

i1 - i5

i7 - i5

Since s need not be the entry node ve whereas all sequences in Mp start in ve,
if we want to decide whether this path is feasible in Mp we need to check whether
there is a sequence Ξ ∈Mp such that Ξ ² ♦ PC(π).

6.2.5 A simple example

Example 13
In figure 6.3 we now consider the program, which computes the factorial function
and stores the values in an array variable. Its PDG is shown in the same figure.
We are interested in whether there is an information flow from line 2 (a[1]:=1;)
to line 7 (o:=a[5];). We now look at different paths from node 2 to node 7.

The simplest path π, which consists only of the flow dependence edge 2 fd
a1−a4

.
7 from node 2 to 7 labelled a1 − a4, generates the path condition

PC(π) = true︸︷︷︸
=E(2)

∧
=δ(2

fd
a1−a4

.7,δ7
a4
∧E(7))

︷ ︸︸
(y == 1) ∧ true︸︷︷︸

=Eδ

�
2

fd
a1−a4

.7
� U ((y == 5) ∧ true︸︷︷︸

=δl

�
2

fd
a1−a4

.7
�∧

︷
(a1[y] == a4[y])︸ ︷︷ ︸

=2Φ7
a1−a4

∧ true︸︷︷︸
=δ7

a4

∧ !(i2 < 6)︸ ︷︷ ︸
=E(7)

where y is a rigid variable. We can simplify PC(π) to

PC(π) ⇐⇒ (y == 1) ∧ ♦((y == 5) ∧ (a1[y] == a4[y])∧!(i2 < 6))

Since y is a rigid variable, we also have

PC(π) ⇐⇒ ♦((y == 1) ∧ (y == 5) ∧ (a1[y] == a4[y])∧!(i2 < 6)) ⇐⇒ false ,
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so PC(π) is not satisfiable.
Next, let us look at another path

π′ := 2 fd
a1−a2

. 4, 4 fd
a3−a2

. 4, 4 dd
a3−a3

. 4, 4 fd
a3−a4

. 7.

We obtain

PC(π′) = true︸︷︷︸
=E(2)

∧(y1 == 1) ∧ true︸︷︷︸
=Eδ

�
2

fd
a1−a2

.4
� U ((y1 == i3) ∧ true︸︷︷︸

=δl

�
2

fd
a1−a2

.4
�∧

(a1[y1] == a2[y1])︸ ︷︷ ︸
2Φ4

a1−a2

∧ (i4 + 1! = 0)︸ ︷︷ ︸
=δ4

a2

∧ (i2 < 6)︸ ︷︷ ︸
=E(4)

∧(y2 == i5 + 1)∧

(i2 < 6)︸ ︷︷ ︸
=Eδ

�
4

fd
a3−a2

.4
� U ((y2 == i3) ∧ true︸︷︷︸

δl

�
4

fd
a3−a2

.4
�∧ true︸︷︷︸

=4Φ4
a3−a2

∧

(i4 + 1! = 0)︸ ︷︷ ︸
=δ4

a2

∧ (i2 < 6)︸ ︷︷ ︸
=E(4)

∧(y3 == i5 + 1)∧

(i2 < 6)︸ ︷︷ ︸
=Eδ

�
4

dd
a3−a3

.4
� U ((y3! = i5 + 1) ∧ true︸︷︷︸

=δl

�
4

dd
a3−a3

.4
�∧ (a3[y3] == a3[y3])︸ ︷︷ ︸

=4Φ4
a3−a3

∧

(i2 < 6)︸ ︷︷ ︸
=E(4)

∧ ((i2 < 6)∨!(i2 < 6))︸ ︷︷ ︸
=Eδ

�
4

fd
a3−a4

.7
�

16

U ((y3 == 5) ∧ !(i2 < 6)︸ ︷︷ ︸
=δl

�
4

fd
a3−a4

.7
�∧

(a3[y3] == a4[y3])︸ ︷︷ ︸
=4Φ7

a3−a4

∧ true︸︷︷︸
=δ7

a4

∧ !(i2 < 6)︸ ︷︷ ︸
=E(7)

))))

where y1, y2, and y3 are rigid variables. We can simplify PC(π′) to

PC(π′) ⇐⇒(y1 == 1) ∧ ♦((y1 == i3) ∧ (a1[y1] == a2[y1]) ∧ (i4 + 1! = 0)∧
(y2 == i5 + 1) ∧ (i2 < 6) U ((y2 == i3) ∧ (i4 + 1! = 0)∧
(y3 == i5 + 1) ∧ (i2 < 6) U ((y3! = i5 + 1) ∧ (a3[y3] == a3[y3])∧
(i2 < 6) ∧ ((i2 < 6)∨!(i2 < 6)) U ((y3 == 5)∧!(i2 < 6)∧
(a3[y3] == a4[y3])))))

Note however, that PC(π′) is not satisfiable over Mp because the only infor-
mation flow from line 2 to line 7 happens along the path

ρ = 2 fd
a1−a2

. 4, 4 fd
a3−a2

. 4, 4 fd
a3−a2

. 4, 4 fd
a3−a2

. 4, 4 fd
a3−a2

. 4, 4 fd
a3−a4

. 7

16Note that in general not (i2 < 6)∨!(i2 < 6) ≺ Â true. Consider for example a state ξ ∈ SAIMP
V

with ξ(i2) = ⊥i, then ξ(i2 < 6) = F = ξ(!(i2 < 6)) and ξ(true) = T.
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for which we obtain

PC(ρ) ⇐⇒
(y1 == 1) ∧ ♦((y1 == i3) ∧ (a1[y1] == a2[y1]) ∧ (i4 + 1! = 0)∧
(y2 == i5 + 1) ∧ (i2 < 6) U ((y2 == i3) ∧ (i4 + 1! = 0)∧
(y3 == i5 + 1) ∧ (i2 < 6) U ((y3 == i3) ∧ (i4 + 1! = 0)∧
(y4 == i5 + 1) ∧ (i2 < 6) U ((y4 == i3) ∧ (i4 + 1! = 0)∧
(y5 == i5 + 1) ∧ (i2 < 6) U ((y5 == i3) ∧ (i4 + 1! = 0)∧
(i2 < 6) ∧ (y6 == i5 + 1) ∧ ((i2 < 6)∨!(i2 < 6)) U ((y5 == 5)∧!(i2 < 6)∧
(a3[y6] == a4[y6])))))))

(6.11)

where y1, y2, y3, y4, y5, and y6 are rigid. Note that we have generated some
subformulae multiple times to capture the repeated flow along edge 4 fd

a3−a2
. 4.

Since, in most cases, we do not know in advance the correct number of flows along
such an edge, we would have to generate formulae for all possible paths. Even
though this issue is decidable in our finite state setting, we are not willing to
generate formulae that large.

6.3 Influence conditions

We want to use path conditions to gain information about whether and how a
statement s can possibly influence a statement t in a program p. As we have seen
above, we can generate necessary conditions for every information flow path from
s to t in the PDG for p. Since every influence happens along an information flow
path in the PDG of p between s and t, if we take the disjunction over conditions
for all such paths, we obtain a necessary condition for the influence to happen.

Definition 42 (Influence condition between statements)
Let s and t be two nodes in the PDG for program p ∈ IMP. The influence condition
(first version) for s and t is then given by

IC(s, t) :=
∨

π∈Π(s,t)

PC(π) (6.12)

Unfortunately, in most cases, the disjunction will be infinite, because loops in
the PDG generate infinitely many paths. We address this problem by restricting
Π(s, t) to a finite number of paths and by modifying the generation rules for PC(π)
such that we still generate a necessary condition for the influence. Our aim is to
restrict Π(s, t) to cycle-free paths. However, we will encounter a case where we
need to weaken this objective to cycle-disjoint paths.

6.3.1 Extended rules for generating path conditions

In order to write transformation rules which can be applied to the path condition
of a given path and modify it to incorporate the changes we want to make, we
introduce extra propositional variables in path conditions. This is why we replace
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the rules defined in equations 6.5 (p. 52), 6.6 (p. 52), 6.7 (p. 54), 6.8 (p. 54),
and 6.9 (p. 54) by the following ones (in this order):

1. Let u1iu2
x ∈ W be a propositional variable which we identify with the de-

pendence edge u1
fd
x. u2 or u1

dd
x . u2. More precisely, if we generate a path

condition for path π and we come along the edge u1
fd
x. u2 or u1

dd
x . u2,

we use a new variable u1iu2
x . If π passes through this edge multiple times,

we use different propositional variables each time.17

δ′(y,u1
fd
x. u2, η) := (Eδ

(
u1

fd
x. u2

)∧ u1iu2
x ) U (

(y == i2) ∧ δl

(
u1

fd
x. u2

) ∧ u1Φu2
x ∧η)

(6.13)

2. Let u1iu2
x ∈ W be as before.

δ′(y,(u1
dd
x . u2, ρ), η) := (Eδ

(
u1

dd
x . u2

)∧ u1iu2
x ) U (

(y! = i2) ∧ δl

(
u1

dd
x . u2

) ∧ u1Φu2
x ∧E(u2)∧δ′(y, ρ, η))

(6.14)

3. Let i ∈ W be a propositional variable not used before. (We will always use
i as the propositional variable at the end of an information flow path.)

PC(π) := E(t)∧i (6.15)

4. Let ie ∈ W be a propositional variable that we identify with the control
dependence edge e like before.

PC(π) := E(s)∧ie ∧ PC(π′) (6.16)

5. Let siv
x ∈ W be as above.

PC(π) := E(s)∧(Eδ

(
s fd

x. v
)∧ siv

x) U (δl

(
s fd

x. v
) ∧ sΦv

x ∧δv
x ∧ PC(π′))

(6.17)

These additional propositional variables enable us to use both substitution of
propositional variables (cf. definition 8 (p. 11)) and of subformulae (cf. definition 9
(p. 12)) to modify such a formula.

Even though PC(π)18 is not the same formula as the original one, one can
easily see that they are congruent. In particular, we have that if (π∗, π′) is an
information flow path in PDGp and both π∗ and π′ are themselves information
flow paths, then

PC((π∗, π′)) ⇐⇒ PC(π∗)[PC(π′)/i].

Moreover, none of the generation rules uses the operators ¬ and →, so no propo-
sitional variable occurs negatively in path conditions of the above form.

17We identify u1iu2
x with the occurrence of u1

fd
x
. u2 or u1

dd
x
. u2. If we then generate path

conditions for subpaths of π, we want to use the same propositional variables that we (would)
have used to generate the path condition for the whole path.

18As defined in section 3.2.2, the bar over an LTL formula means that we substitute true for
all propositional variables in the formula.
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6.3.2 Eliminating cycles in paths

Our most urgent task is to avoid the infinite disjunction of LTL formulae which is
still possible with influence conditions as in definition 42 (p. 57). We distinguish
three types of cycles:

• Cycles composed only of control dependence edges,

• Cycles all of whose data dependence edges are flow dependence edges with
respect to scalar variables, and

• Cycles that contain non-scalar data dependence edges.

We will address them in this order.

6.3.2.1 Control dependence cycles

Although in PDGs for IMP programs control dependence edges form a tree and
thus cannot themselves generate cycles in the PDG, they could easily be dealt
with in a more general setting:

Lemma 8 (Control dependence cycles)
Let π : s PDGp

I∗ t be an information flow path from s to t that contains a cycle

ρ := (v0, v1), (v1, v2), . . . , (vn−1, vn)

of control dependence edges. Let π∗ denote the subpath of π before this cycle and
π′ the subpath of π after it. Then (π∗, π′) ∈ Π(s, t) and PC(π) Â=⇒ PC((π∗, π′)).

Proof. The claim (π∗, π′) ∈ Π(s, t) is obvious. For ρ, π′ we have PC((ρ, π′)) ⇐⇒∧n−1
i=0

(
E(vi)∧i(vi,vi+1)

) ∧ PC(π′). Since ℵ ∧ i Â=⇒ i (cf. table 3.2 (p. 17)), we
have

n−1∧

i=0

(
E(vi)∧i(vi,vi+1)

) ∧ PC(π′) Â=⇒ PC(π′).

Therefore,

PC(π) ⇐⇒ PC(π∗)[PC((ρ, π′))/i] Â=⇒ PC(π∗)[PC(π′)/i] ⇐⇒ PC((π∗, π′)).

¤

6.3.2.2 Scalar flow dependence cycles

Next, we consider loops e1, . . . , en in π : s PDGp
I∗ t where each ei is either a

control dependence edge (vi−1, vi) or a flow dependence edge vi−1
fd
xi

. vi with
respect to the scalar variable xi, i. e. LxiM ∈ { int, bool }, for 1 ≤ i ≤ n, and
vn = v0. The next lemma shows that we can get rid of this type of cycles by
introducing an additional until operator.
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Figure 6.4 An example program and its PDG to demonstrate the until operator
being necessary for handling cycles with scalar flow dependences and its PDG.

1 i:=0;
2 a[0]:=1;
3 a[1]:=2;
4 while (i<2) {
5 if (a[i]==1) {
6 i:=i+1;
7 } else {
8 if (i==1) {
9 p:=3;

10 }
11 }
12 }

entry

i1:=0;

a1[0]:=1;

(i2<2) i5:=i4+1;
T

(a3[i3]==1)
T

1

2

3

a2[1]:=2;

(i6==1) p:=3;
T

F

i5 - i6

8

9

64 5

i1 - i6

i1 - i4

i1 - i3

i1 - i2

a1 - a3

a2 - a3

i5 - i4

i5 - i3

i5 - i2

Lemma 9 (Scalar flow dependence cycles)
Let π ∈ Π(s, t) be an information flow path from s to t in PDGp such that % :=
e1, . . . , en is a cycle in π where ei is either a control dependence edge (vi−1, vi) or a
flow dependence edge vi−1

fd
xi

. vi with respect to a scalar variable xi (1 ≤ i ≤ n),
and vn = v0. Let π∗ denote the subpath of π before % and π′ the subpath of π
after %. Let

E% :=
∨

v∈V(%)
def(v)6=∅

E(v)∨
∨

v
fd
x.w∈E(%)∩D

Eδ

(
v fd

x. w
)

denote the joint execution condition for all nodes and dependence edges in %. Then
(π∗, π′) ∈ Π(s, t), and

PC(π) Â=⇒ PC(π∗)[E% U (PC(π′))/i)

and
PC((π∗, π′)) Â=⇒ PC(π∗)[E% U (PC(π′))/i].

Proof. The claim (π∗, π′) ∈ Π(s, t) is obvious. Let W = W (PC(π)). Suppose
Ξ ² PC(π) where Ξ = (ξi)i∈N ∈ MAIMP

V,W . Then, there is a k ∈ N, such that
(Ξ, k) ² E(v0)∧PC((%, π′)) and there is a k′ ∈ N, k′ ≥ k, such that (Ξ, k′) ² PC(π′).
For every node v ∈ V(%) such that def(v) 6= ∅ we have E(v) ÂÂ E% and for
every data dependence edge v fd

x. w we also have Eδ

(
v fd

x. w
)
ÂÂ E%. Since

by construction of PC(ρ), for j ∈ { k, . . . , k′ − 1 }, we have ξj ² Eδ

(
v fd

x. w
)

for
some v fd

x. w ∈ E(ρ) or ξj ² E(v) for some v ∈ V(ρ) with def(v) 6= ∅, we have
(Ξ, j) ² E% for j ∈ { k, . . . , k′ − 1 }. Hence, (Ξ, k) ² E% U PC(π′) and as V (E%)
does not contain rigid variables, we also have Ξ ² PC(π∗)[E% U PC(π′)/i].

Since ℵ Â=⇒ i U ℵ (cf. table 3.2 (p. 17)), we obtain with lemmata 4 (p. 21)
and 5 (p. 22):

PC((π∗, π′)) ⇐⇒ PC(π∗)[PC(π′)/i] Â=⇒ PC(π∗)[E% U (PC(π′))/i].

¤
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Example 14
This example is to show that, in general, we must not omit the additional U
operator. Consider the program p and its PDG in figure 6.4. We are interested in
statement 2 (a[0]:=1;) influencing statement 9 (p:=3;).

We look at the path π := 2 fd
a1−a3

. 5, (5, 6), 6 fd
i5−i3

. 5, (5, 8), (8, 9) which
contains the cycle (5, 6), 6 fd

i5−i3
. 5. The path condition PC(π) for π is given by

PC(π) = true︸︷︷︸
=E(2)

∧(y == 0) ∧ ( true︸︷︷︸
=Eδ

�
2

fd
a1−a3

.5
�∧ 2i5

a1−a3
) U (

(y == i3) ∧ true︸︷︷︸
=δl

�
2

fd
a1−a3

.5
�∧ (a1[y] == a3[y])︸ ︷︷ ︸

=2Φ5
a1−a3

∧ true︸︷︷︸
=δ5

a3

∧ (i2 < 2)︸ ︷︷ ︸
=E(5)

∧i(5,6)∧

((i2 < 2) ∧ (a3[i3] == 1))︸ ︷︷ ︸
=E(6)

∧( (i2 < 2)︸ ︷︷ ︸
=Eδ

�
6

fd
i5−i3

.5
�∧ 6i5

i5−i3) U ( true︸︷︷︸
=δl

�
6

fd
i5−i3

.5
�∧

(i5 == i3)︸ ︷︷ ︸
=6Φ5

i5−i3

∧ true︸︷︷︸
=δ5

i3

∧ (i2 < 2)︸ ︷︷ ︸
=E(5)

∧i(5,8) ∧ ((i2 < 2)∧!(a3[i3] == 1))︸ ︷︷ ︸
=E(8)

∧i(8,9)∧

((i2 < 2)∧!(a[3i3] == 1) ∧ (i6 == 1))︸ ︷︷ ︸
=E(9)

∧i))

where y is rigid. PC(π) simplifies to

PC(π) ⇐⇒(y == 0) ∧ ♦((y == i3) ∧ (a1[y] == a3[y]) ∧ (a3[i3] == 1)∧
(i2 < 2) U ((i2 < 2) ∧ (i5 == i3)∧!(a3[i3] == 1) ∧ (i6 == 1)))

(6.18)

If we look at the path % := 2 fd
a1−a3

. 5, (5, 8), (8, 9) which is π without the
cycle (5, 6), 6 fd

i5−i3
. 5, we obtain the following path condition for %:

PC(%) = true ∧ (y == 0) ∧ (true ∧ 2i5
a1−a3

) U ((y == i3) ∧ true∧
(a1[y] == a3[y]) ∧ true ∧ (i2 < 2) ∧ i(5,8) ∧ ((i2 < 2)∧!(a2[i3] == 1))∧
i(8,9) ∧ ((i2 < 2)∧!(a3[i3] == 1) ∧ (i6 == 1)) ∧ i)

Simplifying PC(%) yields

PC(%) ⇐⇒ (y == 0) ∧ ♦((y == i3) ∧ (a1[y] == a3[y]) ∧ (i2 < 2)∧
!(a3[i3] == 1) ∧ (i6 == 1))

(6.19)

The important point is the missing U operator in equation 6.19. Let Ξ be the
state sequence that corresponds to the path 1, 2, 3, 4, 5, 6, 4, 5, 8, 9 in the CFG (or
in terms of the transition graph: to the path 1, 2, 3, 6, 9.) Then Ξ ² PC(π), but
not Ξ ² PC(%).

6.3.2.3 Cycles with array variables

So far, we have presented how to avoid having to generate path conditions for
paths that contain control or scalar flow dependence-only cycles. For cycles with
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data dependence edges with respect to array variables, things are more difficult.
If we look again at the factorial program in figure 6.3 (p. 55) and the path condi-
tion PC(ρ) from equation 6.11 (p. 57) we find that the path ρ contains the cycle
4 fd

a3−a2
. 4 which is a flow dependence edge with array variable a. The problem

there is that in each iteration different array cells are affected. As every array
has only a finite number of cells we could solve this problem by distinguishing all
array cells and then treat them like scalar variables and thus handle these cycles
similarly, but this approach is not feasible. To address this issue, we distinguish
three cases for paths with cycles containing array dependences:

Let π ∈ Π(s, t) be an information flow path in PDGp from s to t that contains
neither control nor scalar flow dependence cycles. Let % := e1, . . . , en be a cycle19

in π which contains a dependence edge for an array variable a. As usual, let π∗

denote the subpath of π before % and π′ the subpath of π after %. Then, one of
the following cases applies:

1. % is of the form v0
dd
a . v1, . . . , vn−1

dd
a . vn, i. e. all edges of % are def-def

dependences with respect to a.

2. % is of the form

e1, . . . , ek, vk
dd
a . vk+1, . . . , vm−2

dd
a . vm−1, vm−1

fd
a. vm, em+1, . . . , en

where 1 ≤ k < m ≤ n and ek is not of the form vk−1
dd
a . vk, i. e. the array

dependence cycle is completely contained in %.

3. % is of the form

(a) v0
dd
a . v1, . . . , vm−2

dd
a . vm−1, vm−1

fd
a. vm, em+1, . . . , en or

(b) e1, . . . , ek, vk
dd
a . vk+1 . . . , vm−1

dd
a . vm

where 0 < m ≤ n, k > 0, and ek is not of the form vk−1
dd
a . vk, i. e. % starts

or continues with an array dependence edge sequence which ends inside %,
or % ends with a def-def dependence edge sequence that starts inside %.

In the first case, we can ignore the cycle and add one more until operator like
we did this for scalar flow dependences in lemma 9 (p. 60):

Lemma 10 (def-def dependence cycles)
Let the identifiers be as in the first case. Then (π∗, π′) is an information flow path

from s to t. Let E% be as in lemma 9 (p. 60) and let vn
dd
a . w or vn

fd
a. w be the

first edge in π′. Let vniw
a be the propositional variable associated with this edge.

Let (η, η′) := PC((π∗, π′)) 〈〈U , vniw
a 〉〉. Let y denote the rigid variable used for the

dependence vn
fd
a. w or vn

dd
a . w and i0 the index expression for array a in v0.

If π∗ is empty or its last edge is not of the form v dd
a . v0, set

κ := E% U (E(v0)∧η U η′).
19We assume that % is a single cycle, i. e. except for the first and last node in %, all nodes in %

are pairwise different.
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Otherwise, set

κ := E% U ((y! = i0) ∧ vΦv0
a ∧E(v0)∧η U η′).

Set θ := PC((π∗, π′)) 〈〈U , vniw
a |κ〉〉. Then, PC((π∗, π′)) Â=⇒ θ and PC(π) Â=⇒ θ.

Proof. Although the notation is quite different from lemma 9 (p. 60), basically
the same thing happens, an additional U operator is introduced.

If π∗ is empty or its last edge is not of the form v dd
a . v0, then % is a def-def

dependence cycle at the beginning of a sequence of array dependence edges, so the
start and end node of the cycle % coincides with the node where the rigid variable
y is bound to the index value. To ensure that θ is a correct path condition for
(π∗, π′), we must not include the constraint that the array cell i0 is not overwritten
at the end of the cycle.

Otherwise, we know that both before and after the cycle, we can safely include
the constraint that the array cell is not overwritten as even the path without cycles
contains this constraint.

The main difference to lemma 9 (p. 60) is that this notation allows us to use
the same rigid variable in π∗ and π′ which would not be possible if we wrote
something like PC(π∗)[E% U PC(π′)/i]. Nevertheless, the proof goes along the
same lines as the one for lemma 9 (p. 60). ¤

Hence, in the following, we may assume without loss of generality that π does
not contain pure def-def cycles. For the second case, things are very similar: We
can eliminate this cycle as we did it with scalar dependence cycles.

Lemma 11 (Complete array dependence cycles)
Let the identifiers be as in the second case and in lemma 9 (p. 60). Then (π∗, π′) ∈
Π(s, t) is an information flow path such that

PC((π∗, π′)) Â=⇒ PC(π∗)[E% U PC(π′)/i] and PC(π) Â=⇒ PC(π∗)[E% U PC(π′)/i].

In the last case, we can not be sure whether (π∗, π′) is an information flow path
at all, for example, if the last edge in π∗ is of the form v dd

y . v0 and m < n. Even
if (π∗, π′) is an information flow path, we can not always apply the same trick as
before because this cycle might describe a completely different type of influence,
in case 3b, for instance.

• If % is of type 3a and π∗ is an empty path or the last edge of π∗ is not of the
form v dd

a . v0, then the subformula for PC(%) in PC(π) is not related (via
rigid variables) to the rest of PC(π). Hence we obtain the same entailments
as in lemma 11.

• If, however, the last edge of π∗ is of the form v dd
a . v0 or % is of type 3b, we

are not able to eliminate this cycle.20

In this case, we say that % is an open array dependence cycle in π.
20If we had used a non-killing definition for array flow dependences, this type of cycles would not

have come up because the whole sequence of def-def dependences followed by one flow dependence
would have been subsumed in a single flow dependence edge.
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Definition 43 (Influence condition for sets of paths)
Let Π∗(s, t) ⊆ Π(s, t) denote the set of all information flow paths π : s PDGo

I∗ t
which contain

• neither control dependence cycles,

• nor scalar flow dependence cylces,

• nor def-def dependence cycles,

• nor cycles that are not open array dependence cycles.

We call the paths in Π∗(s, t) influence paths from s to t. For every path π ∈
Π∗(s, t), we consider the set of paths

Π(π) :=
{

π′ ∈ Π(s, t)
∣∣ π contained in π′

}
.

Let f ∈ E(π) ·∪ { ε } and let eπ ∈ E(π) be the first edge in π (after f if f 6= ε)
such that there exists a cycle % : ¯ Â(eπ) PDGp

I∗ ¯ Â(eπ) such that, when we
insert % before eπ into π, we obtain a path π′ ∈ Π(π) and % is not an open array
dependence cycle in π′. Let P f

eπ denote the set of all such cycles % and set

E
(
P f

eπ

)
:=

∨

%∈P f
eπ




∨

v∈V(%)
def(v)6=∅

E(v)∨
∨

e∈E(%)∩D

Eδ(e)


 .21

Let π∗ denote the subpath of π before eπ and π′ the subpath of π from eπ on.

• If no such eπ exists, we set

ICf (π) := PC(π).

• If all paths in P f
eπ are def-def dependence-only cycles of the form

v0
dd
a . v1, . . . , vn−1

dd
a . vn,

let vniw
a and κ be as in lemma 10 (p. 62) with E% := E

(
P f

eπ

)
. We set

ICe(π) := ICeπ(π) 〈〈U , vniw
a |κ〉〉

• If none of the paths in P f
eπ is a def-def dependence only cycle, we set:

ICf (π) := PC(π∗)[E
(
P f

eπ

)
U IC(π′)/i]

If f = ε is the empty word, we omit writing f .

Proposition 12
Let π ∈ Π∗(s, t). Then, PC(π′) Â=⇒ IC(π) for every π′ ∈ Π(π).

21Although P f
eπ

is usually infinite, E
�
P f

eπ

�
can always be constructed in such a way that the

disjunction remains finite. In what follows, we will always write simplified versions of E
�
P f

eπ

�
.
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Figure 6.5 An example program with cycles in its PDG.

1 a[i] := 5;
2 while (i < 8) {
3 a[k] := j + 2;
4 if (i == 7) {
5 i := a[l];
6 }
7 i := i + 3;
8 }
9 o := a[m];

entry

a1[i1]:=5;

(i2<8)

a2[k]:=
j+2;

(i3==7) i4:=a3[l];

i6:=
i5+3;

o:=
a4[m];

T

T

T

T

1

2

3

4 5

7

9

a1 - a2
a2 - a2

a2 - a3

a2 - a4

a1 - a4 i4 - i5

i6 - i7

i6 - i2
i6 -i3

Proof. Let π ∈ Π∗(s, t). The claim follows by induction on the positions in π
at which we can add a cycle such that we obtain a path in Π(π) where we use
the entailments from lemmata 8 (p. 59), 9 (p. 60), 10 (p. 62), and 11 (p. 63)
together with the distribution laws from table 3.1 (p. 16) and the implication
ℵ U i ∨ k U i ÂÂ (ℵ ∨ k) U i from table 3.2 (p. 17). ¤

Corollary 13

∨

π∈Π(s,t)

PC(π) Â=⇒
∨

π∈Π∗(s,t)

IC(π)

From now on, we want the influence condition IC(s, t) to denote
∨

π∈Π∗(s,t)
IC(π).

Lemma 14
Let π ∈ Π∗(s, t). If there exist two influence paths π∗, π′ such that π = (π∗, π′),
then

IC(π) ⇐⇒ IC(π∗)[IC(π′)/i]

Proof. Suppose π = (π∗, π′) ∈ Π∗(s, t). Let u be the target node of the last
edge of π∗ and source node of the first edge in π′. Then π∗ ∈ Π∗(s, u) and
π′ ∈ Π∗(u, t). The only difference between IC(π) and IC(π∗)[IC(π′)/i] is that
the execution condition for node u appears twice in a conjunction.22 Thus, the
claim follows from the associativity and idempotence laws for conjunctions from
table 3.1 (p. 16). ¤

Example 15 (An example with cycles)
This example shows how the additional until operators are incorporated into path
conditions to capture all information flow paths. Figure 6.5 shows the program
and its PDG. We want to generate an influence condition for line 1 influencing
line 9.

22If we can insert a nonempty cycle ρ : u
PDGp

I∗ u into π between π∗ and π′ such that

(π∗, ρ, π′) ∈ Π(s, t), we assume that we take care of these cycles in either IC(π∗) or IC(π′).
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The restricted path set Π∗(1, 9) contains three paths:

• π1 := 1 fd
a1−a4

. 9

• π2 := 1 dd
a1−a2

. 3, 3 fd
a2−a4

. 9

• π3 := 1 dd
a1−a2

. 3, 3 fd
a2−a3

. 5, 5 fd
i4−i5

. 7, 7 fd
i6−i2

. 2, (2, 3), 3 fd
a2−a4

. 9

Here, π3 contains the open array dependence cycle 3 fd
a2−a3

. 5, 5 fd
i4−i5

. 7, 7 fd
i6−i2

.
2, (2, 3).

π1: Since there are no cycles in the PDG starting at node 1 or 9, the influence
condition for π1 is simply the ordinary path condition augmented with two
propositional variables:

IC(π1) = true ∧ (y == i1) ∧ (true ∧ 1i9
a1−a4

) U ((y == m) ∧ true∧
(a1[y] == a4[y]) ∧ true∧!(i2 < 8) ∧ i)

where y is a rigid variable.

π2: When we look at π2, we note that all paths in Π(π2) are of the form
1 dd

a1−a2
. 3, 3 dd

a2−a2
. 3, . . . , 3 dd

a2−a2
. 3, 3 fd

a2−a4
. 9. Hence, all cycles we

have to consider are def-def dependence cycles which are not the beginning
of an array dependence sequence because 1 dd

a1−a2
. 3 is already a def-def

dependence with respect to a. The common execution condition E
(
Peπ2

)
for

the cycle is (i2 < 8). Thus, we have

IC(π2) = true ∧ (y == i1) ∧ (true ∧ 1i3
a1−a2

) U ((y! = k) ∧ true∧
(a1[y] == a2[y]) ∧ (i2 < 8)∧
(i2 < 8) U ((y! = k) ∧ (a1[y] == a2[y]) ∧ (i2 < 8)∧
(true ∧ 3i9

a2−a4
) U ((y == m)∧!(i2 < 8) ∧ (a2[y] == a4[y])∧

true∧!(i2 < 8) ∧ i)))
(6.20)

where y is a rigid variable. The third line is what we have inserted to account
for the def-def dependence cycles.

π3: The influence condition for path π3 must cover cycles at nodes 3, 5, 7, and
2. The cycles at node 3 are the same as those for π3, hence

E
(
Peπ3

)
= E

(
P (2,3)

eπ3

)
= (i2 < 8).

Note that the first time we reach node 3 we are already inside an array
dependence sequence whereas the second time we start it. Hence, both
cases of lemma 10 (p. 62) can be seen here. For the cycles at nodes 5, 7, and
2, we obtain

E

(
P

3
fd

a2−a3
.5

eπ3

)
= E

(
P

5
fd

i4−i5
.7

eπ3

)
= E

(
P

7
fd

i6−i2
.2

eπ3

)
= true
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because E(2) = true and cycles with edge 7 fd
i6−i2

. 2 exist for all three start
nodes. If we plug everything together, we get:

IC(π3) = true︸︷︷︸
=E(1)

∧(y1 == i1) ∧ ( true︸︷︷︸
=Eδ

�
1

dd
a1−a2

.3
�∧ 1i3

a1−a2
) U ((y1! = k)∧

true︸︷︷︸
=δl

�
1

dd
a1−a2

.3
�∧ (a1[y1] == a2[y1])︸ ︷︷ ︸

=1Φ3
a1−a2

∧ (i2 < 8)︸ ︷︷ ︸
=E(3)

∧

(i2 < 8)︸ ︷︷ ︸
=E(Peπ3 )

U ((y1! = k) ∧ (a1[y1] == a2[y1])︸ ︷︷ ︸
=1Φ3

a1−a2

∧ (i2 < 8)︸ ︷︷ ︸
=E(3)

∧

( (i2 < 8)︸ ︷︷ ︸
=Eδ

�
3

fd
a2−a3

.5
�∧ 3i5

a2−a3
) U ((y1 == l) ∧ true︸︷︷︸

=δl

�
3

fd
a2−a3

.5
�∧

(a2[y1] == a3[y1])︸ ︷︷ ︸
=3Φ5

a2−a3

∧ true︸︷︷︸
=δ5

a3

∧ ((i2 < 8) ∧ (i3 == 7))︸ ︷︷ ︸
=E(5)

∧

true︸ ︷︷ ︸

=E

0B@P
3

fd
a2−a3

.5

eπ3

1CA
U (((i2 < 8) ∧ (i3 == 7))︸ ︷︷ ︸

=E(5)

∧

( (i2 < 8)︸ ︷︷ ︸
=Eδ

�
5

fd
i4−i5

.7
�∧ 5i7

i4−i5) U ( true︸︷︷︸
=δl

�
5

fd
i4−i5

.7
�∧ (i4 == i5)︸ ︷︷ ︸

=5Φ7
i4−i5

∧ true︸︷︷︸
=δ7

i5

∧

(i2 < 8)︸ ︷︷ ︸
=E(7)

∧ true︸ ︷︷ ︸

=E

0B@P
5

fd
i4−i5

.7

eπ3

1CA
U ((i2 < 8)︸ ︷︷ ︸

=E(7)

∧

( true︸︷︷︸
=Eδ

�
7

fd
i6−i2

.2
�∧ 7i2

i6−i2) U ( true︸︷︷︸
=δl

�
7

fd
i6−i2

.2
�∧ (i6 == i2)︸ ︷︷ ︸

=7Φ2
i6−i2

∧ true︸︷︷︸
=δ2

i2

∧

true︸︷︷︸
=E(2)

∧ true︸ ︷︷ ︸

=E

0B@P
7

fd
i6−i2

.2

eπ3

1CA
U (true︸ ︷︷ ︸

=E(2)

∧ i(2,3) ∧ (i2 < 8)︸ ︷︷ ︸
=E(3)

∧(y2 == k)∧

(i2 < 8)︸ ︷︷ ︸
=E
�
P

(2,3)
eπ3

� U ((i2 < 8)︸ ︷︷ ︸
=E(3)

∧

( true︸︷︷︸
=Eδ

�
3

fd
a2−a4

.9
�∧ 3i9

a2−a4
) U ((y2 == m)∧

!(i2 < 8)︸ ︷︷ ︸
=δl

�
3

fd
a2−a4

.9
�∧ (a2[y2] == a4[y2])︸ ︷︷ ︸

3Φ9
a2−a4

∧ true︸︷︷︸
=δ9

a4

∧ !(i2 < 8)︸ ︷︷ ︸
=E(9)

∧i))))))))))

where y1 and y2 are rigid variables. What we have added to account for the
cycles is set in bold face.
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Obviously, these formulae can be simplified and need to be. We obtain:

IC(1, 9) ⇐⇒(y == i1) ∧ ♦((y == m) ∧ (a1[y] == a4[y])∧!(i2 < 8) ∨ (y! = k)∧
(a1[y] == a2[y]) ∧ (i2 < 8) ∧ ♦((y == m)∧!(i2 < 8) ∧ (a2 == a4[y])))∨
(y1 == i1) ∧ ♦((y1! = k) ∧ (a1[y1] == a2[y1])∧
(i2 < 8) U ((y1 == l) ∧ (a2[y1] == a3[y1]) ∧ (i2 < 8) ∧ (i3 == 7)∧
♦((i3 == 7) ∧ (i2 < 8) U ((i4 == i5) ∧ (i2 < 8) ∧ ♦((i6 == i2)∧
♦((i2 < 8) ∧ (y2 == k) ∧ ♦((y2 == m)∧!(i2 < 8)∧
(a2[y2] == a4[y2]))))))))

6.4 Simplifying influence conditions

So far we have presented rules for generating both path and influence conditions.
However they tend to become very long, even for small programs. Even though
there is a number of general congruences and entailments listed in tables 3.1 (p. 16)
and 3.2 (p. 17) which can be used to simplify both path and influence conditions,
they do not help a lot in making the formulae shorter. What is more we are mostly
interested in whether it is over Mp that such a formula is satisfiable. Hence, we
can try to exploit the structure of the program p and, thus, of the sequences in
Mp to further simplify the condition.

In this section, we present three different aspects of simplification:

• Eliminating rigid variables,

• Using fewer temporal operators, and

• Having to generate influence conditions for fewer paths.

Of course, the ideas presented here are not exhaustive in the sense that they
cover all simplification options. In particular, we have not included simplification
with congruences and entailments, although some useful patterns can be found in
tables 3.1 (p. 16) and 3.2 (p. 17)

6.4.1 Eliminating rigid variables

First, we look at rigid variables. These are introduced whenever there is a data
dependence edge sequence of the form v0

dd
a . v1, . . . , vn−2

dd
a . vn−1, vn−1

fd
a. vn

with respect to some array variable a. We present some conditions under which
we can remove the rigid variable in the influence condition.

6.4.1.1 Constant index expressions

If the index expression for the array variable a in either node v0 or node vn is
constant, i. e. does not contain any program variables, then we can substitute the
constant expression for the rigid variable in the influence condition:
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Lemma 15
Let π ∈ Π∗(s, t) be an influence path which contains a maximal subpath ρ =
v0

dd
a . v1, . . . , vn−2

dd
a . vn−1, vn−1

fd
a. vn where the index expression i0 for the

array access a in v0 does not contain any variables, i. e. V (i0) = ∅. Let y denote
the rigid variable used when we have generated the condition for ρ. Then

IC(π) Â=⇒ IC(π)[i0/y].23

Proof. Let W := W (IC(π)) and let Ξ = (ξi)i∈N ∈ MAIMP
V,W . Suppose Ξ ² IC(π).

Then there is a j ∈ N such that ξj ² (y == i0). Since V (i0) = ∅, i 7→ ξi(i0), i ∈ N
is a constant function, say c := ξ0(i0). Hence, ξi(y) = c for all i ∈ N, because y is
rigid, and c /∈ ⊥. Therefore, Ξ ² IC(π)[c/y], and consequently Ξ ² IC(π)[i0/y]. ¤

Lemma 16
Let π ∈ Π∗(s, t) be an influence path which contains a maximal subpath ρ =
v0

dd
a . v1, . . . , vn−2

dd
a . vn−1, vn−1

fd
a. vn where the index expression in for the

array access a in vn does not contain any variables, i. e. V (in) = ∅. Let y denote
the rigid variable used when we have generated the condition for ρ. Then

IC(π) Â=⇒ IC(π)[in/y].

Proof. If we substitute in for i0 in the proof of lemma 15, we obtain a proof for
this lemma. ¤
Example 16
Reconsider the factorial program in figure 6.3 (p. 55). In particular, we look at
the path π := 2 fd

a1−a2
. 4, 4 fd

a3−a4
. 7 ∈ Π∗(2, 7). First, we compute the standard

influence condition IC(π). The only position to add a cycle to π is at node 4. The
execution condition for this cycle is true as E(3) = true. Hence, we obtain:

IC(π) ⇐⇒(y1 == 1) ∧ ♦((y1 == i3) ∧ (i4 + 1! = 0) ∧ (a1[y1] == a2[y1])∧
(i2 < 6) ∧ (y2 == i5 + 1) ∧ ♦((i2 < 6) ∧ ♦((y2 == 5)∧
(a3[y2] == a4[y2])∧!(i2 < 6))))

where y1 and y2 are rigid variables.
We can apply lemma 15 for y1 and lemma 16 for y2. Then, we obtain:

IC(π) Â=⇒ ♦((1 == i3) ∧ (i4 + 1! = 0) ∧ (a1[1] == a2[1]) ∧ (i2 < 6)∧
(5 == i5 + 1) ∧ ♦((i2 < 6) ∧ ♦((a3[5] == a4[5])∧!(i2 < 6))))

6.4.1.2 Array dependences of no return

We have just seen that we can eliminate a rigid variable if the first or last index
expression is constant. Next we see that we can do the same - even if it does contain
variables - when control flow cannot return to the first node in the sequence of
array dependence edges.

23Note that we can not expect congruence here because IC(π)[i0/y] does not impose any con-
straints on the rigid variable y whereas IC(π) does.
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Lemma 17
Let π ∈ Π∗(s, t) be an influence path from s to t which contains a maximal subpath

ρ of the form the form v0
dd
a . v1, . . . , vn−2

dd
a . vn−1, vn−1

fd
a. vn for some array

variable a such that v0 6= vj for 0 < j ≤ n. Let i0 be the index expression for
array a in v0 and let y be the rigid variable used when we generated the condition
for ρ. Let Π denote the set of all information flow paths from v0 to vn that start
with the same edge as ρ does in π:

Π :=
{

π′ : v0 PDGp
I∗ vn ∈ Π(ρ)

∣∣∣(π′ = v0
dd
a . v1, π

′′ ∨ π′ = v0
fd
a. v1)∧

π contained in π′ ∧ π′ contains only data

dependence edges with respect to a
}

If v0 /∈ Â̄ (
⋃

E(Π)), then

IC(π)
Mp
Â=⇒ IC(π)[i0/y].

Proof. Let W := W (IC(π)) and let Ξ = (ξi)i∈N ∈ MW
p . Suppose (Ξ, l) ² IC(π).

Let π∗ denote the subpath of π before ρ and π′ the subpath after it. Then there
is a j ∈ N, j ≥ l such that ξj ² (y == i0) and there is a k ∈ N, k ≥ j such that
ξk ² IC(π′). Since v0 /∈ Â̄ (

⋃
E(Π)) there is no i ∈ N with j < i ≤ k such that ξi

corresponds to node v0. Therefore, for all i ∈ { j, . . . , k }, ξi(i0) = ξi(y) = ξj(i0).
Neither does y occur in IC(π∗), nor in IC(π′), so we have

(Ξ, l) ² IC(π′)[(IC(ρ)[i0/y])[IC(π′)/i]/i] ⇐⇒ IC(π)[i0/y]

¤

Example 17
Let us look again at the example program from figure 6.5 (p. 65) and the path
π3 = 1 dd

a1−a2
. 3, 3 fd

a2−a3
. 5, 5 fd

i4−i5
. 7, 7 fd

i6−i2
. 2, (2, 3), 3 fd

a2−a4
. 9. It is easy to

see that we can apply this lemma for the maximal subpaths 1 dd
a1−a2

. 3, 3 fd
a2−a3

. 5
and 3 fd

a2−a4
. 9. Hence, we obtain

IC(π3)
Mp
Â=⇒(i1 == i1) ∧ ♦((i1! = k) ∧ (a1[i1] == a2[i1])∧

(i2 < 8) U ((i1 == l) ∧ (a2[i1] == a3[i1]) ∧ (i2 < 8) ∧ (i3 == 7)∧
♦((i3 == 7) ∧ (i2 < 8) U ((i4 == i5) ∧ (i2 < 8) ∧ ♦((i6 == i2)∧
♦((i2 < 8) ∧ (k == k) ∧ ♦((k == m)∧!(i2 < 8)∧
(a2[k] == a4[k]))))))))

Â=⇒♦((i1! = k) ∧ (a1[i1] == a2[i1])∧
(i2 < 8) U ((i1 == l) ∧ (a2[i1] == a3[i1]) ∧ (i2 < 8) ∧ (i3 == 7)∧
♦((i3 == 7) ∧ (i2 < 8) U ((i4 == i5) ∧ (i2 < 8) ∧ ♦((i6 == i2)∧
♦((i2 < 8) ∧ ♦((k == m)∧!(i2 < 8) ∧ (a2[k] == a4[k]))))))))
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6.4.2 Moving temporal operators

Next, we try to avoid using more temporal operators than necessary. State formu-
lae over atomic formulae are relatively easy to handle. Therefore, if we are able
to find a state subformula which is not satisfiable over SAIMP

V,W , we can be sure that
the LTL formula as a whole is not satisfiable either. Chances for doing so are the
greater the longer such subformulae are. Hence, if there is no need to include a
temporal operator, we have good reason to avoid it. There are two cases when we
introduce temporal operators in information flow conditions:

1. The U operator when we pass along a flow or def-def dependence edge.

2. The U operator when we account for cycles in the PDG.

We have seen in example 14 (p. 61) with program shown in figure 6.4 (p. 60) that
in general we can not get rid of the second type. However, in the first case we
do not always have to include them. The key idea is that in every state we can
refer to former variable values. More precisely, we have the variable value at our
disposal for every statement when this has been executed the last time. Therefore,
if we can make sure that there is no return to such a statement between two nodes
in the path for which we generate a path condition we can move forward the until
operator in data dependences. Then, we end up with a subformula of the form
θ U (η U ζ) and can apply the entailment ℵ U (i U k) Â=⇒ (ℵ ∨ i) U k from
table 3.2 (p. 17) to get rid of one until operator.

We get there in two steps. First, we show that we may include at no extra cost
the state formula “before” the until operator in question in the second operand
of this operator. Second, we use the entailment ℵ ∧ i Â=⇒ i to remove the state
formula “before” the until operator.

Lemma 18
Let π ∈ Π∗(s, t) be an influence path and let v, w ∈ V(π) such that v ≺π w,
def(v) 6= ∅, and def(w) 6= ∅. Let π′ denote the subpath of π from v to w, ev

denote the first edge and ew the last edge of π′. If |π′| = 1, set Ππ′ := { π′ },
otherwise set

Ππ′ :=
{

ρ ∈ Π(π′)
∣∣∣ ∃ρ′ : Â̄ (ev) PDGp

I∗ ¯ Â(ew) : ρ = (ev, ρ
′, ew)

}

Let

Vπ′ :=
{

(x, a, u) ∈ Vp

∣∣∣∃ρ : v CFGp
I∗ w : ρ corresponds to a path

v PDGp
I∗ w ∈ Ππ′ and u ∈ Â̄ (E(ρ))

}

denote the set of program variables in Vp whose value can possibly change in a
state sequence corresponding to π when passing from v to w.

Let W ⊆ W be finite and let θ ∈ SFLIMP

V−(Vπ′∪Vp),W be a state formula. Suppose

that Ξ = (ξi)i∈N ∈ MW
p is a sequence of states corresponding to an execution
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along π and suppose that ξj and ξk correspond to nodes v and w, respectively.24

Then, (Ξ, j) ² θ iff (Ξ, k) ² θ.

Proof. Let π, π′, Vπ′ , θ, Ξ, j, and k be as above. By definition of Ξ, j and k
we know that (ξj)V−(Vπ′∪Vp) = (ξk)V−(Vπ′∪Vp). Since θ is a state formula with
V (θ) ⊆ V − Vπ′ , we have that (Ξ, j) ² θ iff ξj ² θ iff ξk ² θ iff (Ξ, k) ² θ. ¤

Corollary 19 (Loop-independent flow and def-def dependences)
Let v fd

x. w (v dd
x . w) be a loop-independent flow (def-def) dependence edge

with respect to a variable x within a path π ∈ Π∗(s, t). Suppose that v fd
x. w

(v dd
x . w) does not leave a loop, i. e. Lx

(
v fd

x. w
)

= ∅ (Lx
(
v dd

x . w
)

= ∅).
Let (η, η′) := IC(π) 〈〈U , viw

x 〉〉, let k ∈ W −W (IC(π)), and set

θ := IC(π) 〈〈U , viw
x |k〉〉 .

Let (ζ, ζ ′) := θ 〈〈U ,k〉〉. If (ζ, ζ ′) = (ε, ε), set β := θ, otherwise set β := ζ ′.
Then β is a state formula.

If there is a data dependence edge before v fd
x. w (v dd

x . w) in π let e denote

the last such edge in π.25 For every u ∈ Lx(e) with u cd.∗ w, i. e. loop u is left
by e and w is control dependent on u, replace the condition !(u) for u being left
by true in β. If e is loop-carried and there is a CFG path ρ : v CFGp

I∗ w with

¯ Â(e) ∈ V(ρ) such that v fd
x,ρ. w (v dd

x,ρ. w), then replace the Φ constraint for
e in β by true.

Set κ := η U (β[η′/k])). Then, θ[κ/k] is a correct influence condition for π.

Proof. We apply lemma 18. Since we only consider a path π′ := v fd
x. w (π′ :=

v dd
x . w) of length 1, we do not have to care about loops. Thus, we need to show

that V (β) ∩ Vπ′ = ∅. Since v fd
x. w (v dd

x . w) is loop-independent, (use(v) ∪
def(v)) ∩ Vπ′ = ∅.

First, suppose that if such an edge e exists, e does not leave a loop. Then by
construction, β can contain

• rigid variables (for array dependences), but rigid variables are not contained
in Vπ′ ;

• intrastatement conditions, but these contain only variables y ∈ use(v);

• Φ constraints, but if these are not true, e is loop independent, so with
v fd

x. w (v dd
x . w) being loop independent, too, the Φ constraints do not

contain variables in Vπ′ .

• a condition for leaving loops, but by definition of β, this condition is true;
and

24If π passes through v or w multiple times, we distinguish each occurrence of v and w in this
context. If Ξ passes through the occurrence of v multiple times, we take j to be the last state of
these. Conversely, if Ξ passes through the occurrence of w multiple times, we take k to be the
first such state.

25Note that in this case ζ′ 6= ε.
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• execution conditions. Since IMP programs have structured control flow, all
execution conditions for v are before v in p. Thus, if there was a variable
y ∈ Vπ′ in these execution conditions, there would be a path ρ : v CFGp

I∗
w ∈ Ππ′ corresponding to π′ that contains a back edge e to a loop predicate
node u such that u cd.∗ v. (If we had not u cd.∗ v, then e would not help
in the control flow reaching the node for variable y.) Since there is no u such
that not u cd.∗ w, either, we must have u cd.∗ w. This is a contradiction
to v fd

x. w (v dd
x . w) being loop-independent.

Hence, we have that V (β) ∩ Vπ′ = ∅. Let U :=
{

u ∈ Lx(e)
∣∣ not u cd.∗ w

}
denote the set of loop predicate nodes left by e on which w is not control dependent.
Suppose that U 6= ∅. Then β contains the nontrivial condition

γ :=
∧

u∈U

!(u)

If we remove this condition from β, the above case applies. If not, we have to show
that if Ξ = (ξi)i∈N ∈ Mp is a state sequence that corresponds to the information
flow path π and if ξj corresponds to node w, we have that ξj(γ) = T.

Let Ξ and ξj be this way. Then, there exists a state ξk with k < j that
corresponds to node v. By assumption, we have that β holds in ξk. Then, in
particular, γ holds in ξk. Also v /∈ U because def(v) 6= ∅ and

⋃
def(U) = ∅.

Suppose that Ψ = ξk, . . . , ξj corresponds to a CFG path v CFGI∗ w that
passes through at least one node u ∈ U . By assumption, we have that not u′ cd.∗

w for all u′ ∈ U . Since u is a loop predicate node and in IMP loops can only be
left if the loop predicate evaluates to F we have that !(u) holds in ξj .

Note that lemma 18 (p. 71) requires that def(w) 6= ∅. If we have def(w) = ∅,
then w corresponds to a while or an if statement in p. Since we do not have
jump statements like goto in IMP, the next assignment statement to execute after
w inevitably comes after w in p.26 Also, v comes before w in p because v fd

x. w

(or v dd
x . w) is loop independent. Therefore we do not need the requirement

def(w) 6= ∅ here. ¤

Example 18
We now look at the example in figure 6.6 to see in more detail what actually
happens in corollary 19. For the sake of simplicity, we consider only scalar variables
and an acyclic PDG. We are interested in paths from line 2 (x:=5;) to line 12
(v:=w;). Obviously, there is only one path π in the PDG from node 2 to node 12,
namely

π := 2 fd
x1−x2

. 5, 5 fd
y1−y2

. 7, 7 fd
z1−z2

. 9, 9 fd
w1−w2

. 12.

As PDGp is acyclic, we do not have to account for any cycles when generating
the influence condition for π. Since the program does not make use of array

26If π continues after v fd
x
. w (v dd

x
. w), this is trivially fulfilled because all outgoing edges

from w are control dependence edges and if and while statements must not have empty bodies.
If it is the last edge, we assume without loss of generality that we have an assignment statement
each for both evaluation results of w after w.
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Figure 6.6 Example program to illustrate temporal operators being moved.

1 if (a) {
2 x := 5;
3 }
4 while (b) {
5 y := x;
6 if (c) {
7 z := y;
8 }
9 w := z;

10 }
11 if (d) {
12 v := w;
13 }

entry

(a)

(b)

y1:=x2;

(d)

T

T
(c)

T

1 2

4

5

x1:=5

z1:=y2;

w1:=z2;

T

T

6 7

9

11

x1 - x2

y1 - y2

z1 - z2

w1 - w2

v:=w2;
T

12

variables, the simplifications for rigid variables from 6.4.1 do not apply here either.
Hence, we obtain:

IC(π) = (a)︸︷︷︸
=E(2)

∧( ((a) ∨ (b))︸ ︷︷ ︸
=Eδ

�
2

fd
x1−x2

.5
�∧ 2i5

x1−x2
) U ( true︸︷︷︸

=δl

�
2

fd
x1−x2

.5
�∧ (x1 == x2)︸ ︷︷ ︸

=2Φ5
x1−x2

∧ true︸︷︷︸
=δ7

x2

∧

(b)︸︷︷︸
=E(5)

∧( (b)︸︷︷︸
=Eδ

�
5

fd
y1−y2

.7
�∧ 5i7

y1−y2
) U ( true︸︷︷︸

=δl

�
5

fd
y1−y2

.7
�∧ (y1 == y2)︸ ︷︷ ︸

=5Φ7
y1−y2

∧ true︸︷︷︸
=δ7

y2

∧

((b) ∧ (c))︸ ︷︷ ︸
=E(7)

∧( (b)︸︷︷︸
=Eδ

�
7

fd
z1−z2

.9
�∧ 7i9

z1−z2
) U ( true︸︷︷︸

=δl

�
7

fd
z1−z2

.9
�∧ (z1 == z2)︸ ︷︷ ︸

=7Φ9
z1−z2

∧

true︸︷︷︸
=δ9

z2

∧ (b)︸︷︷︸
=E(9)

∧( ((b) ∨ (d))︸ ︷︷ ︸
=Eδ

�
9

fd
w1−w2

.12
�∧ 9i12

w1−w2
) U ( !(b)︸︷︷︸

=δl

�
9

fd
w1−w2

.12
�∧

(w1 == w2)︸ ︷︷ ︸
=9Φ12

w1−w2

∧ true︸︷︷︸
=δ12

w2

∧ ((d)∧!(b))︸ ︷︷ ︸
=E(12)

∧i))))

Even though we could still simplify this condition, it contains far more U operators
than necessary.

Let us first consider the edge 2 fd
x1−x2

. 5. Then

(η, η′) :=

IC(π)
〈〈U , 2i5

x1−x2

〉〉
= (((a) ∨ (b)) ∧ 2i5

x1−x2
,

true ∧ (x1 == x2) ∧ true ∧ (b) ∧ ((b) ∧ 5i7
y1−y2

) U (true∧
(y1 == y2) ∧ true ∧ ((b) ∧ (c)) ∧ ((b) ∧ 7i9

z1−z2
) U (true∧

(z1 == z2) ∧ true ∧ (b) ∧ (((b) ∨ (d)) ∧ 9i12
w1−w2

) U (!(b)∧
(w1 == w2) ∧ true ∧ ((d)∧!(b)) ∧ i))))
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and
IC(π)

〈〈U , 2i5
x1−x2

∣∣k〉〉
= (a) ∧ k

Hence, we set
κ := ((a) ∨ (b)) ∧ 2i5

x1−x2
) U ((a) ∧ η′)

and the altered version of IC(π) is (a) ∧ κ.
Although the corollary does not state that we can do this multiple times for

different data dependence edges, it is easy to see that we can add additional
constraints even for multiple flow dependences in a row if all of them satisfy the
conditions from above and there are no cycles we have to take care of in between.
(See corollary 20 below.) Hence, we can apply this kind of transformation to edges
5 fd

y1−y2
. 7 and 7 fd

z1−z2
. 9 as well and obtain:

θ :=(a) ∧ (((a) ∨ (b)) ∧ 2i5
x1−x2

) U ((a) ∧ true ∧ (x1 == x2) ∧ true ∧ (b)∧
((b) ∧ 5i7

y1−y2
) U ((a) ∧ true ∧ (x1 == x2) ∧ true ∧ (b) ∧ true ∧ (y1 == y2)∧

true ∧ ((b) ∧ (c)) ∧ ((b) ∧ 7i9
z1−z2

) U ((a) ∧ true ∧ (x1 == x2) ∧ true ∧ (b)∧
true ∧ (y1 == y2) ∧ true ∧ ((b) ∧ (c)) ∧ true ∧ (z1 == z2) ∧ true ∧ (b)∧
(((b) ∨ (d)) ∧ 9i12

w1−w2
) U (!(b) ∧ (w1 == w2) ∧ true ∧ ((d)∧!(b)) ∧ i))))

Note that we can not apply this scheme to the last flow dependence edge
9 fd

w1−w2
. 12, because the execution condition E(12) = (d)∧!(b) for node 12

requires that the loop has already been left whereas the execution condition
E(9) = (b) requires that the loop predicate still holds. This is because 9 fd

w1−w2
. 12

leaves the loop with loop predicate node 4.
Now we can proceed to the second step mentioned above in that we remove

some parts of the conjunctions that now appear twice in the formula. This will
make the until operators move forward. For θ, we obtain:

θ Â=⇒ θ′ :=(((a) ∨ (b)) ∧ 2i5
x1−x2

) U (((b) ∧ 5i7
y1−y2

) U (((b) ∧ 7i9
z1−z2

) U (

(a) ∧ (x1 == x2) ∧ (b) ∧ (y1 == y2) ∧ ((b) ∧ (c)) ∧ (z1 == z2) ∧ (b)∧
(((b) ∨ (d)) ∧ 9i12

w1−w2
) U (!(b) ∧ (w1 == w2) ∧ ((d)∧!(b)) ∧ i))))

Hence we need to have two temporal operator to spread the condition over two
states. Simplifying θ′ yields

θ′ ⇐⇒ ((a) ∨ (b)) U ((a) ∧ (b) ∧ (c) ∧ (x1 == x2) ∧ (y1 == y2) ∧ (z1 == z2)∧
((b) ∨ (d)) U (!(b) ∧ (d) ∧ (w1 == w2)))

If we remember that, ultimately, we will look at ♦ θ′ which is congruent to ♦((a)∧
(b)∧ (c)∧ (x1 == x2)∧ (y1 == y2)∧ (z1 == z2)∧ ((b)∨ (d)) U (!(b)∧ (d)∧ (w1 ==
w2))). We see that we were able to eliminate all but one until operator, which can
not be sensibly removed.

Corollary 20 (Multiple loop-independent data dependences)
Let π′ be a subpath of an influence path π ∈ Π∗(s, t). Let Ππ′ be defined as
in lemma 18 (p. 71). Suppose that Π = { π′ } and every data dependence edge
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e ∈ E(π′) ∩D is loop independent and does not leave a loop, i. e. L(e) = (∅, ∅).
Suppose that the first and last edge of π′ are data dependence edges e∗ and e′.

Let θ be an influence condition for π, possibly with any of the above trans-
formations applied to it. Set (η, η′) := θ 〈〈U ,ie′〉〉 where ie′ is the propositional
variable used for e′. Set ϑ := θ 〈〈U ,ie′ |k〉〉 where k ∈ W − W (θ) is a new
propositional variable. Set (ζ, ζ ′) := θ 〈〈U ,ie∗〉〉 where ie∗ is the propositional
variable used for e∗. Set (β, β′) := (θ 〈〈U ,ie∗ |k〉〉) 〈〈U ,k〉〉. If (β, β′) = (ε, ε), set
γ := ϑ 〈〈U ,ie∗ |k〉〉. Otherwise, set γ := β′.

If there is a data dependence edge in π before π′, let f denote the last such
edge in π. For every u ∈ Lx(f) such that u cd.∗ Â̄ (e′), replace the condition
!(u) for loop u being left by f in γ by true. If f is loop-carried and there is a
data dependence edge e] ∈ E(π′) ∩ D, say e] = ¯ Â(e]) fd

y. Â̄ (e]) or e] =
¯ Â(e]) dd

y . Â̄ (e]), such that there is a CFG path ρ : ¯ Â(e]) CFGp
I∗ Â̄ (e])

with ¯ Â(f) ∈ V(ρ) and ¯ Â(e]) fd
y,ρ. Â̄ (e]) or ¯ Â(e]) dd

y,ρ. Â̄ (e]), then
replace the Φ constraint for f in γ by true.

Set κ := η U (γ[η′/k]). Then ϑ[κ/k] is a correct influence condition for π.
This corollary can be applied to it again if neither Â̄ (f) nor ¯ Â(e∗) have been
Â̄ (e′) in a previous application.

Proof. The key point of this corollary is it saying that we may include propa-
gation conditions, execution conditions, conditions for loops being left, and flow
dependence conditions of the forms (y == i) and (y! = i) not only one until op-
erator later, but any number of dependences later as long as there are no cycles
which can be attached inside π′ and as long as none of the until operators is caused
by a loop-carried edge.

If |π′| = 1, we essentially obtain corollary 19 (p. 72). For |π′| > 1, the argument
for applying lemma 18 (p. 71) goes the same way: Since CDGp is a tree for IMP
programs and all data dependences in π′ are loop independent, we have that all
nodes in π′ appear in p in the same order as in π. If we abstract from conditions
for loops being left, γ can only contain conditions of the other types mentioned
above, so V (γ) ∩ Vπ′ = ∅ where Vπ′ is as in lemma 18 (p. 71), but we can
safely include these conditions by the same arguments as in corollary 19 (p. 72).
Similarly, regarding def( Â̄ (e′)) 6= ∅, the same argument applies as in the proof
of corollary 19 (p. 72). ¤

Example 19
If we look at example 18 (p. 73) again, we are now able to apply this corollary to
obtain a simpler version of θ

θ :=(a) ∧ (((a) ∨ (b)) ∧ 2i5
x1−x2

) U (true ∧ (x1 == x2) ∧ true ∧ (b)∧
((b) ∧ 5i7

y1−y2
) U (true ∧ (y1 == y2) ∧ true ∧ ((b) ∧ (c))∧

((b) ∧ 7i9
z1−z2

) U ((a) ∧ true ∧ (x1 == x2) ∧ true ∧ (b) ∧ true ∧ (y1 == y2)∧
true ∧ ((b) ∧ (c)) ∧ true ∧ (z1 == z2) ∧ true ∧ (b)∧
(((b) ∨ (d)) ∧ 9i12

w1−w2
) U (!(b) ∧ (w1 == w2) ∧ true ∧ ((d)∧!(b)) ∧ i))))
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where we do not have to repeat execution conditions for nodes 2 and 5 after every
U operator. However, if we simplify this new version with the same rules as above,
we end up with the very same influence condition θ′.

6.4.3 Reducing the number of influence paths

In the previous subsections, we have presented some lemmata we can use to sim-
plify an influence condition for a single path. However, in many cases, we are
interested in an influence condition for which a state sequence exists whenever
there is an influence, i. e. in an influence condition between statements and not
for a single influence path. In this case, we want to compute ♦ IC(s, t) for two
statements s and t, which is the disjunction of influence conditions for all influ-
ence paths between s and t. Here, we show how to exploit the absorption law for
disjunctions (cf. table 3.1 (p. 16)) to get rid of some influence paths.

Lemma 21
Let π, ρ be two influence paths. Suppose that there is a prefix π∗ of π such
that π∗ is an information flow path and ♦ IC(π) ⇐⇒ ♦ IC(π∗)[IC(ρ)/i]. Then
♦ IC(π) Â=⇒ ♦ IC(ρ).

Proof. Let W = W (IC(π)) ⊇ W (IC(π∗)) ∪W (IC(ρ)) and Ξ = (ξi)i∈N ∈ MAIMP
V,W .

Suppose that Ξ ² ♦ IC(π). Then also Ξ ² ♦ IC(π∗)[IC(ρ)/i]. Since π∗ is an
information flow path and by construction of IC(π∗), there is a k ∈ N such that
(Ξ, k) ² IC(ρ). Hence Ξ ² ♦ IC(ρ). ¤

Lemma 22
Let π, ρ be two influence paths such that ρ is a prefix of π. Then IC(π)[true /i] Â=⇒
IC(ρ)[true /i].

Proof. Let π′ denote the suffix of π such that π = ρ, π′. Then π′ is an influence
path and IC(π) ⇐⇒ IC(ρ)[IC(π′)/i]. Thus

IC(π)[true /i] ⇐⇒ (IC(ρ)[IC(π′)/i])[true /i] = IC(ρ)[(IC(π′)[true /i])/i].

Since IC(π′)[true /i] Â=⇒ true, we have

IC(ρ)[(IC(π′)[true /i])/i] Â=⇒ IC(ρ)[true /i].

¤

These two lemmata allow us to omit some influence paths when we generate
IC(s, t). For examples, see sections 8.2 and 8.3 below.

6.5 Examples

In this section we provide some examples to explain why we used some of the
constructions above the way we did even though they may not always be obvious
at a first glance. In particular, we look at the following issues:
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Figure 6.7 Example for Φ constraints.

1 if (b) {
2 x := 1;
3 }
4 if (b) {
5 x := 0;
6 }
7 if (x < 1) {
8 y := c;
9 }

entry

x1:=1;

(b2)

1 2

4

(b1)
T

x2:=0;

(x3<1)

T

7

5

y:=c;

8
T

x1 - x3x2 - x3

• Φ constraints for data dependence edges,

• true as Φ constraint for cyclic flow dependence edges, and

• Having the values ⊥a, ⊥b, and ⊥i for typed variables.

Example 20 (Φ constraints for data dependence edges)
Let us look at the program in figure 6.7 and its PDG. If we are interested in
whether line 2 influences line 8, we see that this can possibly happen only if this
influence passes along 2 fd

x1−x3
. 7. Hence, we require that x1 == x3. Note

however that if line 2 is executed then line 5 will also be executed, so the value 1
can never reach line 7 since it will inevitably be overwritten in line 5.

If we did not include the Φ constraint in path conditions, the path condition
for lines 2 and 8 would have read

θ ⇐⇒ (b1) ∧ ♦(x3 < 1).

Note that there are state sequences in Mp that model θ even though there is no
such influence. For example, take any initial state ξ with ξ(b) = F and ξ(x) = 1
and construct the state sequence as described in 6.1.2. If, however, we include the

Figure 6.8 Example program for true as Φ constraint for cyclic flow dependence
edges and its PDG.

1 i := 0;
2 while (i < 2) {
3 i := i + 1;
4 }

entry

(i2<2)

1

2

i1:=0;

i4:=i3+1;
T

3

i1 - i3

i1 - i2 i4 - i3

i4 - i2
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Figure 6.9 Example program and its PDG for ⊥ values in AIMP.

1 x := a;
2 if (b) {
3 y := x;
4 }
5 if (!b) {
6 z := y;
7 }
8 w := z;

entry

x1 := a;

(!b2)

y1:=x2;
T

T

1

2

5

3

(b1)

z1:=y2;

6

8

x1 - x2

y1 - y2

z1 - z2

w:=z2;

additional constraint, we obtain

PC(2, 8) ⇐⇒ (b1) ∧ ♦((x1 == x3) ∧ (x3 < 1))

Now, there does not exist a state sequence in Mp that models PC(2, 8).
Hence, Φ constraints do make path and influence conditions stronger.

Example 21 (true as Φ constraint for cyclic flow dependence edges)
Let us look at the loop carried flow dependence edge 3 fd

i4−i3
. 3 of the program p

shown in figure 6.8.
If we used the ordinary Φ constraint (i4 == i3) for this edge, then any path

condition that contains (i4 == i3) would not be satisfiable because (i4 == i3)
Mp⇐⇒

false. While it is safe to use Φ constraints for noncyclic flow dependence edges
(because the source node is not revisited after we left it before we reach the target
node which is different from the source node), we are not able to refer to the
former value of the variable occurrence i4 because i4 is updated whenever i3 is
also updated. For cyclic def-def dependences, the array cell in question must not
be modified, hence the ordinary Φ constraint is correct. Note that this issue does
not affect influence conditions because they do not contain Φ constraints for cyclic
flow dependence edges.

Example 22 (It is sensible to have ⊥i)
In this example, we demonstrate that initializing every variable in the PDG with
an uninitialized value is sensible. Consider the program p shown in figure 6.9.

Here, the influence condition for lines 1 and 8 is given by

IC(1, 8) ⇐⇒ ♦((b1) ∧ (x1 == x2) ∧ ♦((!b2) ∧ (y1 == y2) ∧ ♦(z1 == z2)))

We can simplify this condition with corollary 20 (p. 75) to

IC(1, 8)
Mp
Â=⇒ ♦((b1) ∧ (x1 == x2) ∧ (!b2) ∧ (y1 == y2) ∧ (z1 == z2))
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If we did not have each variable in V (IC(1, 4)) initialized to its undefined value
in ⊥, but if we allowed every variable to have any possible initial value,27 then
there would also be a state sequence in Mp whose first state ξ would satisfy
ξ(x1) = ξ(x2), ξ(y1) = ξ(y2), ξ(z1) = ξ(z2), ξ(b1) = T, and ξ(b2) = F. Any such
state sequence with ξ as its first state satisfies IC(1, 4).

If, however, we do initialize all variables to the undefined value until they are

first used, we obtain IC(1, 4)
Mp⇐⇒ false.

6.6 Comparison with Boolean path conditions

We now want to look at the relation between Boolean path conditions as proposed
by Snelting, Krinke and Robschink in [Sne96, RS02, Rob04, SRK] (cf. chapter 5)
and the LTL influence conditions from above.

In this section, we first see that they are not more precise than LTL path
conditions. Then, we look at some examples that show how LTL formulae improve
the precision of path conditions.

6.6.1 From temporal to Boolean path conditions

We now show that Boolean path conditions can be derived from LTL path condi-
tions. More precisely, we show that for every information flow path π ∈ Π∗(s, t)
and an appropriate LTL influence condition IC(π) there is a cycle-free path π′ ∈
Π∗∗(s, t) that is contained in π such that, if we have a state sequence Ξ ∈Mp that
carries information along π and thus satisfies IC(π), we can construct a satisfy-
ing assignment for the appropriate Boolean path condition BPC(π′) for π′ from Ξ
where we assume that we apply the approach of variables being separated when-
ever necessary (cf. sections 5.4 and 5.6).

Theorem 23
Let π ∈ Π∗(s, t) be an influence path from s to t. Suppose Ξ = (ξi)i∈N ∈ Mp

is a state sequence that carries information along π and satisfies the influence
condition θ ∈ LTLLIMP

V,W (for some finite W ⊆ W which has been simplified with
lemma 18 (p. 71) and corollaries 19 (p. 72) and 20 (p. 75) as far as possible. Let θ′

denote the formula obtained from θ if we remove all “unnecessary” until operators
like we have shown in example 18 (p. 73).

Let π′ denote the path we obtain if we remove all cycles from π. Let η denote
the Boolean path condition for π′ where we have separated variables to account
for loop-carried data dependences and extra cycles.

Then, Ξ ² θ′ and there is a satisfying assignment for η.

27Note that it is sensible to assign every variable a value in every state. Otherwise, a state
would be a partial function on the set V of variables which is equivalent to total functions with a
special image value representing “undefined”. Neither can we force all variables to be initialized
to a single value because we would like to compute the values of input variables, which are not
specifically marked, that prove the influence being possible.
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Proof. Ξ ² θ′ follows from the definition of θ and θ′.
Now, we show that if we assign the variable values from some states in Ξ to

the variables in η, we get a satisfying assignment for η. η contains three different
types of constraints:

• Execution conditions

• Φ constraints

• Conditions for information flow along dependence edges (global array con-
straints)

In the following we look at each of them in this order.
First, we take care of the execution conditions. Since V(π′) ⊆ V(π), we

have that every execution condition in η also appears in θ′. Moreover, for each
execution condition β in η that corresponds to node vβ in π′, we can identify one
execution condition β′ in θ′ that was generated from vβ in π. By construction,
we have that β′ ÂÂ β. Suppose ξi belongs to node vβ. Then ξi(β′) = T because
Ξ ² θ′. Hence, ξi(β) = T, too, so we can take the assignment of ξi for this execution
condition. Moreover, for x ∈ V (β′) ⊇ V (β), we have ξi(x) /∈ ⊥, so ξi is a valid
assignment to V over A′

IMP.
What remains to be shown is that these assignments can be combined to

a satisfying assignment for the conjunction of all execution conditions. If two
execution conditions are part of the same maximal conjunction in θ′, we have that
ξi satisfies both of them, so both assignments we obtain from ξi do not contradict
each other.

So suppose that we need to combine the assignments of two execution con-
ditions γ and γ′ that are not part of the same maximal disjunction. Then, by
construction of θ′, we have that there is at least one until operator between γ and
γ′ in θ′. Let κ denote the smallest subformula of θ′ that contains both γ and γ′

as subformulae. Without loss of generality, we assume that κ is a subformula of
the form γ ∧ . . .∧ . . . U (. . . U (. . .∧ γ′ ∧ . . .). Then, there are two states ξi and ξj

in Ξ with i ≤ j such that ξi(γ) = T = ξj(γ′).
By definition, every U operator in κ corresponds to one or more of the following

cases:

1. A loop-carried data dependence edge,

2. A cycle that can be inserted in π at that node,

3. A data dependence edge leaving a loop.

In the first and second case, the variables in η have been separated at the
appropriate positions. Since, we can obviously combine the assignments for exe-
cution conditions that do not have common variables, we can combine those for γ
and γ′ obtained from ξi and ξj .

In the third case, γ and γ′ can have common variables. Let v denote the node
corresponding to γ and v′ the one for γ′. Then, for every x ∈ V (γ) ∩ V (γ′) we
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have that x ∈ use(u) for some node u with u cd.∗ v and u cd.∗ v′ because γ and
γ′ are execution conditions from control dependence.

Suppose for contradiction that such an x occurs in two different atomic formu-
lae in γ and γ′. We know that IMP allows only structured control flow and that in
the CDG (V ′, C, ve, α) for every Λ ∈ α(C) we have |Λ| ≤ 1. Since x identifies u,
by construction of Ecd(u), x can appear in two different atomic formulae iff these
are ·(u) and ·(!(u)). This can only happen if u is an if predicate node and v and
v′ are in the then and else part of the if statement. However, every CFG path
from one branch of an if statement to the other contains a back edge, hence there
must be a loop-carried data dependence between v and v′ in π′ and thus γ and γ′

cannot have common variables. Hence, every variable occurs in only one atomic
formula, so the assignments for execution conditions can be combined.

Next, we look at Φ constraints. We have introduced two types of Φ con-
straints:

1. Φ constraints that originate from Φ functions

2. Φ constraints generated by data dependence edges

Φ constraints of the first type do not appear in LTL path conditions because
they are integral part of the model set Mp. By definition of SSA and state se-
quences, we have for every state sequence Ψ ∈ Mp that every initialized variable
obeys these Φ constraints in every state of Ψ and between states in such a se-
quence. Hence, assignments constructed from Ξ always satisfy Φ constraints from
Φ functions.

As for the second type, these are only generated for data dependence edges
that are not loop carried, cf. equation 5.8 (p. 38).

Let (xv == xw)28 denote such a Φ constraint for a data dependence edge
v fd

x. w (v dd
x . w). Let e1, . . . , em denote the maximal subpath of π′ such

that we have not separated the variables along e1, . . . , em and ei = v fd
x. w or

ei = v dd
x . w for some 1 ≤ i ≤ m. Then, no variable in any subformula of η that

corresponds to e1, . . . , em is related with variables that originate from parts of π′

other than e1, . . . , em, except via Φ constraints from Φ functions.
By definition, xv ∈ def(v). In particular, there is no control dependence edge

v cd. u in the PDG, i. e. v (and thus xv) does not occur in execution conditions.
Moreover, Φ constraints from Φ functions do not impose constraints on xv that
are not automatically satisfied by Ξ.

We know that there is a state ξk in Ξ such that ξk(xv == xw) = T because
(xv == xw) is an atomic formula in θ′. Without loss of generality, let ξk be the
state that corresponds to the node which the maximal conjunction that contains
(xv == xw) belongs to.

Since all ej , 1 ≤ j ≤ m, are loop independent, the nodes (vj)0≤j≤m, where
v0 = ¯ Â(e1) and vj = Â̄ (ej) (1 ≤ j ≤ m), are pairwise disjoint and occur in
this order in the program p. Since xv strictly belongs to node v, xv does not occur

28Although not all Φ constraints are of the form e1 == e2 for some expressions e1, e2 ∈ E, e. g.
if LxvM = bool, we write also xv == xw for these.
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in another Φ constraint from data dependence edges in η. Nor does xv occur in
execution conditions. Hence, we can assign to both xv and xw the value ξk(xw)
without creating a contradiction in the common assignment.

At last, we show that we can also incorporate the δ constraints for array
variables into the assignments. As we have seen in example 9 (p. 41) above, if
we restrict ourselves to cycle-free information flow paths when generating Boolean
path conditions, we have to include global array constraints (cf. equation 5.14
(p. 40)) in our path condition. In order to avoid confusion with variable renamings
due to variable separation in paths, we do not follow equation 5.15 (p. 40), but
we use the distributivity law of the ∨ operator to include an appropriate array
constraint for every path, i. e. we assume that the Boolean path condition for π′

has been generated by equation 5.16 (p. 41) and

BPC(π′) :=
∧

v∈V(π′)

Ecd(v)∧
∧

Φπ′ ∧
∧

e∈E(π′)∩D

Φ(e) ∧
∧

v
fd
a.w∈A′

π′

δG(v fd
a. w)

(6.21)
where A′π′ :=

{
v fd

a. w ∈ E(π)
∣∣ LaM = array

}
is the set of all flow dependence

edges with respect to array variables in π′.
Suppose we consider δG(v fd

a. w) for some v fd
a. w ∈ A′π′ . Let ρ := v0

dd
a .

v1, . . . , vm−2
dd
a . vm−1, vm−1

fd
a. vm denote the maximal subpath in π such that

vm−1
fd
a. vm = v fd

a. w. Then, by definition of δG(v fd
a. w) we have that

δπ(ρ) ÂÂ δG(v fd
a. w)29 where δπ(ρ) is the δ constraint from equation 5.10 (p. 39).

We now construct a satisfying assignment for δπ(ρ) from Ξ. Note that every
atomic formula of the conjunction γ :=

∧n−1
k=1(y! = ik) ∧ (y == in) is also an

atomic formula in θ and θ′ where y is the rigid variable used in θ′ and ij is as in
equation 5.10 (p. 39) for 0 ≤ j ≤ n. Hence, we have states ξk1 , . . . , ξkn ∈ Ξ that
correspond to these atomic formulae such that ξkj (y! = ij) = T for 1 ≤ j < n, and
ξkn(y == in) = T and k1 ≤ k2 ≤ . . . ≤ kn.

We use each of these states to obtain a satisfying assignment for γ: First, let
ψj denote the assignment obtained from ξkj (1 ≤ j ≤ n). Suppose that ξkj 6= ξkj′ .

Then V (
ikj

)∩V
(
ikj′

)
= ∅ because if vkj = vkj′ then the variables in θ′ have been

separated when we generated η (if vkj 6= vkj′ , then by definition of the PDG).
Since y is rigid, i. e. ξkj (y) = ξkj′ (y), it follows that we can combine ψj and ψj′

to an assignment that satisfies both atomic formulae. By induction we obtain an
assignment ψ′ that satisfies all atomic formulae in γ. As (y == i0) is an atomic
formula in θ′, too, we have that there is also a state ξk0 ∈ Ξ such that k0 < k1

and ξk0(y) = ξk0(i0) 6= ⊥i. With the same argument as before we have that we
can incorporate the corresponding assignment ψk0 into ψ′. Let ψ denote this new
assignment. Hence, we have a satisfying assignment for δπ(ρ) and thus also for
δG(v fd

a. w).
Next, we show that the assignment ψ is compatible with all other assignments

we constructed so far. Regarding other assignments for global δ constraints, we
note that they do not share common variables. Otherwise, we would have to pass

29We assume here that δπ(ρ) uses the same variables that have been used in δG(v fd
a
. w).
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along the def-use edge a second time, but then, since ρλ in equation 5.13 (p. 40) is
cycle-free for λ ∈ Λ, there would have to be a loop-carried edge in between which
causes the variables to be separated.

With respect to execution conditions, they can only share variables from V (in)
because the def sets of control flow statements are empty. Since the values for
these variables are obtained from the same state as those in the assignment for
the execution conditions, they do not contradict each other. As ψ has been con-
structed out of states from a state sequence in Mp, ψ automatically satisfies the
Φ constraints of the first type. For the other Φ constraints we have already seen
that they are also part of the temporal influence condition. Again, since we used
the same states to construct the assignment ψ as we did for these Φ constraints,
the assignments must be compatible.

Consequently, we have shown that we can construct a satisfying assignment
for η from Ξ. ¤

6.6.2 Examples

As we have seen in the last section, if there is an influence between two statements
we are able to derive a satisfying assignment for the Boolean path condition from
the state sequence that models the corresponding LTL formula. Now, we show
that temporal path conditions are stronger than Boolean path conditions in the
sense that they improve precision, i. e. for cases in which in fact no influence is
possible, LTL path conditions can sometimes be unsatisfiable whereas the Boolean
path condition for this case is satisfiable. We present some examples for this.

6.6.2.1 Additional constraints in temporal path conditions

Boolean path conditions concentrate mainly on execution conditions from control
dependence and, in our setting, δ constraints for arrays. Temporal path conditions
as presented in the last chapter exploit a number of additional constraints such
as intrastatement conditions and conditions for leaving loops. Clearly, these extra
constraints make the conditions stronger.

Example 23 (Intrastatement conditions)
We consider the program p and its PDG in figure 6.10, which is already in SSA
form and has an acyclic PDG.

The influence condition IC(1, 6) yields

IC(1, 6) ⇐⇒ ♦(((b1&&b2)||(!(b1)&&!(b2))) ∧
=δ3

b2︷ ︸︸ ︷
(x2 < 5)∧

((x2 < 5)&&!(b2)) ∧ ♦((y1 == y2) ∧ (0! = 0)︸ ︷︷ ︸
=δ6

y2

))

Clearly (0! = 0) ⇐⇒ false, hence IC(1, 6) ≺ Â false. If we look only at IC(1, 3), we
get:

IC(1, 3) ⇐⇒ ♦(((b1&&b2)||(!(b1)&&!(b2))) ∧
=δ3

b2︷ ︸︸ ︷
(x2 < 5))
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Figure 6.10 Example program for intrastatement conditions and its PDG.

1 b := true;
2 x := 8;
3 if ((x < 5) && !(b)) {
4 y := 1;
5 }
6 z := 0 * y;

entry

x1:=8;

(x2<5)
&& !(b2)

1

2

3

b1:=true;

y1:=1;

z:=0*y2;

T

6

4

y1 - y2

x1 - x2

b1 - b2

Figure 6.11 Example program (left), its SSA transform (center) and its PDG
(right) for loop termination constraints in execution conditions.
1 b := true;
2 while (b) {
3 b := c;
4 }
5 if (b) {
6 x := a;
7 }

1 b1 := true;
2 while (b2:=Φ(b1,b3), b2) {
3 b3 := c;
4 }
5 if (b4:=Φ(b2), b4) {
6 x := a;
7 }

entry (b2) b3:=c;

(b4)

T

1

2 3

5

b1:=true;

x:=a;
T

6

b1 - b2

b3 - b4

b3 - b2

We know that ♦(x2 < 5) ≺MpÂ ♦(x1 < 5) ≺MpÂ false. Hence IC(1, 3) ≺MpÂ
false. The Boolean path condition as defined in equation 5.7 (p. 37) gives

BPC(1, 6) ≺ Â((x2 < 5)&&!(b2)) ∧ (x1 == x2) ∧ (((b1)&&(b2))||(!(b1)&&!(b2)))∧
(y1 == y2)

On first sight, this condition is satisfiable. If we include that x1 = 8 and b1 = true,
then we have

BPC(1, 6)[8/x1, true /b1] ≺ Â false

However, BPC(1, 3) ≺ Â ((b1&&b2)||(!(b1)&&!(b2))) which is satisfiable. Of course,
intrastatement conditions could be included in Boolean path conditions, too.

Example 24 (Conditions for leaving loops)
We start again with a small IMP program p, this time the one shown in figure
6.11.

If we look at lines 3 and 6, we obtain for IC(3, 6):

IC(3, 6) ⇐⇒(b2) ∧ ((b2) ∨ (b4)) U (((b3&&b4)||(!(b3)&&!(b4))) ∧
=Ecd(6)︷︸︸︷
(b4) ∧

=Eª(6)︷︸︸︷
!(b2) )
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Suppose for contradiction there was a state sequence Ξ = (ξi)i∈N ∈Mp such that
Ξ ² ♦ IC(3, 6). Then, there would have to be a state ξk in Ξ for some k > 0 such
that ξk(b4) = T and ξk(b2) = F. From the construction of Ξ we also would have
that ξk(b4) = ξk(b2), a contradiction. Thus, IC(3, 6) is not satisfiable over Mp.
Consequently, there is no influence from line 3 to line 6.

The Boolean path condition for lines 3 and 6 is

BPC(3, 6) ≺ Â(b2) ∧ (b4) ∧ ((b2 ≡ b1) ∨ (b2 ≡ b3)) ∧ (b4 ≡ b2)∧
((b3&&b4)||(!(b3)&&!(b4)))

≺ Â(b2) ∧ (b3) ∧ (b4)

Clearly, BPC(3,6) is satisfiable even though no influence is possible.
In contrast to intrastatement conditions, loop termination conditions, both

in execution conditions and along data dependence edges, can not be easily in-
cluded in Boolean path conditions because they refer to variable values at different
program states.

Example 25 (Arrays and def-def dependences)
We look again at example 7 (p. 40). Clearly, there is no influence from line 1
to 4 because the value of x can never reach y for it is either in the wrong array
cell (i 6= 1) or overwritten in line 3. Nevertheless, the Boolean path condition is
equivalent to true (subject to Φ constraints) because all execution conditions are
trivial and the constraint (1 == 1) in the δ constraint (cf. equation 5.12 (p. 40))
makes it equivalent to true, too.

However, the temporal path condition gives

IC(1, 4)
Mp
Â=⇒ ♦((1! = 1) ∧ (i == 1)) ⇐⇒ false

This is due to LTL path conditions handling arrays more precisely which could also
be done for Boolean path conditions. Unfortunately, this way the path conditions
become larger.

6.6.2.2 Exploiting temporal aspects

Even if we include only those constraints in temporal path conditions that are
also used in Boolean path conditions, temporal path conditions are still strictly
stronger than their Boolean counterparts. The reason for this is that whenever in
Boolean path conditions variables are separated (or some constraints omitted), the
path condition becomes less precise. This separation is done by the U operators
in LTL formulae. However, they do not completely separate the variables. We
always have our set of possible state sequences Mp that imposes some constraints
on the variables so that they do remain related.

Example 26 (Loop-carried data dependences)
First, we look at loop-carried data dependence edges in the program shown in
figure 6.12. We are interested in an influence from line 4 to line 10.
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Figure 6.12 Loop-carried data dependences example program and its PDG.

1 i := 0;
2 while (i < 5) {
3 if (i > 3) {
4 x := a[i];
5 } else {
6 y := x + 2;
7 }
8 i := i + 1;
9 }

10 o := y;

entry

i1:=0;

(i2<5)

(i3>3)

o:=y2;

T

1

2

3

8

i6:=i5+1;

x1:=a[i4];

y1:=x2+2;T

F

T

4

6

10

y1 - y2

i1 - i4

i1 - i3

i1 - i5
i1 - i2

i6 - i2

i6 - i4

i6 - i5

x1 - x2

The only information flow path in Π(4, 10) is π := 4 fd
x1−x2

. 6, 6 fd
y1−y2

. 10
where 4 fd

x1−x2
. 6 is loop-carried by loop 2 and 6 fd

y1−y2
. 10 leaves loop 2. Hence,

we obtain

IC(4, 10) ⇐⇒(i2 < 5) ∧ (i3 > 3) ∧ (i < 5) U ((i2 < 5)∧!(i3 > 3) ∧ (x1 == x2)∧
♦(!(i2 < 5) ∧ (y1 == y2)))

Note that for all state sequences Ξ = (ξi)i∈N ∈ Mp we have that ξj(i3) ≤ ξk(i3)
for all 0 ≤ j < k. Hence, if we had Ξ ² ♦ IC(4, 10), then there would be a j ∈ N
such that ξj(i3 > 3) = T, i. e. ξj(i3) > 3, and a k ≥ j such that ξk(!(x3 > 3)) = T,
i. e. ξk(i3) ≤ 3, a contradiction. Hence, ♦ IC(4, 10) ÂMpÂ false. Therefore, no
influence between lines 4 and 10 is possible.

If we look at Boolean path conditions, then this temporal aspect can not be
properly expressed. The Boolean path condition with variable separation along
loop-carried flow dependence edges is given by

BPC(4, 10) ≺ Â(i(1)
2 < 5) ∧ (i(1)

3 > 3) ∧ (i(2)
2 < 5)∧!(i(2)

3 > 3)∧

((i(1)
2 ≡ i

(1)
1 ) ∨ (i(1)

2 ≡ i
(1)
6 )) ∧ ((i(1)

3 ≡ i
(1)
1 ) ∨ (i(1)

3 ≡ i
(1)
6 ))∧

((i(2)
2 ≡ i

(2)
1 ) ∨ (i(2)

2 ≡ i
(2)
6 )) ∧ ((i(2)

3 ≡ i
(2)
1 ) ∨ (i(2)

3 ≡ i
(2)
6 ))∧

(y(2)
1 == y

(2)
2 )

Although we have both (i(1)
3 > 3) and !(i(2)

3 > 3) as constraints in the formula,
there is no way to incorporate the additional knowledge that i3 must satisfy the
former before the latter.

On the other hand, if we use the approach of omitting contradictory con-
straints, we get

BPC(4, 10) ≺ Â(i2 < 5)∧!(i3 > 3)∧
((i2 ≡ i1) ∨ (i2 ≡ i6)) ∧ ((i3 ≡ i1) ∨ (i3 ≡ i6)) ∧ (y1 == y2)

In this case, equation 5.9 (p. 38) tells us to omit the constraint (i3 > 3). Hence
BPC(4, 10) does not contain any hint at any influence being impossible any more.
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Chapter 7

Model checking

So far, we have presented how to generate temporal and Boolean path conditions.
For the latter we consider all variables to be existentially quantified and there exist
constraint solvers that can help to simplify these constraints or even solve for input
variables. Model checking can do a similar job for temporal path conditions. We
use it to decide if there are state sequences in Mp that satisfy the path condition
and – if so – to find such a state sequence. Moreover, we show how model checking
can be used to “solve” an LTL formula for input variables, i. e. how to compute
the set of initial states of a program from which satisfying computations start.

There are two approaches to model checking that are fundamentally different:
Explicit state model checking represents programs as finite transition systems such
as Kripke structures or Büchi automata which have a separate state for every pos-
sible program state. Verification is based on searching in the product transition
graph of the program and the LTL formula automaton for a strongly connected
subgraph that is reachable from an initial state. Symbolic model checking uses
Boolean formulae over propositional variables, which are used to encode the pro-
gram states, to represent sets of states and transition relations of transition sys-
tems. µ calculus formulae, to which we convert our LTL formulae, can then be
recursively evaluated by applying a number of operators to the Boolean formulae.

One major drawback of LTL model checking is that it is known to be PSPACE-
complete [Sis83]. However, this holds only in the length of the formula to be
checked. There are algorithms (see below) that are linear in the number of program
states.

In this chapter, we first present how to extract Kripke structures from transi-
tion graphs. Then, we briefly present explicit model checking and how to apply
it for LTL formulae. Third, we give a short introduction to LTL symbolic model
checking and explain how this can be also used to solve for input variables. We
conclude with a tiny example program to which we apply these techniques.

7.1 The program model

Model checking traditionally operates on Kripke structures or Büchi automata
which are finite transition systems. In order to be able to apply model checking to

89
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IMP programs, we must convert them into an appropriate finite transition system.
Similarly to section 6.1.2 where we have shown how to obtain state sequences
from transition graphs we now present how to construct Kripke structures from
transition graphs and how to obtain a Büchi automaton from a Kripke structure.

7.1.1 Kripke structures

Definition 44 (Kripke structure)
Let W ⊆ W be a finite set of propositional variables. A Kripke structure over
W is a 4-tuple M = (Q,Υ,∆, L) where

• Q is a finite set of states,

• Υ ⊆ Q is the set of initial states,

• ∆ ⊆ Q×Q is the transition relation, and

• L : Q 7→ P (W ) is a function that labels every state with the set of proposi-
tional variables from W that are true in this state.

The transition graph of a Kripke structure is the labelled graph GM :=
(Q,∆, L) with labelling function L.

A computation C = (ci)i∈N in a Kripke structure M = (Q,Υ, ∆, L) over W
is an infinite path in its transition graph that starts in an initial state. If θ ∈ LTLW

is an LTL formula over propositional variables from W , we say that C satisfies θ
iff the state sequence Ξ = (ξi)i∈N ² θ where ξi(i) = T iff i ∈ L(ci) for all i ∈ N
and i ∈ W .

We now present how to convert an IMP program p to its Kripke structure. Let
TGp = (N,E,¯ Â, Â̄ , λ) be the transition graph for p. Let θ be the LTL formula
over LIMP to be checked. Let V := Vp ∪ V (θ) ∪ Vp denote the set of variables of
interest where Vp is the set of program variable names (cf. equation 6.1 (p. 45)).
We associate every atomic formula in θ with a propositional variable, i. e. we have
that A(θ) ⊆ W −W (θ).

Let X := Vp∪(V (θ)−Vp) denote the set of all input variables and non-program
variables in θ. The Kripke structure Mp = (Q,Υ, ∆, L) over A for p is defined as

• Q := N × SAIMP
V ,

• Υ := { (ve, sV ) | s ∈ ISp } where ve is the entry node in CFGp,

• ((v, ξ), (w, ξ′)) ∈ ∆ iff

– (v, π, w) ∈ E is a transition edge such that ξ(λ((v, w))) = T, ξ′Vp∪Vp

is obtained from ξVp∪Vp like ξi+1 is obtained from ξi in equation 6.2
(p. 46), and ξ(x) = ξ′(x) for all x ∈ V (θ) ∩ Vr, or

– (v, π, w) ∈ E is an idle edge and ξ = ξ′, and

• L((v, ξ)) := { a ∈ A(θ) | ξ(a) = T }.
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The problem with this construction is that |Q| is exponential in the size of V ,
which contains Vp. Since we distinguish every variable occurrence, |Vp| is linear
in the size of p. However, many states in Q are not reachable from states in Υ,
e. g. all those states that violate Φ constraints from Φ functions (cf. section 5.4).
Since we are only interested in paths starting in Υ, we can safely remove from Q
all states that are not reachable from Υ via ∆.

7.1.2 Büchi automata

Büchi automata [Büc60] are finite ω-automata with the acceptance condition pro-
posed by Büchi: Every accepting run must infinitely often pass through an ac-
cepting state.

Definition 45 (Finite ω-automaton, Büchi automaton)
A (finite) ω-automaton (Büchi automaton) is represented by a 5-tuple A =
(Q,Σ, ∆, Υ, F ) where

• Q is a finite set of states,

• Σ is a finite alphabet,

• ∆ ⊆ (Q× Σ)×Q is the transition relation,

• Υ ⊆ Q is the nonempty set of initial states, and

• F ⊆ Q is the set of accepting states.

The transition graph for a Büchi automaton A = (Q,Σ, ∆, Υ, F ) is the mul-
tigraph GA := (Q,∆,¯ Â, Â̄ ) where ¯ Â((q, ς, q′)) := q and Â̄ ((q, ς, q′)) := q′

for (q, ς, q′) ∈ ∆.
An ω-run R of a finite ω-automaton A = (Q,Σ, ∆, Υ, F ) over an infinite word

a = (ai)i∈N ∈ Σω is an infinite sequence of states R = (qi)i∈N where q0 ∈ Υ and
(qi, ai, qi+1) ∈ ∆ for all i ∈ N.

An ω-run R = (qi)i∈N over a = (ai)i∈N of the Büchi automaton A is accepted
by A iff there is a state q ∈ F such that the set { i ∈ N | qi = q } is infinite, i. e.
the run passes infinitely often through an accepting state. An infinite word a ∈ Σω

is accepted by A if there is an accepting run of A over a.
The language L (A) of A is the set of all infinite words accepted by A.

The Büchi automaton for an IMP program p is most easily defined in terms
of the Kripke structure Mp = (Q,Υ,∆M , L) over W ⊆ W for p. The Büchi
automaton Ap for p is defined as

Ap := (Q ·∪ { ι } , P (W ) ,∆, { ι } , Q ·∪ { ι })
where (q, ς, q′) ∈ ∆ iff

• q′ ∈ Q and

– (q, q′) ∈ ∆M or
– q = ι and q′ ∈ Υ, and

• ς = L(q′).

Notice that all states of Ap are accepting. Hence, every run in Ap is accepting.
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7.2 Explicit state model checking

Explicit state LTL model checking procedures view programs as Kripke struc-
tures or Büchi automata. Both approaches generate a finite “product graph” that
combines the program structure with the LTL formula which has an infinite path
subject to some constraints iff the LTL formula is satisfiable. More precisely, we
obtain a satisfying state sequence for the formula from the infinite path. Hence,
by searching the product graph for a cycle that is reachable from some initial state
set and that meets the constraints, we are able to decide whether the formula is
satisfiable or not (and if so, we get one satisfying sequence).

There exist two variants for doing this. We first present very briefly the one
that operates on Kripke structures before outlining the ideas behind model check-
ing with Büchi automata.

7.2.1 Kripke structures

The “product graph” in this approach is a so-called tableau which is constructed
from the Kripke structure of a program and the LTL formula. It has been first
proposed by Lichtenstein and Pnueli [LP85]. Although their algorithm exhibits
very clearly the ideas behind LTL model checking, we do not go into detail here,
because this algorithm is of no practical relevance. For more details, see [LP85]
and [CGP00].

First, we compute the closure of the LTL formula θ, a set of LTL formulae
which contains subformulae of θ and subformulae of θ with extra © operators,
their negations, and the Boolean constants true and false. Next, for every state of
the Kripke structure, we construct all atoms: An atom is a state s and a subset
F of the closure of θ such that F is maximally consistent and consistent with the
labelling of s. These atoms are the nodes of the atoms’ graph that are joined by
an edge whenever the two states are linked by a transition in the original Kripke
structure and for every LTL formula of the form©(η) in the source state’s formula
set, then η must be in the one of target node.

The key insight is that all infinite paths in the atoms’ graph that end up in a
strongly connected subgraph thereof with no outgoing edges (terminal component)
such that for every LTL formula η U η′ in one of its atoms, there also exists in it
an atom with η′ in it satisfy all formulae in the first atom’s formula set. We call
such a component self-fulfilling. A simple algorithm for model checking a Kripke
structure and LTL formula θ is then:

1. Compute the atoms graph and decompose it into strongly connected com-
ponents.

2. Iteratively remove all terminal components until only self-fulfilling ones re-
main.

3. Check whether there is an atom (s, F ) such that s is an initial state and
θ ∈ F .
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7.2.2 Büchi automata

The main reason for the Kripke structure approach not being applied in prac-
tice is that we have to construct the complete atoms’ graph before we can start
analyzing it. When looking for satisfying assignments, we are not able to incor-
porate additional knowledge from the LTL formula in the generation process. By
using Büchi automata, we often avoid constructing the whole Kripke structure
and atoms’ graph. Here, we briefly present how to use Büchi automata for model
checking. For more details, see [CGP00, Hol03].

The idea is to construct a Büchi automaton that is the intersection automaton
for the program’s Büchi automaton and a model automaton for the LTL formula θ
over propositional variables from W and that accepts exactly those sequences C =
(ci)i∈N of subsets of W that - when viewed as state sequences via the identification
ξi(i) = T iff i ∈ ci - are models for θ.

Again, we first have to compute the closure Cl (θ) of θ which, this time, is the
set of all subformulae of θ and their negations. The local automaton for θ, whose
states, each of which is accepting, are all maximally consistent subsets of Cl (θ)
and whose alphabet is P (Cl (θ)), ensures that every transition is consistent in
itself, i. e. the input letter must be the source state q, for every ©(η) ∈ Cl (θ) we
require ©(η) ∈ q iff η ∈ q′, and for every η U η′ ∈ Cl (θ) we demand that η U η′

holds in q iff η′ ∈ q, or η ∈ q and η U η′ ∈ q′. All states that contain θ are initial
states.

The eventuality automaton for θ ensures that all eventualities, i. e. all formulae
of the form η U η′ ∈ Cl (θ), are eventually satisfied. Its states are all eventuality
subsets, its alphabet is again the power set of the closure of θ, and ∅ is the only
initial and the only accepting state. In the state ∅ transitions are possible to
all states that contain all eventualities η U η′ of the input letter ς that are not
immediately satisfied, i. e. η′ /∈ ς. In other states, all target states must contain
all eventualities of the origin state that are not satisfied by the input letter.

The model automaton is the intersection automaton for local and eventuality
automaton where the input alphabet is restricted to W and every transition input
letter is projected to W .

To search for models for θ in the program, we compute the intersection au-
tomaton for the program Büchi automaton and the model automaton for θ and
use depth-first search to see whether there exists an infinite path that starts in
an initial state, i. e. whether we can reach a cycle from an initial state. In this
case, the language intersection of program and model automaton is nonempty, i. e.
there is a satisfying sequence. By projecting the nodes on the infinite path to the
state component we obtain a model for θ.

Note that the construction for the model automaton above is highly ineffi-
cient. By construction, the automaton’s size is exponential in the length of the
formula. Gerth, Peled, Vardi, and Wolper [GPVW95] propose a different con-
struction method. They start with an automaton with only two states and then
repeatedly expand nodes until a correct model automaton has been generated.
Although this algorithm generates in the worst case automata whose size is ex-
ponential in the length of the LTL formula, it has a much better average case
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performance. For details on this construction method, see [GPVW95] or [CGP00].
The main advantage of Büchi automata is that we can avoid to fully construct

the Kripke structure in many cases. As we have seen, we can easily construct a
Kripke structure and a Büchi automaton from the transition graph of a program.
If we remember for each state the program variable assignments in it, we can use
the transition graph to determine which successor nodes exist for it. Hence, if
we use a (nested) depth-first search algorithm to find a run of the intersection
automaton of the program and model automaton, we can find the successors of a
state by computing “on the fly” the successor states in both automata and then
find those that can be combined to form a new state in the intersection automaton.

This way, we may be lucky to find a cycle before all states have been explored.
Moreover, some states of the program Büchi automaton may not have to be gener-
ated at all because they are only reachable by runs that violate the LTL formula.
Further, the search can try to limit the number of randomly accessed states and
memory cells to avoid unnecessary paging as, in most cases, memory requirements
will exceed the available main memory. See e. g. [CVWY92] for algorithms that
are designed to keep the randomly accessed memory small.

This model checking approach has been successfully implemented e. g. in
SPIN [Hol03]. Besides the optimizations alluded to in this section, it makes use of
a number of other optimizations that we will not discuss here because this is not
the central topic of this thesis. SPIN is designed to verify concurrent programs, i. e.
its focus lies on processes that involve communication and synchronization, but
not on data intensive programs. In particular, SPIN assumes that the program
can only start in a single initial state, i. e. there is only one successor state
to the initial state ι in the Büchi automaton Ap. If we want to use SPIN to
check the satisfiability of an LTL formula with respect to program p, we must
use the nondeterministic features in ProMeLa to allow for multiple initial states.
Conversely, if we assume that all variables are initialized in the program before
they are used, i. e. p does not depend on input variables, we could have avoided
all the work to generate the LTL formula by simply running or simulating p once
to see whether an influence path is executed.

7.3 Symbolic model checking

In the last section we have seen how to apply traditional model checking methods
to finding influence paths between two statements in a program p by constructing
a finite state machine for p and an temporal influence condition whose satisfiability
with respect to p is then checked. However, we always find only one satisfying
state sequence, we do not get any information on all satisfying state sequences.
Moreover, these finite state machines become very large very quickly, e. g. a single
additional integer variable that is not bounded can increase the state space by the
factor 232. Since they are generated from a much more compact description p, we
might expect that they contain many similar substructures. The idea of symbolic
model checking [McM92] is that we do no longer construct each state on its own,
but to describe sets of states and transitions between states efficiently. Usually,
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one uses Boolean formulae to encode the transitions and Boolean formulae with
fixpoint operators for the temporal formulae. Ordered binary decision diagrams
(OBDD) [Bry86] have been shown to be the first choice in order to keep these
formulae’s representations as small as possible.

In this section, we briefly introduce the propositional µ calculus to which we
convert LTL formulae. We then show how to evaluate such a µ calculus formula
over a program. Due to space limitations, we do not present how to implement
evaluating a µ calculus formula using Boolean formulae and OBDDs. We refer the
interested reader to [McM92] and [CGP00].

7.3.1 Propositional µ calculus

Propositional µ calculus has become popular in the context of model checking
because a number of formal specification methods can be translated into µ cal-
culus (e. g. CTL, LTL, observational equivalence [BCM+90]) and efficient model
checkers are available for it, e. g. SMV [McM92] and NuSMV [CCGR99]. Here,
we present a variant of the propositional µ calculus dialect proposed by Kozen
[Koz83]. Instead of using transition systems, which may contain a number of
transition relations, we define µ calculus with respect to Kripke structures, which
allow only one transition relation, because this is sufficient for LTL formulae being
encoded in the µ calculus. This section follows the lines of [CGP00].

Apart from propositional variables, the µ calculus knows relational variables.
Let X denote a set of relational variables. We usually use letters set in Gothic
print (e. g. Q, R) to denote relational variables. Every relational variable R ∈ X
stands for a set of states, i. e. R ⊆ Q.

Definition 46 (µ calculus formulae)
Let M = (Q,Υ, ∆, L) be a Kripke structure over W ⊆ W. The set of µ-calculus
formulae MUM over M is the smallest set of words over the alphabet ZMU :=
X ∪ OMU ∪ { (, ), [, ], ., 〈, 〉 } with the operator set OMU := { ¬,∧,∨, µ, ν } that
satisfies

• Every propositional variable in W is a µ-calculus formula: W ⊆ MUM.

• Every relational variable is a µ-calculus formula: X ⊆ MUM.

• If f, g ∈ MUM are µ-calculus formula, so are ¬(f), (f) ∧ (g), (f) ∨ (g) ∈
MUM.

• If f ∈ MUM is a µ-calculus formula, then are 〈〉(f), [](f) ∈ MUM µ-calculus
formulae.

• If R ∈ X is a relational variable and f ∈ MUM a µ calculus formula, then
are µR.f, νR.f ∈ MUM µ-calculus formulae if R occurs only positively in f ,
i. e. every occurrence of R in f falls under an even number of negations.30

30Positive and negative occurrence can be defined analogously to definition 18 (p. 22).
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As before, we introduce precedence rules to save parentheses. We order the
operators as

µ ν ¬ [] · 〈〉 · ∧ ∨,

i. e. µ has highest priority and ∨ least. For example, we write µR.R∧i∨νS.¬(¬S)
for ((µR.(R)) ∧ (i)) ∨ (νS.(¬(¬S))).

Definition 47 (Free and bound relational variables)
Let f ∈ MUM be a µ-calculus formula and R ∈ X a relational variable. R occurs
freely in f if R occurs in f such that there is no formula g ∈ MUM containing
R such that µR.(g) or νR.(g) is a subformula of f that contains the occurrence
of R. R occurs bound in f if there is a subformula µR.(g) or νR.(g) of f such
that R occurs in g ∈ MUM.

f is said to be closed iff no relational variable occurs freely in f .

Definition 48 (Environment)
An environment for a Kripke structure M = (Q,Υ,∆, L) is a mapping ω : X 7→
P (Q). If ω ∈ P (Q)X is an environment, R ∈ X a relational variable, and P ⊆ Q
a set of states, then ω[R ← P ] denotes the environment defined by

ω[R ← P ] := S 7→
{

P if S = R

ω(S) otherwise
.

Definition 49 (Semantics of µ-calculus formulae)
Let M = (Q,Υ, ∆, L) be a Kripke structure over W . A µ-calculus formula f ∈
MUM is interpreted as a set of states JfKωM in which f holds where ω is an
environment. This set is defined inductively:

• JiKωM := { q ∈ Q | i ∈ L(q) } for every propositional variable i ∈ W .

• JRKωM := ω(R) for every relational variable R ∈ X .

• J¬(f)KωM := Q− JfKωM where f ∈ MUM

• J(f) ∧ (g)KωM := JfKωM ∩ JgKωM where f, g ∈ MUM.

• J(f) ∨ (g)KωM := JfKωM ∪ JgKωM where f, g ∈ MUM.

• J〈〉(f)KωM := { q ∈ Q | ∆(q) ∩ JfKωM 6= ∅ } where f ∈ MUM.

• J[](f)KωM := { q ∈ Q | ∆(q) ⊆ JfKωM } where f ∈ MUM.

• JµR.(f)KωM := µR.τf (R) is the least fixpoint of τf : P (Q) 7→ P (Q),
τf (P ) := JfKω[R←P ]

M where f ∈ MUM and R ∈ X .31

• JνR.(f)KωM := νR.τf (R) is the greatest fixpoint of τf : P (Q) 7→ P (Q),
τf (P ) := JfKω[R←P ]

M where f ∈ MUM and R ∈ X .

31P ⊆ Q is a fixpoint of τf iff τf (P ) = P . P is the least (greatest) fixpoint of τf iff for every
other fixpoint R ⊆ Q of τf we have P ⊆ R (R ⊆ P ). Since, by definition, R occurs only positively
in τf , τf is monotonic on the complete lattice (P (Q) ,∩,∪). Hence, τf has least and greatest
fixpoints [Tar55]. As Q is finite, τf is also ∪- and ∩-monotonic. Thus, we can use fixpoint
iteration to compute the greatest and least fixpoint of τf in a finite number of steps [CGP00].
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Intuitively, J〈〉(f)KωM (J[](f)KωM) is the set of states one (all) of whose successor
states with respect to transitions in ∆ satisfy f .

7.3.2 Encoding programs as Boolean formulae

We want to use Boolean formula to encode sets of states of a Kripke structure
M = (Q,Υ, ∆, L) over W . Let UQ ⊆ W be a finite set of propositional variables.
Let ΓQ : Q 7→ BUQ be an injective mapping that identifies every state q ∈ Q with
an assignment on UQ such that ΓQ(q)(i) = T iff i ∈ L(q) for all i ∈ UQ ∩W and
q ∈ Q. For every Boolean formula θ over UQ we define the set of states modelled
by θ as

JθKM := { q ∈ Q | ΓQ(q)(θ) = true } .

Conversely, for every set of states P ⊆ Q, we can find a Boolean formula θP over
UQ such that JθKM = P . Since the evaluation JfKωM of any µ-calculus formula f
in a Kripke structure M and an environment ω is a set of states, we can encode
JfKωM as a Boolean formula over UQ.

In order to be able to evaluate µ-calculus formulae by manipulating Boolean
formula, we also have to encode the transition relation ∆ of M as a Boolean
formula. Let U ′

Q ⊆ W be a another set of propositional variables such that

|UQ| =
∣∣∣U ′

Q

∣∣∣, U ′
Q ∩ UQ = ∅. Let ·′ : UQ 7→ U ′

Q be a bijection that assigns each
i ∈ UQ its primed variant i′ ∈ U ′

Q. Then, we encode ∆ as a Boolean formula
θ(UQ, U ′

Q) over UQ ∪ U ′
Q such that the assignment ξ that is the combination of

ΓQ(q′) ◦ ·′−1 and ΓQ(q) satisfies θ(UQ, U ′
Q) iff (q, q′) ∈ ∆, for all q, q′ ∈ Q. For

example, we can set

θ(UQ, U ′
Q) :=

∨

(q,q′)∈∆

θ{ q } ∧ (θ{ q′ }[i′/i,i ∈ UQ]) (7.1)

where ρ[i′/i,i ∈ UQ] is the Boolean formula we obtain from ρ by substituting
i′ for i for all i ∈ UQ. Note however that usually there are shorter formulae
θ(UQ, U ′

Q) to encode ∆ that exploit regularities in ∆.
If we want to encode the transition relation from a program, we can, of course,

first convert the program to a Kripke structure and then use equation 7.1 to get
a Boolean formula. However, we may get a simpler encoding if we do not make
the detour over Kripke structures.

Let ΓQ : Q 7→ UQ be a reasonable encoding of Q. For example we might
encode every variable b of type bool with two propositional variables ib and i′b
where the three possible values ⊥b, false, and true are encoded as (F, F), (F, T),
and (T, T) respectively. Similarly, we can represent every int variable in their
32-bit complement representation with 32 propositional variables plus one that
stores whether it has been initialized or not. The same way, we can encode array
variables and the current state v ∈ N in the transition graph.

Since all transitions in ∆ originate from edges in the transition graph TGp =
(V ′, E,¯ Â, Â̄ , λ) of p we can encode ∆ by

∨
e∈E θe where θe is a conjunction

of the following constraints:

• One that checks that the propositional variables for the transition graph
state are correct (over UQ).
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• One that checks that the guard for the edge is satisfied (over UQ).

• One that encodes the state transformation very much like a Boolean circuit
would do (over UQ ∪ U ′

Q).

• One that ensures that the propositional variables for the transition graph
successor state are correct (over U ′

Q).

7.3.3 Encoding LTL formulae in the µ calculus

In [CGL94], it is shown how LTL model checking is reduced to CTL model checking
with fairness constraints. Similarly to Kripke structures and Büchi automata, the
LTL formula is translated into a Kripke structure called tableau and – from an
abstract point of view – a path in the model’s Kripke structure is searched that
satisfies the constraints imposed by the tableau, which works similarly to the local
Büchi automaton. [CGP00] contains a modification of this construction which they
claim to it producing smaller tableaus. Here, we sketch an adaption of [CGL94]
that translates LTL formulae directly into µ-calculus formulae.

Let θ ∈ LTL be an LTL formula over propositional variables W ⊆ W (W finite).
Without loss of generality, we assume that θ does not contain ¤ or ♦ operators.
The set of elementary formulae el (θ) of θ contains all propositional variables in θ,
all subformulae of θ that start with a © operator, and for every subformula of θ
of the form (η) U (η′) it contains the formula ©((η) U (η′)). The tableau’s state
set is the power set of all elementary formulae of θ, i. e. Qθ := P (el (θ)). For the
labelling function Lθ : Qθ 7→ P (W ), we set Lθ(q) := q ∩W .

For every subformula η and elementary formula η of θ, let sat(η) denote the set
of states in Qθ that satisfy θ: We set sat (true) := Qθ, sat (false) := ∅, sat (η) :=
{ q ∈ Qθ | η ∈ q } for η ∈ el (θ), and

sat
(
(η) U (η′)

)
:= sat

(
η′

) ∪ (
sat (η) ∩ sat

(©((η) U (η′))
))

.

All other operators are defined as one would expect it to be.
For the transition relation ∆θ we want to have that every elementary formula

η ∈ q in state q ∈ Qθ is true. In particular, we want to have that ©(η) ∈ q iff
all successor states satisfy η and that ©(η) /∈ q iff none of the successor states
satisfies η. Hence, for the transition relation ∆θ we set

(q, q′) ∈ ∆θ iff (∀©(η) ∈ el (θ) : q ∈ sat (©(η)) iff q′ ∈ sat (η))

The set of initial states is Υθ := sat (θ). Then, the tableau for θ is Mθ =
(Qθ,Υθ, ∆θ, Lθ). Notice that we can represent the tableau Mθ as a Boolean
formula, too.

We now define the product Kripke structure M = (Q,Υ, ∆, L) over W of
the tableau Mθ = (Qθ, Υθ, ∆θ, Lθ) and the program Kripke structure Mp =
(Qp, Υp, ∆p, Lp). We set

• Q := { (q, q′) ∈ Qθ ×Qp | Lp(q′) ∩W = Lθ(q) ∩W }
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• Υ := Υθ ×Υp ∩Q

• ((q, q′), (r, r′)) ∈ ∆ iff (q, r) ∈ ∆θ and (q′, r′) ∈ ∆p and (q, q′), (r, r′) ∈ Q.

• L((q, q′)) := Lθ(q).

All computations of M correspond to computations in Mp, i. e. to an execu-
tion of p and locally respect the constraints imposed by θ. The µ calculus formula
we now build checks that all eventuality constraints of θ are satisfied. We want
to check if for every subformula (η) U (η′) of θ every computation of M passes
infinitely often through a state (q, q′) such that q ∈ sat (¬((η) U (η′)) ∨ η′). If so,
it can not be the case that (η) U (η′) holds almost always while η′ is not satisfied.

Let Θ denote the set of all subformulae of θ of the form (η) U (η′). For all
ζ ∈ Θ, say ζ = (η) U (η′), let ρζ denote the Boolean formulae that encodes the
set of states { (q, q′) ∈ Q | q ∈ sat (¬((η) U (η′)) ∨ η′) }. The µ-calculus formula
for these constraints is then given by

νR.
∧

ζ∈Θ

(〈〉 (µS. (R ∧ ρζ ∨ 〈〉 (S)))) (7.2)

Thus, to see whether an LTL formula θ is satisfiable over a program p, we
build the Kripke structure M for p and θ and then evaluate the closed µ-calculus
formula from equation 7.2 over M. If an initial state is in the result, there exists
a computation that starts in the corresponding state in Mp that satisfies θ.32 See
e. g. [CGMZ95] on how to generate state sequences with symbolic model checking.

7.4 Model checking and temporal path conditions

So far, we have sketched how explicit and symbolic model checking works on
Kripke structures. Hence, when applying model checking, either explicit state or
symbolic, to temporal path conditions, we must do the following steps:

1. Compute the Kripke structure or Büchi automaton for program p,

2. Convert the LTL path condition into a tableau or automaton,

3. Construct the product structure or automaton for the program and the
formula,

4. Find an appropriate infinite path therein.

In this section, we look at a trivial example program p, shown in figure 7.1
(p. 101), where all variables are of type bool and see how model checking can help
us in checking the satisfiability of and solving an LTL path condition.

32Instead of checking whether the result contains an initial state, we can conjunctively add to
equation 7.2 the Boolean formula that encodes the set Υ, too. All states in the result set are
then starting state for computations satisfying θ.



100 CHAPTER 7. MODEL CHECKING

Clearly, p does not yield very interesting path conditions, but, for illustration
purpose, we look at

♦ IC(1, 3) ⇐⇒ ♦(((b1&&b2)||(!(b1)&&!(b2))) ∧ b2) ⇐⇒ true U (b1 ∧ b2) =: θ.

First, we construct the Kripke structure Mp for p. For the variables, we have
that Vp = { b1, b2, b3, c, d } and Vp = { b, c, d }. Hence Υ is the set of states 1
through 8 listed in table 7.1. The remaining states of Mp that are reachable from
Υ are listed in table 7.1 under numbers 9 through 14.

Let Q denote the states reachable from Υ, i. e. Q = { 1, . . . , 14 }. For the
transition relation ∆ on Q we get:

∆ = { (i, i + 8), (i + 4, i + 8), (i + 10, i + 10) | i ∈ { 1, . . . , 4 } }∪{ (9, 13), (10, 14) }

There are two atomic formulae in θ: A(θ) = { b1, b2 }. For the labelling func-
tion L, we get:

L(i) =





{ b1 } if i ∈ { 9, 10 }
{ b1, b2 } if i ∈ { 13, 14 }
∅ otherwise

The Kripke structure Mp is shown in figure 7.2. Every state is labelled with
its state number from table 7.1 and the set of atomic formulae holding in it. Initial
states (1 to 8) are marked with an arrow pointing to them. We now apply both
explicit state and symbolic model checking to p and θ.

7.4.1 Model checking using Büchi automata

Since it is Büchi automata that are usually used when one does explicit state
model checking, we use this approach in this example. The construction of the
Büchi automaton Ap for Mp is straight forward, so we will not go into details.
To keep notation simple, we give the state number 0 to the initial state ι.

We now construct the local and eventuality automaton. The closure of θ is

Cl (θ) = {θ,¬θ, true ,¬ true , b1 ∧ b2,¬(b1 ∧ b2), b1,¬(b1), b2,¬(b2)}

The states QL := { q1, . . . , q8 } of the local automaton for θ

Lθ = (QL, P (Cl (θ)) , ∆L, { q1, q3, q5, q7 } , QL)

are shown in table 7.2 (p. 102). For the transition relation ∆L ⊆ QL×(P (Cl (θ))×
QL) we get ∆L(qi) = { qi } × QL for i ∈ { 1, 2, 4, 6, 8 } and ∆L(qi) = { qi } ×
{ q1, q3, q5, q7 } for i ∈ { 3, 5, 7 }.

Regarding the eventuality automaton, we note that θ contains only one even-
tuality, namely true U (b1 ∧ b2). We now construct the eventuality automaton.
The set of eventualities in Cl (θ) is e(θ) = { true U (b1 ∧ b2) }. Figure 7.3 (p. 102)
shows the eventuality automaton for θ where A denotes the set P (Cl (θ)) and B
the set {Θ ⊆ Cl (θ) | (b1 ∧ b2) ∈ Θ }. Accepting states are drawn with a double
circle, initial states are marked with an arrow pointing to them. Each edge (q, q′)
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Figure 7.1 An example program and its transition graph used to illustrate model
checking with temporal path conditions.

1 b := c;
2 if (b) {
3 b := !(d);
4 }

entry b:=c; b:=!(d)

1 3

true (b)

!(b) true

State Node b c d b1 b2 b3 c d

1 ve T T T ⊥b ⊥b ⊥b ⊥b ⊥b

2 ve T T F ⊥b ⊥b ⊥b ⊥b ⊥b

3 ve T F T ⊥b ⊥b ⊥b ⊥b ⊥b

4 ve T F F ⊥b ⊥b ⊥b ⊥b ⊥b

5 ve F T T ⊥b ⊥b ⊥b ⊥b ⊥b

6 ve F T F ⊥b ⊥b ⊥b ⊥b ⊥b

7 ve F F T ⊥b ⊥b ⊥b ⊥b ⊥b

8 ve F F F ⊥b ⊥b ⊥b ⊥b ⊥b

9 1 T T T T ⊥b ⊥b T ⊥b

10 1 T T F T ⊥b ⊥b T ⊥b

11 1 F F T F ⊥b ⊥b F ⊥b

12 1 F F F F ⊥b ⊥b F ⊥b

13 3 F T T T T F T T
14 3 T T F T T T T F

Table 7.1: Reachable states of the Kripke structure for the program shown in
figure 7.1.

Figure 7.2 Kripke structure transition graph for the program that figure 7.1
shows.
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State true b1 b2 b1 ∧ b2 true U (b1 ∧ b2)
q1 X X X X X
q2 X X X X
q3 X X X
q4 X X
q5 X X X
q6 X X
q7 X X
q8 X

Table 7.2: States of the local automaton for true U (b1 ∧ b2). Every row describes
one state. If a cell contains X, the formula η in the column header is contained
in the state q listed at the row header. If the cell is empty, ¬(η) is contained in q.

Figure 7.3 Eventuality automaton for true U (b1 ∧ b2).

{ trueU
(b1 ^ b2) }

A

B

Ø

B
A

with label ς represents a tuple (q, ς, q′) ∈ ∆L. For simplicity, if there are multiple
edges between two states we draw only a single edge with all labels collected in a
set of labels.

Formally, the eventuality automaton is

Eθ = ({ ∅, { θ } } , P (Cl (θ)) , ∆E , { ∅ } , { ∅ })
where ∆E := { ∅ } × (B × { ∅ } ∪A× { θ }) ∪ { θ } × (A× { θ } ∪B × { ∅ }).

Let W = { b1, b2 } be the set of atomic formulae in θ. We now build the model
automaton

Aθ = (QL × { ∅, { θ } } ,P (W ) , ∆, { q1, q3, q5, q7 } × { ∅ } , QL × { ∅ }),
with ∆ := { (q, P (ς), q′) | (q, ς, q′) ∈ ∆∗ } where P : P (Cl (θ)) 7→ P (W ), P (Θ) :=
Θ∩W is the projection map used to reduce the alphabet and ∆∗ is the transition
relation for the standard product automaton of Lθ and Eθ, i. e. ((q, r), ς, (q′, r′)) ∈
∆∗ iff (q, ς, q′) ∈ ∆L and (r, ς, r′) ∈ ∆E .

To decide if there is a sequence in Ap that satisfies θ, we build the intersec-
tion automaton A of both automata Ap and Aθ and check whether A has any
accepting runs. If we do this, we can find, for instance, the run

(0, q7, ∅), (6, q3, { θ }), (10, q1, { θ }), (14, q1, ∅), (14, q1, ∅), . . .
over the word ∅, { b1 } , { b1, b2 } , { b1, b2 } , . . .. Hence, we know that when run the
program with the assignment to the input variables given by b := F, c := T, and
d := F, information flows from c in line 1 to line 3.
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qθ
1 qθ

2 qθ
3 qθ

4 qθ
5 qθ

6 qθ
7 qθ

8 η sat(η)
X X X X b1

{
qθ
1, . . . , q

θ
4

}
X X X X b2

{
qθ
1, q

θ
2, q

θ
5, q

θ
6

}
X X X X ©(true U (b1 ∧ b2))

{
qθ
1, q

θ
3, q

θ
5, q

θ
7

}
true

{
qθ
1, . . . , q

θ
8

}
b1 ∧ b2

{
qθ
1, q

θ
2

}
true U (b1 ∧ b2)

{
qθ
1, . . . , q

θ
5, q

θ
7

}

Table 7.3: States qθ
1 to qθ

8 of the tableau for true U (b1 ∧ b2) contain all the
elementary formulae η marked with a X in their column. The column on the right
lists the sat sets for all elementary formulae and subformulae of true U (b1 ∧ b2).

7.4.2 Symbolic model checking

Next, we show how to apply symbolic model checking to p and θ, i. e. how to build
the product Kripke structure M and the µ-calculus formula that we afterwards
evaluate over M. We do not present how to encode the Kripke structures in
Boolean formulae and how to evaluate the µ-calculus formula by manipulating
Boolean formulae.

We start by constructing the tableau Mθ = (Qθ,Υθ, ∆θ, Lθ) for θ = true U
(b1 ∧ b2). The set of elementary formulae of θ is

el (θ) :== { b1, b2,©(true U (b1 ∧ b2)) } .

Table 7.3 shows on the left the states in Qθ of which qθ
1, . . . , q

θ
5, q

θ
7 are initial

states. The sat sets for elementary formulae and subformulae of θ are listed on
the right-hand side of the same table.

The transition relation ∆θ is given by

∆θ :=
{

qθ
1, q

θ
3, q

θ
5, q

θ
7

}
×

{
qθ
1, . . . , q

θ
5, q

θ
7

}
∪

{
qθ
2, q

θ
4, q

θ
6, q

θ
8

}
×

{
qθ
6, q

θ
8

}

The labels for states qθ
i can be seen in the first two rows of table 7.3: Iff the

cell contains an X, the formula under η is part of the label for the column’s state.
Figure 7.4 shows the tableau where the labels to the nodes have been omitted.

Next, we construct the product Kripke structure M of Mp and Mθ which is
given by:

• Q :=
{

qθ
7, q

θ
8

}×{ 1, . . . , 8, 11, 12 }∪{
qθ
3, q

θ
4

}×{ 9, 10 }∪{
qθ
1, q

θ
2

}×{ 13, 14 },
• Υ :=

{
qθ
7

}× { 1, . . . , 8 },
• L(q, q′) := { b1, b2 } for q ∈ {

qθ
1, q

θ
2

}
, L(q, q′) := { b1 } for q ∈ {

qθ
3, q

θ
4

}
, and

L(q, q′) = ∅ otherwise, and

• ∆ := { (qθ
8, q

θ
8) } ⊗ { 1, . . . , 8, 11, 12 } ∪ { qθ

1, q
θ
2 }2 ⊗ { (13, 13), (14, 14) }∪

{ (qθ
3, q

θ
1), (q

θ
3, q

θ
2) } ⊗ { (9, 13), (10, 14) }∪

{ (qθ
7, q

θ
3), (q

θ
7, q

θ
4) } ⊗ { (1, 9), (2, 10), (5, 9), (6, 10) }∪

{ (qθ
7, q

θ
7) } ⊗ { (3, 11), (4, 12), (7, 11), (8, 12) }.33

33For A ⊆ Qθ ×Qθ and B ⊆ Qp ×Qp, let A⊗B := { ((a, b), (a′, b′)) | (a, a′) ∈ A, (b, b′) ∈ B }.
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Figure 7.4 Tableau for true U (b1 ∧ b2) with states from table 7.3 without labels.

q7
θ

q1
θ q3

θ q5
θ

q8
θ

q6
θ

q4
θ

q2
θ

Let ζ := ¬(true U (b1 ∧ b2)) ∨ (b1 ∧ b2). With sat (ζ) =
{

qθ
1, q

θ
2, q

θ
6, q

θ
8

}
and ρζ

being a Boolean formula that encodes the set sat (ζ), we obtain

f := νR. 〈〉(µS.(R ∧ ρζ ∨ 〈〉(S))) ∧ θΥ

as the µ-calculus formula that we have to evaluate over M where θΥ is the Boolean
formula for Υ.

We now evaluate f over M. We start with the µ operator in f in an environ-
ment ω with ω(R) = Q. Let g := R∧ρζ∨〈〉(S). We now compute the least fixpoint
µS.g of g with fixpoint iteration starting in the environment ω0 := ω[S ← ∅]. We
obtain

Q0 := JgKω0
M = { qθ

1, q
θ
2 } × { 13, 14 } ∪ { qθ

8 } × { 1, . . . , 8, 11, 12 }

Set ω1 := ω0[S ← Q0]. Then Q1 := JgKω1
M = Q0 ∪ { qθ

3 } × { 9, 10 }. Set ω2 :=
ω1[S ← Q1]. Then, Q2 := JgKω2

M = Q1 ∪ { qθ
7 } × { 1, 2, 5, 6 }. Since JgKω2[S←Q2]

M =
Q2, the fixpoint iteration terminates and we have JµS.(g)KωM = Q2. Note that also
Q2 = J〈〉(µS.(g))KωM. This has been the first fixpoint iteration of h := 〈〉(µS.(g))
to compute the greatest fixpoint of h. For the second iteration, we have to rerun
the fixpoint iteration for the inner µ operator. Thus, we set ω3 := ω[R ← Q2]
and evaluate µS.(g) in the environment ω3 again. This yields again Q2. Hence,
JhKω3

M = Q2, so JνR.(h)KωM = Q2.
Thus, JfKωM = { qθ

7 } × { 1, 2, 5, 6 }. Hence, we know that when we run our
program from one of the initial states 1, 2, 5, 6, line 1 influences line 3. Looking at
table 7.1 (p. 101) we see we must initialize variable c with T for the influence to
happen.
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7.5 Comparison and conclusion

We have presented three different model checking techniques. All three techniques
suffer from their complexity being exponential in the length of the formula. In
most applications of model checking, LTL formulae are used to specify correct
behaviour, i. e. all computations of a model should satisfy the formula. In these
cases, the specification is negated and then one of the above techniques is applied.
SPIN [Hol03] implements the Büchi automaton approach and processes a “never
claim” to which the LTL formula can be automatically translated and for which it
searches for a satisfying state sequence in the program’s Büchi automaton. SMV
[McM92] and NuSMV [CCGR99] are symbolic model checkers that try to falsify
the input specification.34 In order to use these model checkers for our purpose, we
need to provide them with the negated LTL formula to obtain the desired results.
This has also become a widespread technique in automatic test data generation
with model checkers, see e. g. [HRV+03, GH99, HCL+03]. Besides, in order
to apply model checkers such as SPIN and NuSMV in our setting, we have to
convert an IMP program into the input language for it. Even though this is rather
straight forward because all constructs of IMP have corresponding constructs in
the model checkers’ input languages, we have to translate the SSA representation
of a program including Φ functions. In section 7.1, we have shown how to convert
an IMP program into its transition graph and how to extract state sequences from
such a transition graph. If we want to translate our program into the model
checker’s language, we have to encode this extraction in it. However, this has not
yet been implemented, nor is there an implementation that can generate temporal
influence conditions. All examples in this thesis have been done by hand. Hence,
we do not have empirical data on whether the techniques presented here are feasible
in practice. The examples in the next chapter at least suggest that for smallish
programs LTL path conditions are tractable.

Nevertheless, we do want to mention some aspects of this translation. First
of all, modern computer programs are written in programming languages with far
more features than those IMP can offer. Most importantly, IMP lacks functions
and procedures. However, in theory, if functions and procedures are not recursive,
inlining is one way to compensate this.

What is much more important, is the state explosion problem. Model checkers
have been successfully applied to parallel systems and network protocols being
verified, where each component’s state space is rather small. For our analysis data
flow dependences are most interesting. However, this makes the state explosion
problem much more urgent. For example, consider a program that has ten input
variables of type int. Since every variable can take 232 different values, we already
have 2320 different initial program states. Clearly, for an explicit state model
checker, which – since IMP programs are deterministic – basically simulates the
program on every possible input value, this number is far too large to be tractable.
If, however, there does exist a run of the program, that satisfies the influence
condition, we may be lucky to find one early. Nevertheless, it will be impossible

34While SMV can only process CTL with fairness constraints (to which LTL can also be
translated [CGL94]), NuSMV directly supports model checking LTL formulae.
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to find all possible input values for which the program’s runs satisfy the influence
condition in reasonable time with explicit state model checkers. Symbolic model
checking may be able to help in this case. Since most of the input values are
handled uniformly, model checkers such as NuSMV may be able to do the job, but
as we do not have any experimental data, we can only speculate.35

In the area of automatic test data generation, model checking has been suc-
cessfully applied. In [GH99] model checkers have been run on specification models
with a temporal formula designed to find an input sequence for the (determin-
istic) program such that a particular point in the specification is reached. In
[HRV+03] they have applied such techniques to realistic applications using both
explicit state (SPIN) and symbolic model checking (NuSMV). Their conclusion is
that NuSMV finds the shortest test cases possible for almost every case whereas
SPIN’s depth first search often produces excessively long witnesses. For smaller
specifications, SPIN and NuSMV have acceptable runtime requirements, but as
soon as the models become larger, SPIN clearly outruns NuSMV.

We have presented temporal influence conditions in a very theoretic way. For
instance, all arrays have 232 array cells, a rather unrealistic assumption. Obviously,
this blows up the state space and the number of state sequences. In practice
however, we will almost never encounter arrays of that size. Similarly, we assume
that every integer input variable can take 232 different values. Even though this
might be a realistic assumption, in many cases, an influence between two program
statements will not be different for each input variable value. Therefore, in order
to apply this approach in practice, we definitely have to abstract from concrete
variable values to classes of variable values. For example, we could change the
structure for LIMP to A∗

IMP so that integer variables may only take values -5 to
5 plus two special values: The well-known “undefined” ⊥i and “don’t know”
?i. The latter is taken whenever an assignment would normally assign a value
below -5 or above 5 to the variable. Similarly, we have a ?b for the type bool.
The interpreted function operators would then propagate the “don’t know” value
similarly to what they do with the undefined value. We extend the interpretation
of · to ·A∗

IMP(?b) := T. Notice that the negation operator ¬ does not occur in
influence conditions. Thus, this is a conservative approximation of the program
behaviour: For every state sequence Ξ ∈Mp over AIMP of program p that satisfies
an influence condition θ ∈ LTLLIMP , we have a state sequence Ψ ∈ Mp over A∗

IMP

that also satisfies θ.36 We can then apply model checking for the reduced state
space and see if the formula is satisfiable over the more abstract program model. If
not, we know that it is not satisfiable by the program either. Otherwise, we check
if there is a state sequence over AIMP that corresponds to the found state sequence
over A∗

IMP and that satisfies the formula as well. If such a state sequence does not
exist, we may want to reduce our level of abstraction, e. g. increase the number of
possible values for certain variables that have taken the “don’t know” value, and
restart model checking. The model checker FLAVERS [CCO02] is based on the
idea of gradually refining the program model, in its case a trace flow graph for

35Unfortunately, NuSMV does not seem to provide the option to compute all initial states from
which a state sequence that violates the LTL specification starts.

36Note that there is a homomorphism h : AIMP 7→ A∗
IMP. Then, we can set Ψ := h ◦ Ξ.
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multithreaded programs.
Another approach is to use other static analysis techniques to restrict the range

of a variable. Then, we do not have to introduce such an artificial value which
can have undesired effects, see e. g. section 8.1 below. It can also be possible to
apply some kind of design abstraction method or to compute equivalence classes
for variable values in order to reduce the state space. We can not present the
details here because this is beyond the scope of this thesis. However, some ideas
can be found in [Hol00, BMMR01, KPV03].

Once we have found a state sequence that satisfies the temporal influence
condition in question, we can then mask all states that do not lie on the influence
path and reconstruct how the influence actually happens, including possible values
that flow along data flow dependence edges.
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Chapter 8

Examples

In this chapter we present three examples where we use temporal path condi-
tions to analyze programs. As temporal path conditions have not yet been imple-
mented, all examples are pencil-and-paper work and rather small. Nevertheless
they demonstrate the potential of temporal path conditions, but obviously they
can not be seen as a proof that temporal path conditions scale to larger programs.
Even if we are able to generate temporal path conditions for larger programs (and
in more realistic programming languages than IMP), the state explosion problem
with model checking will still persist.

The first example is a purely artificial one, but it has been a standard example
for path conditions. It is a simple program with one loop-carried data dependence.
The next one is also a classic example, a fictitious measurement program from a
cheese scale which contains a calibration path violation [Sne96]. The last example
extends the second one in that setting the calibration factor can only be done after
we have entered the service mode of the measurement program. This example has
been motivated by many embedded systems being equipped with some sort of
service mode in which maintenance features are available and which is activated
by pressing a specific sequence of keys. For example, the service mode of VW cars
in which internal state data is available on the air conditioning display [vwr]. In
the first two examples, we are interested in proving that there exists an influence
path. In the last, our aim is to validate that the weighing scale can only be
calibrated after having pressed the correct sequence of states to enter the service
mode.

8.1 Loop-carried dependences

Here, we present a standard example of path conditions (cf. e. g. [Kri03]) which
we have already mentioned in example 6 (p. 37). Figure 8.1 shows the program p
and its PDG, figure 8.2 (p. 111) shows its transition graph. We are interested in
an influence between lines 1 and 11.

109
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Figure 8.1 Loop-carried flow dependence example program with PDG.

1 a := y;
2 while (n > 0) {
3 x := (-1) * x;
4 if (x > 0) {
5 b := a;
6 } else {
7 c := b;
8 }
9 n := n - 1;

10 }
11 z := c;

entry

a1:=y;

(n1>0)

x2:=
(-1)*x1;

z:=c2;

T

1

2

3

5

(x3>0)

b1:=a2;

c1:=b2;

T

F

T4

7

11

a1 - a2

b1 - b2

c1 - c2

x2 - x3

n3:=n2-1;

T

9

n3 - n2

n3 - n1

x2 - x1

We get for the influence condition IC(1, 11) (without Φ constraints):

IC(1, 11) ⇐⇒ ♦((x3 > 0) ∧ (n1 > 0) U ((n1 > 0)∧!(x3 > 0) ∧ ♦(!(n1 > 0))))

We are now able to apply a model checker like SPIN or NuSMV to the program
and the influence condition to search for state sequences satisfying IC(1, 11).37

We have manually translated the transition graph shown in figure 8.2 with our
semantics of how to extract state sequences thereof into SMV, the input language
of NuSMV, (cf. section A.1.1 in the appendix).

In order to keep the state space small, we restricted the range of integer vari-
ables x and n to { −5, . . . , 5 }∪ { unknown }, where unknown is a symbolic value
that satisfies all constraints. This corresponds to the ?i value proposed at the end
of the last chapter and is a conservative approximation. If we run NuSMV on the
program model and the negated LTL formula, it finds the state sequence shown in
table 8.1. Note that this is not the shortest sequence possible (if x was initially −5
and n 2, we would have saved one iteration and still obtained a witness for the influ-
ence). The influence happens along the path 1 fd

a1−a2
. 5, 5 fd

b1−b2
. 7, 7 fd

c1−c2
. 11.

For the initial values given in the first column (state 1), the states with numbers
2,7,10,13 correspond to the nodes on the influence path.

We have also translated the program into ProMeLa (cf. section A.1.2). If we
run SPIN on it, it finds a shorter sequence that starts in a = b = c = y = z = true,
n = 1 and x = unknown. Then, both (x3 > 0) and !(x3 > 0) are satisfied
simultaneously (the path produced by SPIN passes through node 5) and the loop
can be left after one iteration. Notice that this path satisfies the temporal path

37SPIN expects to be given a never claim for which it tries to find a satisfying sequence whereas
NuSMV expects to be given a specification for which it tries to find a counter example. Hence,
we must give IC(1, 11) to SPIN and ¬IC(1, 11) to NuSMV.
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Figure 8.2 Transition graph for the program shown in figure 8.1.

entry a:=y; x:=(-1)*x;

z:=c;

1 3 5

b:=a;

c:=b;

7

11

(n>0)

n:=n-1;

9

true (x>0)

       !(x>0)

          true

true

       (n>0)

!(n>0)

     !(n>0)

        true

State No. 1 2 3 4 5 6 7 8 9 10 11 12 13 ...
Variable

a F F
b F F
c F F F
n 3 2 1 0
x 5 −5 5 −5
y F
z F F

a1 ⊥b F
a2 ⊥b F
b1 ⊥b F
b2 ⊥b F F
c1 ⊥b F F
c2 ⊥b F
n1 ⊥i 3 2 1 0
n2 ⊥i 3 2 1
n3 ⊥i 2 1 0
x1 ⊥i 5 −5 5
x2 ⊥i −5 5 −5
x3 ⊥i −5 5 −5
y ⊥b F
z ⊥b F

Table 8.1: State sequence for the program in figure 8.1 output by NuSMV. Only
assignments to variables are shown. If a cell is empty, the variable has the same
value as in the previous state.
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condition, but is no witness for the influence. Hence, by reducing the state space
(and thus increasing the number of possible state sequences), we have made the
formula less precise.

If, however, we apply the symbolic model checking approach from section 7.4.2
to the program with AIMP as structure for LIMP, we obtain the following constraint
on the initial assignments:

ξ({ a, b, c, y, z }) ⊆ B⊥ ∧ (ξ(n) > 1 ∧ ξ(x) < 0 ∨ ξ(n) > 2 ∧ ξ(x > 0))∧
ξ({ a1, a2, b1, b2, c1, c2, n1, n2, n3, x1, x2, x3, y, z }) ⊆ ⊥

However, we were not able to find a symbolic model checker that outputs such
constraints.

8.2 A cheese scale

This example is a fictitious measurement software for a cheese scale (figure 8.3).
We introduce a new expression input of type int in IMP to model I/O. We assume
that input does not depend in any way on program variables, i. e. input does
not generate any dependences. Semantically, whenever input occurs in an int
expression, a random value from Z is used for inputAIMP .38

In the model scale, there is a hardware port p weigh for the weight sensor,
an input line p paperout to signal whether the scale has run out of paper, and a
keyboard port p keyb. Whenever a port value has been processed, we assign to it
the next value from the port using input. We do not include an extra update for
the out-of-paper signal line. This port is assumed to be constant for the analysis
and modelled as a Boolean variable. There are two output variables u kg and
disp. The former contains the mass whose weight is being measured, the latter is
filled with 8 characters from the keyboard which can then be displayed or printed.
The display is updated whenever the keyboard buffer contains a return character
(key code 13).

In the PDG for p we unite the nodes for lines 1, 11, and 25 in a single
node called p keyb. Similarly, we include only a single node p weigh for lines
2 and 6. The chop for p keyb and line 5 is shown in figure 8.4. We are inter-
ested whether keyboard input p keyb can influence the mass amount u kg that
is displayed. Hence, we want to compute IC(p keyb, 6) which is a shorthand for
IC(8, 5) ∨ IC(12, 5) ∨ IC(14, 5) ∨ IC(17, 5). For IC(p keyb, 5), we have to consider
the influence paths listed in table 8.2 (p. 114).

38It is easy to see that the input construct does not affect how influence conditions are generated
and simplified.
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Figure 8.3 A fictitious measurement software for a cheese scale.

1 p_keyb := input;
2 p_weigh := input;
3 while (true) {
4 if (p_weigh > 0) {
5 u_kg := p_weigh * kal_kg;
6 p_weigh := input;
7 }
8 if (p_keyb == 13) {
9 i := 0;

10 while (i < 8) {
11 p_keyb := input;
12 disp[i] := p_keyb;
13 if (p_paperout) {
14 if (p_keyb == 43) {
15 kal_kg := kal_kg + 1;
16 } else {
17 if (p_keyb == 45) {
18 kal_kg := kal_kg - 1;
19 }
20 }
21 }
22 i := i + 1;
23 }
24 }
25 p_keyb := input;
26 }

Figure 8.4 Chop for p keyb and line 5 of the PDG for the cheese scale program
in figure 8.3.

entry (true)
u_kg:=

p_weigh2
*kal_kg1

T (p_weigh1
> 0)

4

i1:=0;
(p_keyb1

==13)

(i2<8) (p_paperout)
(p_keyb3

==43)
kal_kg3:=

kal_kg2+1;

(p_keyb4
==45)

kal_kg5:=
kal_kg4-1;

i5:=i4+1;

T

T

T

T

T T T

T

F

53

8

1310 14

p_keyb

i1 - i2
i1 - i4

kal_kg5
kal_kg4

kal_kg5
kal_kg1

kal_kg5
kal_kg2

kal_kg3
kal_kg4

kal_kg3
kal_kg1

kal_kg3
kal_kg2

i5 - i4

i5 - i2

p_keyb
p_keyb1

p_keyb
p_keyb3

p_keyb
p_keyb4

9

15

17 18

22

T



114 CHAPTER 8. EXAMPLES

π1 14 15 5
π2 14 15 18 5
π3 17 18 5
π4 17 18 15 5
π5 14 17 18 5
π6 14 17 18 15 5
π7 8 10 11 17 18 5
π8 8 10 11 17 18 15 5
π9 8 10 11 14 15 5
π10 8 10 11 14 15 18 5
π11 8 10 11 14 17 18 5
π12 8 10 11 14 17 18 15 5
π13 8 10 13 14 15 5
π14 8 10 13 14 15 18 5
π15 8 10 13 14 17 18 5
π16 8 10 13 14 17 18 15 5
π17 8 9 10 11 17 18 5
π18 8 9 10 11 17 18 15 5
π19 8 9 10 11 14 15 5
π20 8 9 10 11 14 15 18 5
π21 8 9 10 11 14 17 18 5
π22 8 9 10 11 14 17 18 15 5
π23 8 9 10 13 14 15 5
π24 8 9 10 13 14 15 18 5
π25 8 9 10 13 14 17 18 5
π26 8 9 10 13 14 17 18 15 5
π27 8 9 22 10 11 17 18 5
π28 8 9 22 10 11 17 18 15 5
π29 8 9 22 10 11 14 15 5
π30 8 9 22 10 11 14 15 18 5
π31 8 9 22 10 11 14 17 18 5
π32 8 9 22 10 11 14 17 18 15 5
π33 8 9 22 10 13 14 15 5
π34 8 9 22 10 13 14 15 18 5
π35 8 9 22 10 13 14 17 18 5
π36 8 9 22 10 13 14 17 18 15 5

Table 8.2: List of influence paths in Π∗(p keyb, 5) for the program in figure 8.3
and its chop from figure 8.4.
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We obtain the following influence conditions for π1, π2, π3, and π4:

♦ IC(π1) ⇐⇒♦((p keyb1 == 13) ∧ (i2 < 8) ∧ (p paperout) ∧ (p keyb3 == 43)∧
♦((p weigh1 > 0) ∧ (p weigh2! = 0) ∧ (kal kg3 == kal kg1)))

♦ IC(π2) ⇐⇒♦((p keyb1 == 13) ∧ (i2 < 8) ∧ (p paperout) ∧ (p keyb3 == 43)∧
♦((p keyb1 == 13) ∧ (i2 < 8) ∧ (p paperout)∧!(p keyb3 == 43)∧
(p keyb4 == 45) ∧ (kal kg3 == kal kg4) ∧ ♦((p keyb1 == 13)∧
(i2 < 8) ∧ (p paperout)∧!(p keyb3 == 43) ∧ (p keyb4 == 45)∧
♦((p weigh1 > 0) ∧ (p weigh2! = 0) ∧ (kal kg5 == kal kg1)))))

♦ IC(π3) ⇐⇒♦((p keyb1 == 13) ∧ (i2 < 8) ∧ (p paperout)∧!(p keyb3 == 43)∧
(p keyb4 == 45) ∧ ♦((p weigh1 > 0) ∧ (p weigh2! = 0)∧
(kal kg5 == kal kg1)))

♦ IC(π4) ⇐⇒♦((p keyb1 == 13) ∧ (i2 < 8) ∧ (p paperout)∧!(p keyb3 == 43)∧
(p keyb4 == 45) ∧ ♦((p keyb1 == 13) ∧ (i2 < 8) ∧ (p paperout)∧
(p keyb3 == 43) ∧ (kal kg5 == kalkg2) ∧ ♦((p keyb1 == 13)∧
(i2 < 8) ∧ (p paperout) ∧ (p keyb3 == 43) ∧ ♦((p weigh1 > 0)∧
(p weigh2! = 0) ∧ (kal kg3 == kal kg1)))))

For influence paths π5 and π6, we have IC(π5) ⇐⇒ IC(π3) and IC(π6) ⇐⇒
IC(π4). For all other influence paths π ∈ { π7, . . . , π36 }, we see there is always a
path ρ ∈ { π1, . . . , π4 } such that π = (π∗, ρ) for some information flow path π∗.
Hence, by definition of IC(π), we have that IC(π) ⇐⇒ IC(π∗)[IC(ρ)/i]. Lemma 21
(p. 77) then gives ♦ IC(π) Â=⇒ ♦ IC(ρ). Thus, we do not have to generate any more
influence conditions. Note further that ♦ IC(14, 15, 18)[♦ IC(π3)/i] ⇐⇒ ♦ IC(π2)
and ♦ IC(17, 18, 15)[♦ IC(π3)/i] ⇐⇒ ♦ IC(π1). It follows from the construction
of IC(14, 15, 18) and IC(17, 18, 15), that ♦ IC(π2) Â=⇒ ♦ IC(π3) and ♦ IC(π4) Â=⇒
♦ IC(π1). Hence, we have ♦ IC(p keyb, 5) ⇐⇒ ♦(IC(π1) ∨ IC(π3)), which can be
simplified39 further to:

♦ IC(p keyb, 5) Â=⇒♦((p keyb1 == 13) ∧ (i2 < 8) ∧ (p paperout)∧
((p keyb3 == 43)∨!(p keyb3 == 43) ∧ (p keyb4 == 45))∧
♦((p weigh1 > 0) ∧ (p weigh2! = 0)∧
((kal kg3 == kal kg1) ∨ (kal kg5 == kal kg1))))

When we look at the simplified condition more closely, we can already see how
keyboard input can influence the weight on the display: First, there must be the
key code 13 in the keyboard buffer and the paper out signal must be on. Second,
there must be either the key code 43 or 45 in the buffer, too. Then, at some later

39 We apply the implication i ∧ k ∨ i′ ∧ k′ ÂÂ (i ∨ i′) ∧ (k ∨ k′) to i := (p keyb3 == 43),
i′ :=!(p keyb3 == 43)∧(p keyb4 == 45), k := ♦((p weigh1 > 0)∧(p weigh2! = 0)∧(kal kg3 ==
kal kg1)), and k′ := ♦((p weigh1 > 0) ∧ (p weigh2! = 0) ∧ (kal kg5 == kal kg1)) from IC(π1)
and IC(π3). All other transformations that we have applied were congruences.
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stage, the weight sensor must send a positive value, i. e. something must be placed
on the scale. Since this formula is rather simple and a close look at it already shows
us how an influence can happen, we do not present what model checking may give
as a satisfying sequence. In this case, we already see that an influence can happen
even though we do not (yet) know the exact conditions on the input variables
for it to happen. In the next example, we extend the measurement software and
apply model checking to the influence condition we obtain there.

8.3 A cheese scale with service mode

Now, we alter the measurement software: We remove the calibration path violation
(ll. 13–21 in figure 8.4 (p. 113)) from the program and add an additional service
mode in which the scale can be calibrated. Figure 8.5 shows the new program. The
variable mode is set to 5 if the software is in service mode (ll. 37–43). Otherwise,
the software is in normal mode (ll. 47–59). As before, in normal mode, the
weight in kg is displayed (u kg, l. 48) and when the keyboard input is keycode
13 (RETURN), eight keycodes are read from the keyboard and displayed in disp
(ll. 51–58). Additionally, the calibration factor kal kg can be incremented and
decremented by pressing + (keycode 43) and - (keycode 45) respectively (ll. 37–43)
in service mode.

To enter the service mode, the user must press a sequence of keys, stored
in the variables s key0 to s key4 (ll. 2–6). In the example, the keycodes are
65,43,66,45,13 which are ASCII encodings of A,+,B,-,RETURN. Whenever the
user enters this keycode sequence, the service mode is activated (ll. 17–32). Note
that all but the last keycode in the sequence are treated like in normal mode, too
(p keyb is not changed in lines 21-32). To leave the service mode, the user presses
keycode 27 (ESC) (ll. 12–15).

Now, by using temporal path conditions, we want to make sure that the user
can influence the figures on the weight display u kg only if he has entered the
correct keycode sequence. Again, we subsume all statements p keyb := input;
in a single node p keyb in the PDG which has outgoing edges to nodes 12, 17, 21,
24, 27, 30, 37, 40, 51, and 55, which are the nodes where p keyb is read. Similarly,
we combine all statements p weigh := input; in a single node p weigh.

Figure 8.6 (p. 118) shows the chop for nodes p keyb and 48, which is the only
node in which u kg occurs. Nodes for lines 1 to 6 and 51 to 58 are not part of the
chop because they do not lie on paths from node p keyb to node kal kg.

As before, there is a large number of different influence paths from p keyb
to 48. However, we see that all of them have to pass either through node 37 or
node 40. Hence, it is sufficient to consider only the four influence paths listed in
table 8.3 (p. 118).

Next, we compute the influence condition ♦ IC(p keyb, 48). By lemma 21
(p. 77), we have

♦ IC(p keyb, 48) ⇐⇒
∨

i∈{ 1,...,4 }
♦ IC(πi).
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Figure 8.5 A fictitious measurement software for a cheese scale with service mode
to set the calibration factor.

1 mode := 0;

2 s_key0 := 65;

3 s_key1 := 43;

4 s_key2 := 66;

5 s_key3 := 45;

6 s_key4 := 13;

7 p_keyb := input;

8 p_weigh := input;

9

10 while (true) {

11

12 if (p_keyb == 27) {

13 mode := 0;

14

15 } else {

16

17 if ((mode == 4) && (p_keyb == s_key4)) {

18 mode := 5;

19 p_keyb := input;

20 }

21 if ((mode == 3) && (p_keyb == s_key3)) {

22 mode := 4;

23 }

24 if ((mode == 2) && (p_keyb == s_key2)) {

25 mode := 3;

26 }

27 if ((mode == 1) && (p_keyb == s_key1)) {

28 mode := 2;

29 }

30 if ((mode == 0) && (p_keyb == s_key0)) {

31 mode := 1;

32 }

33 }

34

35 if (mode == 5) {

36

37 if (p_keyb == 43) {

38 kal_kg := kal_kg + 1;

39 }

40 if (p_keyb == 45) {

41 kal_kg := kal_kg - 1;

42 }

43 p_keyb := input;

44

45 }

46

47 if (p_weigh > 0) {

48 u_kg := p_weigh * kal_kg;

49 }

50

51 if (p_keyb == 13) {

52 i := 0;

53 while (i < 8) {

54 p_keyb := input;

55 disp[i] := p_keyb;

56 i := i + 1;

57 }

58 }

59

60 p_keyb := input;

61 p_weigh := input;

62 }
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Figure 8.6 Chop on nodes p keyb and 48 for the program shown in figure 8.5.
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π1 37 38 48
π2 37 38 41 48
π3 40 41 48
π4 40 41 38 48

Table 8.3: Influence paths for figures 8.5 and 8.6 from nodes 37 and 40 to node
48.
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The influence conditions for π1 to π4 yield:

♦ IC(π1) ⇐⇒ ♦((mode13 == 5) ∧ (p keyb9 == 43)∧
♦((p weigh2 > 0) ∧ (kal kg2 == kal kg5) ∧ (p weigh3! = 0)))

♦ IC(π2) ⇐⇒ ♦((mode13 == 5) ∧ (p keyb9 == 43)∧
♦((mode13 == 5) ∧ (p keyb10 == 45) ∧ (kal kg2 == kal kg3)∧

♦((p weigh2 > 0) ∧ (kal kg4 == kal kg5) ∧ (p weigh3! = 0))))

♦ IC(π3) ⇐⇒ ♦((mode13 == 5) ∧ (p keyb10 == 45)∧
♦((p weigh2 > 0) ∧ (kal kg4 == kal kg5) ∧ (p weigh3! = 0)))

♦ IC(π4) ⇐⇒ ♦((mode13 == 5) ∧ (p keyb10 == 45)∧
♦((mode13 == 5) ∧ (p keyb9 == 43) ∧ (kal kg4 == kal kg1)∧

♦((p weigh2 > 0) ∧ (kal kg2 == kal kg5) ∧ (p weigh3! = 0))))

We see that ♦ IC(π2) Â=⇒ ♦ IC(π3) and ♦ IC(π4) Â=⇒ ♦ IC(π1), hence we have
♦ IC(p keyb, 48) ⇐⇒ ♦ IC(π1) ∨ ♦ IC(π3) which we can simplify40 further to get

♦ IC(p keyb, 48) Â=⇒ ♦((mode13 == 5) ∧ ((p keyb9 == 43) ∨ (p keyb10 == 45))∧
♦((p weigh2 > 0) ∧ (p weigh3! = 0)∧
((kal kg2 == kal kg5) ∨ (kal kg4 == kal kg5)))) =: ♦ θ

When we look at ♦ θ more closely, we see that it is necessary to be in mode
5 (mode13 == 5), i. e. service mode, to influence kal kg and that either keycode
43 or 45 needs to be pressed. Then, some weight must be placed on the scale
(p weigh2 > 0).

However, the formula does not tell us how the service mode is enabled, i. e.
whether we can change kal kg only after having pressed the correct sequence of
keycodes.41 Now, we have two options: On the one hand, we can restrict the set
of information flow paths Π(p keyb, 48) so that we prefix the paths π1 to π4 with
influence paths that model how the service mode is enabled. On the other hand,
we can use model checking to gain further information on how to enable it.

Regarding the former, we note that initially service mode is not enabled (l. 1),
hence (mode13 == 5) is not trivially fulfilled. This atomic formulae comes from
the execution condition of nodes 37 and 40, i. e. is the predicate of node 35. Thus,

we know that ♦
∨4

i=1 IC(35, πi)
Mp⇐⇒ ♦ θ. mode13 in node 35 can be influenced only

by nodes j ∈ N := { 13, 18, 22, 25, 28, 31 }. Hence we also have

♦
∨

v∈{ 13,18,22,25,28,31 }

4∨

i=1

IC(v, 35, π)
Mp⇐⇒ ♦ θ.

40Like in footnote 39, we apply the implication i ∧ k ∨ i′ ∧ k′ ÂÂ (i ∨ i′) ∧ (k ∨ k′), this
time to i := (mode13 == 5) ∧ (p keyb9 == 43), i′ := (mode13 == 5) ∧ (p keyb10 == 45),
k := ♦((p weigh2 > 0) ∧ (kal kg2 == kal kg5) ∧ (p weigh3! = 0)), and k′ := ♦((p weigh1 >
0) ∧ (kal kg4 == kal kg5) ∧ (p weigh3! = 0)) from IC(π1) and IC(π3).

41Note that with Boolean path conditions we would have obtained a Boolean formula similar
to θ.
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Note that every subformula of the disjunction on the left-hand side contains a
subformula that is congruent to jΦ35

mode ∧(mode13 == 5) for some j ∈ N . We see
that this subformula is only satisfiable over Mp for j = 18, i. e. we can simplify
the disjunction to

∨4
i=1 IC(18, 35, π). If we compute this LTL influence condition,

we obtain:

♦((mode3 == 4)∧!(p keyb2 == 27) ∧ (p keyb5 == s key42)∧
♦((mode4 == mode13) ∧ θ))

Mp⇐⇒ ♦ θ

Of course, we can now repeat this approach for (mode3 == 4): we can prefix
the each path (18, 35, πi) with (22, 17). If we iterate this, we obtain the prefix
30,31,27,28,24,25,21,22,17,18,35 and then continue with one of the πi (1 ≤ i ≤ 4)
from table 8.3 (p. 118). The disjunction over the influence conditions for the
prefixed paths simplifies to

♦((mode11 == 0) ∧ a ∧ (p keyb8 == s key02)∧
♦((mode9 == 1) ∧ a ∧ (p keyb7 == s key12) ∧ (mode12 == mode9)∧
♦((mode7 == 1) ∧ a ∧ (p keyb6 == s key22) ∧ (mode10 == mode7)∧
♦((mode5 == 1) ∧ a ∧ (p keyb5 == s key32) ∧ (mode8 == mode5)∧
♦((mode3 == 1) ∧ a ∧ (p keyb5 == s key42) ∧ (mode6 == mode3)∧
♦((mode13 == 5) ∧ (mode4 == mode13) ∧ ((p keyb == 43) ∨ (p keyb10 == 45))∧
♦((p weigh2 > 0) ∧ (p weigh3! = 0)∧

((kal kg2 == kal kg5) ∨ (kal kg4 == kal kg5)))))))))

where a stands for the atomic formula !(p keyb2 == 27).
This LTL formula is still a necessary condition for p keyb influencing u kg.

We see that in order to influence the weight that is displayed, we do have to enter
the correct sequence of keycodes to enter service mode. Note however that this
formula does not require that these keycodes are entered consecutively.

We explicitly see this when we apply model checking to the LTL formulae. We
now convert the program into NuSMV’s and SPIN’s input languages and use these
model checkers to model-check ♦ θ, which is equivalent to θ with respect to Mp.
Actually we want to know something about all paths that satisfy ♦ θ. Hence it
would be ideal to compute all initial states where such a path starts with symbolic
model checking. However, we have not been able to find a tool that can do that
for us, so for now, we settle with finding any such path.

In section A.2.1, we give an SMV model for cheese scale with service mode. It
is not a direct conversion of the IMP program because this would result in far too
many states to be coded manually. We have applied the following measures:

• input statements result in the assignment variable being assigned a random
value from its domain.

• SSA variants of program variables are only computed for mode13, p weigh2,
p weigh3, p keyb9, p keyb10, kal kg2, kal kg4, and kal kg5 as they are the
only ones that occur in the LTL formula. Program execution is independent
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of all other SSA variables because the current value of a program variable is
always available by its variant in Vp.

• We did not include nodes that are not in the chop for p keyb and 48. Equally,
we left out all program variables that no longer occur in the program.

• We have reduced the number of possible values for most variables:

– p keyb is restricted to seven symbolic values: key13, key27, key43,
key45, key65, key66, and keyOther.

– mode is restricted to { 0, . . . , 5 }.
– kal kg is restricted to { −5, . . . , 5 } ∪ { unknown }.
– p weigh is restricted to { 0, 1 }.

All these restrictions are conservative approximations because static analysis
can yield that either a variable always remains in their restricted range or, as
in the case of p keyb, an additional value keyOther is introduced to model
all other possible values; similarly for kal kg. p weigh has been restricted
to { 0, 1 } because it is only tested for being greater than zero or not, both
in the chop of the program and in the LTL formula except in line 48, but
line 48 can not influence any other statements.

When we run NuSMV on ¬♦ θ and the SMV model, it finds a path that
violates ¬♦ θ, i. e. that satisfies ♦ θ. They keycode sequence in this path is other,
65, 43, 66, 45, 13, 66, other, 45, other, 45, other, other, which means that this
path almost directly enters the service mode and then decrements kal kg twice.
After having decremented kal kg once, the state sequence puts some weight on
the scale. The overall output path including a loop at the end contains 34 states.

To see what SPIN find, we have also written a model for the IMP program in
ProMeLa (cf. A.2.2) with similar abstractions. SPIN finds another path, which is
far longer. In the ProMeLa model it consists of 2053 steps. The keycode sequence
for this path is:
13, 13, 13, 27, 43, 45, 65, 13, 27, 43, 45, 65, 13, 43, 43, 13, 45, 45, 65, 65, 66, 13,
43, 45, 13, 13, 13, 13, 13, 13, 27, 27, 13, 27, 13, 43, 43, 45, 45, 65, 13, 43, 13, 43,
13, 45, 45, 65, 65, 66, 13, 43, 45, 13, 27,42 13, 27, 13, 27, 13, 43, 43, 45, 45, 65,
13, 43, 13, 43, 13, 45, 45, 65, 65, 66, 13, 43, 45, 13, 43, 13, 13, 13, 13, 13.

Keycodes that change the mode variable in bold face. Keycodes that change the
kal kg variable are set in italics. Note that the path enters the service mode three
times and aborts it with keycode 27 twice without being able to change kal kg.
At last, kal kg is incremented by pressing keycode 43, then some weight is placed
on the scale. Note that in the ProMeLa model pressing the key with keycode 13
does not result in 8 keycodes being read and transferred in disp because lines 51
to 58 are not part of the chop.

It is worth noticing that on this path, the service mode keycode sequence
does not need to be pressed consecutively, but the measurement software can be

42This keycode 27 does not reset the mode because it lives only between lines 19 and 59.
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switched into service mode by pressing almost randomly long enough. Without
temporal path conditions and model checking we would have had a hard time to
find this bug by static analyses.



Chapter 9

Conclusion

Ten years ago, path conditions were first proposed by Snelting to improve the
precision of slices. In subsequent work [KSR99, RS02, Rob04, SRK] this idea has
been developed further in form of Boolean path conditions to a stage where they
can now be sensibly applied to medium-sized ANSI-C programs.

In this thesis, we explored how the ideas from Boolean path conditions can be
transferred and extended to temporal path conditions. The contributions of this
thesis can be summarized as follows:

• We present LTL path conditions for information flow paths in the program
dependence graph that are satisfiable over the program model if this path
can actually happen. We transferred the building blocks of Boolean path
conditions (execution conditions, Φ and δ constraints) to the temporal case
and came up with new constraint types (intrastatement conditions, loop ter-
mination conditions, etc.). The U operator is used to combine these building
blocks into a single LTL formula for the path. Even though these techniques
are specifically designed for a small imperative programming language, the
underlying concepts can easily be transferred to other programming lan-
guages.

• An influence condition is a necessary condition for an influence to happen
along any information flow path in the chop for two statements. Although
there may be infinitely many, we show how to remain in finite domains
by extending the generation rules for path conditions. A solution to an
influence condition is a state sequence of the program, which makes the
influence explicit. Due to the temporal operators, a temporal path condition
already contains a temporal order on the events necessary for the influence
happening. Even for small programs influence conditions can become very
longish, thus they must inevitably be simplified before they can be presented
to programmers and users. LTL equivalences and congruences can help a
great deal in this, but there are also major simplification opportunities that
exploit the properties of the specific programming language. We show that
LTL path conditions are more precise than Boolean path conditions.

123
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• When LTL formulae become more complex, we show how to use both ex-
plicit state and symbolic model checking to gain more insight into an LTL
influence condition and compute a satisfying state sequence for it. For re-
alistic programs, appropriate design abstraction techniques must be applied
when we convert the imperative program to the model checker’s modelling
language.

• In three application examples, temporal path conditions are used to find a
witness for an influence happening. We gave the path conditions derived
with pencil and paper to professional model checkers, which have found
witness sequences for the influence.

This thesis shows that temporal path conditions are a means to use model
checking to make slicing more precise and informative. In contrast to Boolean
path conditions, we have not yet found a way to make temporal path conditions
scale for larger programs. The main problem here is the exponential increase in
the number of influence paths relevant for the influence condition. Unfortunately,
the distributivity laws for ∧ and ∨ in Boolean logic have no equivalent for the U
operator in LTL, thus we can not yet decompose cycles in the PDG like it is done
for Boolean path conditions.

Regarding future directions, we most urgently need to have an implementation
for temporal path conditions in order to apply them to more programs. However,
it is still unclear how to efficiently simplify LTL formulae algorithmically. Equally,
the imperative programming language must be extended by some features (e. g.
I/O, data structures, etc.) before realistic application examples are possible. Ulti-
mately, it is desirable to extend temporal path conditions to modern programming
concepts like functions, procedures, modules, and objects, but there, the assump-
tion about finite states does no longer hold. Hence, traditional model checking is
no longer easily applicable.



Appendix A

Models for IMP programs

This appendix contains the source code of the handcrafted SMV and ProMeLa
models we have used in the model checking application examples in chapter 8.
The LTL formulae that have been adapted to match the transformational changes
are also part of the model files. For further remarks on transformational aspects,
see the respective sections.

The never claims for SPIN were created by SPIN with the -F option. For the
verification runs, we ran the model checkers only with the standard options, i. e.
nusmv <filename> and spin -a <filename>, gcc -o pan pan.c, pan, spin -t
-p <filename> where <filename> is the name of the file that contains one of the
programs below.

A.1 Models for the example in 8.1

A.1.1 SMV model

1 MODULE main

2 VAR

3 state : {entry, l1, l3, l5, l7, l9, l11, error};

4 a : Bool;

5 b : Bool;

6 c : Bool;

7 n : Counter;

8 x : Counter;

9 y : Bool;

10 z : Bool;

11 a1 : Bool1;

12 a2 : Bool1;

13 b1 : Bool1;

14 b2 : Bool1;

15 c1 : Bool1;

16 c2 : Bool1;

17 n1 : Counter;

18 n2 : Counter;

19 n3 : Counter;

20 x1 : Counter;

21 x2 : Counter;

22 x3 : Counter;

23 y1 : Bool1;

24 z1 : Bool1;

25

125
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26 ASSIGN

27 init(state) := entry;

28 init(a1.initialized) := 0;

29 init(a1.value) := 0;

30 init(a2.initialized) := 0;

31 init(a2.value) := 0;

32 init(b1.initialized) := 0;

33 init(b1.value) := 0;

34 init(b2.initialized) := 0;

35 init(b2.value) := 0;

36 init(c1.initialized) := 0;

37 init(c1.value) := 0;

38 init(c2.initialized) := 0;

39 init(c2.value) := 0;

40 init(n1.initialized) := 0;

41 init(n1.value) := zero;

42 init(n2.initialized) := 0;

43 init(n2.value) := zero;

44 init(n3.initialized) := 0;

45 init(n3.value) := zero;

46 init(x1.initialized) := 0;

47 init(x1.value) := zero;

48 init(x2.initialized) := 0;

49 init(x2.value) := zero;

50 init(x3.initialized) := 0;

51 init(x3.value) := zero;

52 init(y1.initialized) := 0;

53 init(y1.value) := 0;

54 init(z1.initialized) := 0;

55 init(z1.value) := 0;

56

57 init(a.initialized) := 1;

58 init(b.initialized) := 1;

59 init(c.initialized) := 1;

60 init(n.initialized) := 1;

61 init(x.initialized) := 1;

62 init(y.initialized) := 1;

63 init(z.initialized) := 1;

64

65 next(a.initialized) := case

66 state = entry : y.initialized;

67 1 : a.initialized;

68 esac;

69 next(a.value) := case

70 state = entry : y.value;

71 1 : a.value;

72 esac;

73

74 next(b.initialized) := case

75 state = l3 & x.greaterZero : a.initialized;

76 1 : b.initialized;

77 esac;

78 next(b.value) := case

79 state = l3 & x.greaterZero : a.value;

80 1 : b.value;

81 esac;

82

83 next(c.initialized) := case

84 state = l3 & x.notGreaterZero : b.initialized;

85 1 : c.initialized;

86 esac;

87 next(c.value) := case

88 state = l3 & x.notGreaterZero : b.value;

89 1 : c.value;

90 esac;
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91

92 next(n.initialized) := case

93 state = l5 : n.initialized;

94 state = l7 : n.initialized;

95 1 : n.initialized;

96 esac;

97 next(n.value) := case

98 state = l5 : n.decr;

99 state = l7 : n.decr;

100 1 : n.value;

101 esac;

102

103 next(x.initialized) := case

104 state = l1 & n.greaterZero : x.initialized;

105 state = l9 & n.greaterZero : x.initialized;

106 1 : x.initialized;

107 esac;

108 next(x.value) := case

109 state = l1 & n.greaterZero : x.inv;

110 state = l9 & n.greaterZero : x.inv;

111 1 : x.value;

112 esac;

113

114 next(y.initialized) := y.initialized;

115 next(y.value) := y.value;

116

117 next(z.initialized) := case

118 state = l9 & n.notGreaterZero : c.initialized;

119 1 : z.initialized;

120 esac;

121 next(z.value) := case

122 state = l9 & n.notGreaterZero : c.value;

123 1 : z.value;

124 esac;

125

126 next(state) := case

127 state = entry : l1;

128 state = l1 & n.greaterZero : l3;

129 state = l1 & n.notGreaterZero : l11;

130 state = l3 & x.greaterZero : l5;

131 state = l3 & x.notGreaterZero : l7;

132 state = l5 : l9;

133 state = l7 : l9;

134 state = l9 & n.greaterZero : l3;

135 state = l9 & n.notGreaterZero : l11;

136 state = l11 : l11;

137 1 : error;

138 esac;

139

140 next(a1.initialized) := case

141 state = entry : y.initialized;

142 1 : a1.initialized;

143 esac;

144 next(a1.value) := case

145 state = entry : y.value;

146 1 : a1.value;

147 esac;

148

149 next(a2.initialized) := case

150 state = l3 & x.greaterZero : a.initialized;

151 1 : a2.initialized;

152 esac;

153 next(a2.value) := case

154 state = l3 & x.greaterZero : a.value;

155 1 : a2.value;
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156 esac;

157

158 next(b1.initialized) := case

159 state = l3 & x.greaterZero : a.initialized;

160 1 : b1.initialized;

161 esac;

162 next(b1.value) := case

163 state = l3 & x.greaterZero : b.value;

164 1 : b1.value;

165 esac;

166

167 next(b2.initialized) := case

168 state = l3 & x.notGreaterZero : b.initialized;

169 1 : b2.initialized;

170 esac;

171 next(b2.value) := case

172 state = l3 & x.notGreaterZero : b.value;

173 1 : b2.value;

174 esac;

175

176 next(c1.initialized) := case

177 state = l3 & x.notGreaterZero : b.initialized;

178 1 : c1.initialized;

179 esac;

180 next(c1.value) := case

181 state = l3 & x.notGreaterZero : b.value;

182 1 : c1.value;

183 esac;

184

185 next(c2.initialized) := case

186 state = l9 & n.notGreaterZero : c.initialized;

187 1 : c2.initialized;

188 esac;

189 next(c2.value) := case

190 state = l9 & n.notGreaterZero : c.value;

191 1 : c2.value;

192 esac;

193

194 next(n1.initialized) := case

195 state = l1 : n.initialized;

196 state = l9 : n.initialized;

197 1 : n1.initialized;

198 esac;

199 next(n1.value) := case

200 state = l1 : n.value;

201 state = l9 : n.value;

202 1 : n1.value;

203 esac;

204

205 next(n2.initialized) := case

206 state = l5 : n.initialized;

207 state = l7 : n.initialized;

208 1 : n2.initialized;

209 esac;

210 next(n2.value) := case

211 state = l5 : n.value;

212 state = l7 : n.value;

213 1 : n2.value;

214 esac;

215

216 next(n3.initialized) := case

217 state = l5 : n.initialized;

218 state = l7 : n.initialized;

219 1 : n3.initialized;

220 esac;
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221 next(n3.value) := case

222 state = l5 : n.decr;

223 state = l7 : n.decr;

224 1 : n3.value;

225 esac;

226

227 next(x1.initialized) := case

228 state = l1 & n.greaterZero : x.initialized;

229 state = l9 & n.greaterZero : x.initialized;

230 1 : x1.initialized;

231 esac;

232 next(x1.value) := case

233 state = l1 & n.greaterZero : x.value;

234 state = l9 & n.greaterZero : x.value;

235 1 : x1.value;

236 esac;

237

238 next(x2.initialized) := case

239 state = l1 & n.greaterZero : x.initialized;

240 state = l9 & n.greaterZero : x.initialized;

241 1 : x2.initialized;

242 esac;

243 next(x2.value) := case

244 state = l1 & n.greaterZero : x.inv;

245 state = l9 & n.greaterZero : x.inv;

246 1 : x2.value;

247 esac;

248

249 next(x3.initialized) := case

250 state = l3 : x.initialized;

251 1 : x3.initialized;

252 esac;

253 next(x3.value) := case

254 state = l3 : x.value;

255 1 : x3.value;

256 esac;

257

258 next(y1.initialized) := case

259 state = entry : y.initialized;

260 1 : y1.initialized;

261 esac;

262 next(y1.value) := case

263 state = entry : y.value;

264 1 : y1.value;

265 esac;

266

267 next(z1.initialized) := case

268 state = l9 & n.notGreaterZero : c.initialized;

269 1 : z1.initialized;

270 esac;

271 next(z1.value) := case

272 state = entry : c.value;

273 1 : z1.value;

274 esac;

275

276 LTLSPEC ! (F (x3.greaterZero & n1.greaterZero & (n1.greaterZero U (n1.greaterZero &

x3.notGreaterZero & F ( n1.notGreaterZero)))))

277

278

279 MODULE Bool

280 VAR

281 initialized : boolean;

282 value : boolean;

283 DEFINE

284 valid := initialized & value;
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285

286

287 MODULE Bool1

288 VAR

289 initialized : boolean;

290 value : boolean;

291 ASSIGN

292 DEFINE

293 valid := initialized & value;

294

295

296 MODULE Counter

297 VAR

298 initialized : boolean;

299 value : {neg5, neg4, neg3, neg2, neg1, zero, pos1, pos2, pos3, pos4, pos5,

unknown};

300 ASSIGN

301 DEFINE

302 greaterZero := initialized & (value = pos1 | value = pos2 | value = pos3 | value =

pos4 | value = pos5 | value = unknown);

303

304 notGreaterZero := initialized & (!greaterZero | value = unknown);

305

306 decr := case

307 !initialized : value;

308 value = neg5 : unknown;

309 value = neg4 : neg5;

310 value = neg3 : neg4;

311 value = neg2 : neg3;

312 value = neg1 : neg2;

313 value = zero : neg1;

314 value = pos1 : zero;

315 value = pos2 : pos1;

316 value = pos3 : pos2;

317 value = pos4 : pos3;

318 value = pos5 : pos4;

319 value = unknown : unknown;

320 esac;

321

322 inv := case

323 !initialized : value;

324 value = neg5 : pos5;

325 value = neg4 : pos4;

326 value = neg3 : pos3;

327 value = neg2 : pos2;

328 value = neg1 : pos1;

329 value = zero : zero;

330 value = pos1 : neg1;

331 value = pos2 : neg2;

332 value = pos3 : neg3;

333 value = pos4 : neg4;

334 value = pos5 : neg5;

335 value = unknown : unknown;

336 esac;

A.1.2 ProMeLa model

1 mtype = {neg5, neg4, neg3, neg2, neg1, zero, pos1, pos2, pos3, pos4, pos5, unknown};

2

3 bool a_init = true;

4 bool a_val;

5 bool b_init = true;

6 bool b_val;

7 bool c_init = true;

8 bool c_val;
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9 bool n_init = true;

10 mtype n_val;

11 bool x_init = true;

12 mtype x_val;

13 bool y_init = true;

14 bool y_val;

15 bool z_init = true;

16 bool z_val;

17 bool a1_init = false;

18 bool a1_val;

19 bool a2_init = false;

20 bool a2_val;

21 bool b1_init = false;

22 bool b1_val;

23 bool b2_init = false;

24 bool b2_val;

25 bool c1_init = false;

26 bool c1_val;

27 bool c2_init = false;

28 bool c2_val;

29 bool n1_init = false;

30 mtype n1_val;

31 bool n2_init = false;

32 mtype n2_val;

33 bool n3_init = false;

34 mtype n3_val;

35 bool x1_init = false;

36 mtype x1_val;

37 bool x2_init = false;

38 mtype x2_val;

39 bool x3_init = false;

40 mtype x3_val;

41 bool y1_init = false;

42 bool y1_val;

43 bool z1_init = false;

44 bool z1_val;

45

46

47 active proctype main() {

48 if

49 :: a_val = true;

50 :: a_val = false;

51 fi;

52 if

53 :: b_val = true;

54 :: b_val = false;

55 fi;

56 if

57 :: c_val = true;

58 :: c_val = false;

59 fi;

60 if

61 :: n_val = neg5;

62 :: n_val = neg4;

63 :: n_val = neg3;

64 :: n_val = neg2;

65 :: n_val = neg1;

66 :: n_val = zero;

67 :: n_val = pos1;

68 :: n_val = pos2;

69 :: n_val = pos3;

70 :: n_val = pos4;

71 :: n_val = pos5;

72 :: n_val = unknown;

73 fi;
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74 if

75 :: x_val = neg5;

76 :: x_val = neg4;

77 :: x_val = neg3;

78 :: x_val = neg2;

79 :: x_val = neg1;

80 :: x_val = zero;

81 :: x_val = pos1;

82 :: x_val = pos2;

83 :: x_val = pos3;

84 :: x_val = pos4;

85 :: x_val = pos5;

86 :: x_val = unknown;

87 fi;

88 if

89 :: y_val = true;

90 :: y_val = false;

91 fi;

92 if

93 :: z_val = true;

94 :: z_val = false;

95 fi;

96

97 d_step{ a_init = true; a_val = y_val; y1_init = true; y1_val = y_val; a1_init =

true; a1_val = y_val; }

98 d_step{ n1_init = true; n1_val = n_val; }

99 do

100 :: n_val == pos5 || n_val == pos4 || n_val == pos3 || n_val == pos2 || n_val ==

pos1 || n_val == unknown ->

101 d_step{ n1_init = true; n1_val = n_val; }

102 d_step{ x1_init = true; x1_val = x_val; x2_init = true;

103 if

104 :: x_val == neg5 -> x_val = pos5;

105 :: x_val == neg4 -> x_val = pos4;

106 :: x_val == neg3 -> x_val = pos3;

107 :: x_val == neg2 -> x_val = pos2;

108 :: x_val == neg1 -> x_val = pos1;

109 :: x_val == zero -> x_val = zero;

110 :: x_val == pos1 -> x_val = neg1;

111 :: x_val == pos2 -> x_val = neg2;

112 :: x_val == pos3 -> x_val = neg3;

113 :: x_val == pos4 -> x_val = neg4;

114 :: x_val == pos5 -> x_val = neg5;

115 :: x_val == unknown -> x_val = unknown;

116 fi;

117 x2_val = x_val; }

118 d_step{ x3_init = true; x3_val = x_val; }

119 if

120 :: x_val == pos5 || x_val == pos4 || x_val == pos3 || x_val == pos2 || x_val ==

pos1 || x_val == unknown ->

121 d_step{ a2_init = true; a2_val = a_val; b1_init = true; b1_val = a_val; b_val

= a_val; }

122 :: x_val == neg5 || x_val == neg4 || x_val == neg3 || x_val == neg2 || x_val ==

neg1 || x_val == zero || x_val == unknown ->

123 d_step{ b2_init = true; b2_val = b_val; c1_init = true; c1_val = b_val; c_val

= b_val; }

124 fi;

125 d_step{ n2_init = true; n2_val = n_val; n3_init = true;

126 if

127 :: n_val == neg5 -> n_val = unknown;

128 :: n_val == neg4 -> n_val = neg5;

129 :: n_val == neg3 -> n_val = neg4;

130 :: n_val == neg2 -> n_val = neg3;

131 :: n_val == neg1 -> n_val = neg2;

132 :: n_val == zero -> n_val = neg1;
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133 :: n_val == pos1 -> n_val = zero;

134 :: n_val == pos2 -> n_val = pos1;

135 :: n_val == pos3 -> n_val = pos2;

136 :: n_val == pos4 -> n_val = pos3;

137 :: n_val == pos5 -> n_val = pos4;

138 :: n_val == unknown -> n_val = unknown;

139 fi;

140 n3_val = n_val; }

141 :: n_val == neg5 || n_val == neg4 || n_val == neg3 || n_val == neg2 || n_val ==

neg1 || n_val == zero || n_val == unknown ->

142 d_step{ n1_init = true; n1_val = n_val; }

143 break;

144 od;

145 c2_init = true; c2_val = c_val; z1_init = true; z1_val = c_val;

146 }

147

148

149 #define x3g0 (x3_init && (x3_val == pos5 || x3_val == pos4 || x3_val == pos3 ||

x3_val == pos2 || x3_val == pos1 || x3_val == unknown))

150 #define n1g0 (n1_init && (n1_val == pos5 || n1_val == pos4 || n1_val == pos3 ||

n1_val == pos2 || n1_val == pos1 || n1_val == unknown))

151 #define x3ng0 (x3_init && (x3_val == neg5 || x3_val == neg4 || x3_val == neg3 ||

x3_val == neg2 || x3_val == neg1 || x3_val == zero || x3_val == unknown))

152 #define n1ng0 (n1_init && (n1_val == neg5 || n1_val == neg4 || n1_val == neg3 ||

n1_val == neg2 || n1_val == neg1 || n1_val == zero || n1_val == unknown))

153

154

155 never { /* <>(x3g0 && n1g0 U ( n1g0 && x3ng0 && <> (n1ng0)))

156 */

157 T0_init:

158 if

159 :: ((n1g0) && (n1ng0) && (x3g0) && (x3ng0)) -> goto accept_all

160 :: ((n1g0) && (x3g0) && (x3ng0)) -> goto T0_S10

161 :: ((n1g0) && (x3g0)) -> goto T0_S9

162 :: (1) -> goto T0_init

163 fi;

164 T0_S10:

165 if

166 :: ((n1ng0)) -> goto accept_all

167 :: (1) -> goto T0_S10

168 fi;

169 T0_S9:

170 if

171 :: ((n1g0) && (n1ng0) && (x3ng0)) -> goto accept_all

172 :: ((n1g0) && (x3ng0)) -> goto T0_S10

173 :: ((n1g0)) -> goto T0_S9

174 fi;

175 accept_all:

176 skip

177 }

A.2 Models for the example in 8.3

A.2.1 SMV model

1 MODULE main

2 VAR

3 state : {entry, l13, l18, l19, l22, l25, l28, l31, l38, l41, l43, l48, l60, l61,

errorState};

4 p_keyb : {key13, key27, key43, key45, key65, key66, keyOther};

5 p_weigh : 0..1;

6 mode : 0..5;

7 kal_kg : Int;

8 u_kg : Int;
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9 mode13 : Model;

10 p_weigh2 : Weightl;

11 p_weigh3 : Weightl;

12 p_keyb9 : Keyboardl;

13 p_keyb10 : Keyboardl;

14 kal_kg2 : Intl;

15 kal_kg4 : Intl;

16 kal_kg5 : Intl;

17

18 ASSIGN

19 init(state) := entry;

20 init(mode) := 0;

21 init(p_weigh) := weight;

22 init(p_keyb) := keyboard;

23 init(u_kg.value) := 0;

24 init(u_kg.unknown) := 0;

25

26 next(state) := case

27 state = entry : whileloopstate;

28 state = l13: postfirstifstate;

29 state = l18: l19;

30 state = l19 : postfirstifstate;

31 state = l22 : postfirstifstate;

32 state = l25 : postfirstifstate;

33 state = l28 : postfirstifstate;

34 state = l31 : postfirstifstate;

35 state = l38 : l43;

36 state = l41 : l43;

37 state = l43 : case

38 p_weigh > 0 : l48;

39 1 : l60;

40 esac;

41 state = l48 : l60;

42 state = l60 : l61;

43 state = l61 : whileloopstate;

44 1 : errorState;

45 esac;

46

47 next(p_keyb) := case

48 next(state) = l19 : keyboard;

49 next(state) = l43 : keyboard;

50 next(state) = l60 : keyboard;

51 1 : p_keyb;

52 esac;

53

54 next(p_weigh) := case

55 next(state) = l61 : weight;

56 1 : p_weigh;

57 esac;

58

59 next(mode) := case

60 next(state) = l13 : 0;

61 next(state) = l18 : 5;

62 next(state) = l22 : 4;

63 next(state) = l25 : 3;

64 next(state) = l28 : 2;

65 next(state) = l31 : 1;

66 1 : mode;

67 esac;

68

69 next(kal_kg.value) := case

70 next(state) = l38 : kal_kg.incr;

71 next(state) = l41 : kal_kg.decr;

72 1 : kal_kg.value;

73 esac;
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74 next(kal_kg.unknown) := case

75 next(state) = l38 : kal_kg.incrunknown;

76 next(state) = l41 : kal_kg.decrunknown;

77 1 : kal_kg.unknown;

78 esac;

79

80 next(u_kg.value) := case

81 next(state) = l48 : next(kal_kg.value) * next(p_weigh);

82 1 : u_kg.value;

83 esac;

84 next(u_kg.unknown) := case

85 next(state) = l48 : next(kal_kg.unknown);

86 1 : u_kg.unknown;

87 esac;

88

89 next(mode13.initialized) := mode13.initialized | ((state in { l13, l18, l22, l25,

l28, l31, l61 }) & (next(state) in { l38, l41, l43, l48, l60 }));

90 next(mode13.value) := case

91 (state in { l13, l18, l22, l25, l28, l31, l61 }) & (next(state) in { l38, l41,

l43, l48, l60 }) : mode;

92 1 : mode13.value;

93 esac;

94

95 next(p_weigh2.initialized) := p_weigh2.initialized | ((state in { l13, l18, l22,

l25, l28, l31, l43, l61 }) & (next(state) in { l48, l60 }));

96 next(p_weigh2.value) := case

97 (state in { l13, l18, l22, l25, l28, l31, l43, l61 }) & (next(state) in { l48,

l60 }) : p_weigh;

98 1 : p_weigh2.value;

99 esac;

100

101 next(p_weigh3.initialized) := p_weigh3.initialized | next(state) = l48;

102 next(p_weigh3.value) := case

103 next(state) = l48 : p_weigh;

104 1 : p_weigh3.value;

105 esac;

106

107 next(p_keyb9.initialized) := p_keyb9.initialized | ((state in { l13, l18, l22, l25,

l28, l31, l61 }) & (next(state) in { l38, l41, l43 }));

108 next(p_keyb9.value) := case

109 (state in { l13, l18, l22, l25, l28, l31, l61 }) & (next(state) in { l38, l41,

l43 }) : p_keyb;

110 1 : p_keyb9.value;

111 esac;

112

113 next(p_keyb10.initialized) := p_keyb10.initialized | ((state in { l13, l18, l22,

l25, l28, l31, l38, l61 }) & (next(state) in { l41, l43 }));

114 next(p_keyb10.value) := case

115 (state in { l13, l18, l22, l25, l28, l31, l38, l61 }) & (next(state) in { l41,

l43 }) : p_keyb;

116 1 : p_keyb10.value;

117 esac;

118

119 next(kal_kg2.initialized) := kal_kg2.initialized | next(state) = l38;

120 next(kal_kg2.value.value) := case

121 next(state) = l38 : kal_kg.value;

122 1 : kal_kg2.value.value;

123 esac;

124 next(kal_kg2.value.unknown) := case

125 next(state) = l38 : kal_kg.unknown;

126 1 : kal_kg2.value.unknown;

127 esac;

128

129 next(kal_kg4.initialized) := kal_kg4.initialized | next(state) = l41;

130 next(kal_kg4.value.value) := case
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131 next(state) = l41 : kal_kg.value;

132 1 : kal_kg4.value.value;

133 esac;

134 next(kal_kg4.value.unknown) := case

135 next(state) = l41 : kal_kg.unknown;

136 1 : kal_kg4.value.unknown;

137 esac;

138

139 next(kal_kg5.initialized) := kal_kg5.initialized | next(state) = l48;

140 next(kal_kg5.value.value) := case

141 next(state) = l48 : kal_kg.value;

142 1 : kal_kg5.value.value;

143 esac;

144 next(kal_kg5.value.unknown) := case

145 next(state) = l48 : kal_kg.unknown;

146 1 : kal_kg5.value.unknown;

147 esac;

148

149

150 DEFINE

151 keyboard := {key13, key27, key43, key45, key65, key66, keyOther};

152 weight := {0, 1};

153

154 postfirstifstate := case

155 mode = 5 & p_keyb = key43 : l38;

156 mode = 5 & p_keyb = key45 : l41;

157 mode = 5 : l43;

158 p_weigh > 0 : l48;

159 1 : l60;

160 esac;

161

162 whileloopstate := case

163 p_keyb = key27 : l13;

164 mode = 4 & p_keyb = key13 : l18;

165 mode = 3 & p_keyb = key45 : l22;

166 mode = 2 & p_keyb = key66 : l25;

167 mode = 1 & p_keyb = key43 : l28;

168 mode = 0 & p_keyb = key65 : l31;

169 1 : postfirstifstate;

170 esac;

171

172 LTLSPEC !(F(mode13.initialized & mode13.value = 5 & ((p_keyb9.initialized &

p_keyb9.value = key43) | (p_keyb10.initialized & p_keyb10.value = key45)) &

F(p_weigh2.initialized & p_weigh2.value > 0 & p_weigh3.initialized &

p_weigh3.value != 0 & ((kal_kg2.initialized & kal_kg5.initialized &

kal_kg2.value.unknown = kal_kg5.value.unknown & (kal_kg2.value.value =

kal_kg5.value.value | kal_kg2.value.unknown)) | (kal_kg4.initialized &

kal_kg5.initialized & kal_kg4.value.unknown = kal_kg5.value.unknown &

(kal_kg4.value.value = kal_kg5.value.value | kal_kg4.value.unknown))))))

173

174 MODULE Int

175 VAR

176 unknown : boolean;

177 value : -5..5;

178 DEFINE

179 incr := case

180 unknown : unknown;

181 value = 5 : unknown;

182 1 : value + 1;

183 esac;

184 incrunknown := unknown | value = 5;

185 decr := case

186 unknown : unknown;

187 value = -5 : unknown;

188 1 : value - 1;
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189 esac;

190 decrunknown := unknown | value = -5;

191

192 MODULE Intl

193 VAR

194 initialized : boolean;

195 value : Int;

196 ASSIGN

197 init(initialized) := 0;

198

199 MODULE Model

200 VAR

201 initialized : boolean;

202 value : 0..5;

203 ASSIGN

204 init(initialized) := 0;

205

206 MODULE Weightl

207 VAR

208 initialized : boolean;

209 value : 0..2;

210 ASSIGN

211 init(initialized) := 0;

212

213 MODULE Keyboardl

214 VAR

215 initialized : boolean;

216 value : {key13, key27, key43, key45, key65, key66, keyOther};

217 ASSIGN

218 init(initialized) := 0;

A.2.2 ProMeLa model

1 mtype = {key13, key27, key43, key45, key65, key66, keyOther};

2

3 mtype p_keyb;

4 int p_weigh;

5 byte mode;

6 int kal_kg;

7 bool kal_kg_unknown;

8 bool mode13_init = false;

9 int mode13_val;

10 bool p_weigh2_init = false;

11 int p_weigh2_val;

12 bool p_weigh3_init = false;

13 int p_weigh3_val;

14 bool p_keyb9_init = false;

15 mtype p_keyb9_val;

16 bool p_keyb10_init = false;

17 mtype p_keyb10_val;

18 bool kal_kg2_init = false;

19 int kal_kg2_val;

20 bool kal_kg2_unknown;

21 bool kal_kg4_init = false;

22 int kal_kg4_val;

23 bool kal_kg4_unknown;

24 bool kal_kg5_init = false;

25 int kal_kg5_val;

26 bool kal_kg5_unknown;

27 int u_kg;

28 bool u_kg_unknown;

29

30

31 active proctype scale() {

32 mode = 0;
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33 if

34 :: p_keyb = key13;

35 :: p_keyb = key27;

36 :: p_keyb = key43;

37 :: p_keyb = key45;

38 :: p_keyb = key65;

39 :: p_keyb = key66;

40 :: p_keyb = keyOther;

41 fi;

42

43 do

44 :: if

45 :: (p_keyb == key27) ->

46 mode = 0;

47 :: else ->

48 if

49 :: ((mode == 4) && (p_keyb == key13)) ->

50 mode = 5;

51 if

52 :: p_keyb = key13;

53 :: p_keyb = key27;

54 :: p_keyb = key43;

55 :: p_keyb = key45;

56 :: p_keyb = key65;

57 :: p_keyb = key66;

58 :: p_keyb = keyOther;

59 fi

60 :: else

61 fi;

62 if

63 :: ((mode == 3) && (p_keyb == key45)) -> mode = 4;

64 :: else

65 fi;

66 if

67 :: ((mode == 2) && (p_keyb == key66)) -> mode = 3;

68 :: else

69 fi;

70 if

71 :: ((mode == 1) && (p_keyb == key43)) -> mode = 2;

72 :: else

73 fi;

74 if

75 :: ((mode == 0) && (p_keyb == key65)) -> mode = 1;

76 :: else

77 fi;

78 fi;

79 d_step { mode13_init = true; mode13_val = mode; }

80 if

81 :: (mode == 5) ->

82 d_step { p_keyb9_init = true; p_keyb9_val = p_keyb; }

83 if

84 :: (p_keyb == key43) ->

85 d_step { if

86 :: kal_kg < 5 && !kal_kg_unknown -> kal_kg++;

87 :: else -> kal_kg = 0; kal_kg_unknown = true;

88 fi; kal_kg2_init = true; kal_kg2_val = kal_kg; kal_kg2_unknown =

kal_kg_unknown; }

89 :: else

90 fi;

91 d_step { p_keyb10_init = true; p_keyb10_val = p_keyb; }

92 if

93 :: (p_keyb == key45) ->

94 d_step { if

95 :: kal_kg > -5 && !kal_kg_unknown -> kal_kg--;

96 :: else -> kal_kg = 0; kal_kg_unknown = true;
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97 fi; kal_kg4_init = true; kal_kg4_val = kal_kg; kal_kg4_unknown =

kal_kg_unknown; }

98 :: else

99 fi;

100 if

101 :: p_keyb = key13;

102 :: p_keyb = key27;

103 :: p_keyb = key43;

104 :: p_keyb = key45;

105 :: p_keyb = key65;

106 :: p_keyb = key66;

107 :: p_keyb = keyOther;

108 fi

109 :: else

110 fi;

111

112 d_step { p_weigh2_init = true; p_weigh2_val = p_weigh; }

113 if

114 :: (p_weigh > 0) ->

115 d_step { p_weigh3_init = true; p_weigh3_val = p_weigh; kal_kg5_init = true;

kal_kg5_val = kal_kg; kal_kg5_unknown = kal_kg_unknown; }

116 if

117 :: kal_kg_unknown -> u_kg = 0; u_kg_unknown = true;

118 :: else -> u_kg = kal_kg * p_weigh;

119 fi

120 :: else

121 fi;

122

123 if

124 :: p_keyb = key13;

125 :: p_keyb = key27;

126 :: p_keyb = key43;

127 :: p_keyb = key45;

128 :: p_keyb = key65;

129 :: p_keyb = key66;

130 :: p_keyb = keyOther;

131 fi;

132

133 if

134 :: p_weigh = 0;

135 :: p_weigh = 1;

136 fi

137 od

138 }

139

140 #define mode13e5 (mode13_init && mode13_val == 5)

141 #define p_keyb9e43 (p_keyb9_init && p_keyb9_val == key43)

142 #define p_keyb10e45 (p_keyb10_init && p_keyb10_val == key45)

143 #define p_weigh2g0 (p_weigh2_init && p_weigh2_val > 0)

144 #define p_weigh3n0 (p_weigh3_init && p_weigh3_val != 0)

145 #define kal_kg2e5 (kal_kg2_init && kal_kg5_init && kal_kg2_val == kal_kg5_val)

146 #define kal_kg4e5 (kal_kg4_init && kal_kg5_init && kal_kg4_val == kal_kg5_val)

147

148 never { /* <>(mode13e5 && ((p_keyb9e43) || (p_keyb10e45)) && <>((p_weigh2g0) &&

(p_weigh3n0) && ((kal_kg2e5) || (kal_kg4e5))))

149 */

150 T0_init:

151 if

152 :: ((((kal_kg2e5) && (mode13e5) && (p_keyb10e45) && (p_weigh2g0) &&

(p_weigh3n0)) || ((((kal_kg4e5) && (mode13e5) && (p_keyb10e45) &&

(p_weigh2g0) && (p_weigh3n0)) || ((((kal_kg2e5) && (mode13e5) &&

(p_keyb9e43) && (p_weigh2g0) && (p_weigh3n0)) || ((kal_kg4e5) &&

(mode13e5) && (p_keyb9e43) && (p_weigh2g0) && (p_weigh3n0)))))))) ->

goto accept_all

153 :: ((((mode13e5) && (p_keyb10e45)) || ((mode13e5) && (p_keyb9e43)))) -> goto
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T0_S6

154 :: (1) -> goto T0_init

155 fi;

156 T0_S6:

157 if

158 :: ((((kal_kg2e5) && (p_weigh2g0) && (p_weigh3n0)) || ((kal_kg4e5) &&

(p_weigh2g0) && (p_weigh3n0)))) -> goto accept_all

159 :: (1) -> goto T0_S6

160 fi;

161 accept_all:

162 skip

163 }



Bibliography

[All70] Francis E. Allen. Control Flow Analysis. In Proceedings of an ACM
SIGPLAN Symposium on Compiler Optimization, volume 5(7) of
SIGPLAN Notices, pages 1–19, 1970.

[BCM+90] J. R. Burch, E. M. Clarke, Kenneth L. McMillan, D. L. Dill, and
L. J. Hwang. Symbolic Model Checking: 1020 States and Beyond. In
Proceedings of the Fifth Annual IEEE Symposium on Logic in Com-
puter Science, pages 1–33, Washington, D.C., 1990. IEEE Computer
Society Press.

[BLP73] D. E. Bell and L. J. La Padula. Secure computer systems: Mathemat-
ical foundations. Technical Report MTR-2547, MITRE Corporation,
1973.

[BMMR01] Thomas Ball, Rupak Majumdar, Todd D. Millstein, and Sriram K.
Rajamani. Automatic Predicate Abstraction of C Programs. In Pro-
ceedings of the 2001 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), volume 36(5) of SIG-
PLAN Notices, pages 203–213, Snowbird, UT, June 2001.

[Bry86] Randal E. Bryant. Graph-Based Algorithms for Boolean Function
Manipulation. IEEE Transactions on Computers, 35(8):677–691, Au-
gust 1986.
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Glossary

R(A) Image of A ⊆ X under the binary relation R ⊆ X × Y ,
p. 8

(A, τT , ιF , ιR) Structure for a language consisting of a universe A, a type
function τT for the universe, and the interpretation func-
tions ιF and ιR for function and predicate operators, p. 18

(Q,Σ, ∆, Υ, F ) The Büchi automaton with states Q over the alphabet Σ
with transition relation ∆ ⊆ Q × Σ × Q, initial states
Υ ⊆ Q and accepting states F ⊆ Q, p. 91

(Q,Υ, ∆, L) The Kripke structure over W ⊆ W with states set Q,
initial states Υ ⊆ Q, transition relation ∆ ⊆ Q×Q and a
labelling function L : Q 7→ P (W ), p. 90

(V, E,¯ Â, Â̄ ) Multigraph with nodes V , edges E and mappings
¯ Â, Â̄ : E 7→ V that assign each edge its source and
target node, p. 8

L·M The typing function V 7→ T for typed variable identifiers,
p. 18

LeMA The set of universe elements of A of type LeM for expression
e ∈ E, p. 18

ÂÂ Implication between LTL formulae, p. 15
GÃ v

GÃ w in a graph G if there is a path π : v GI∗ w, p. 9
¯ Â The mapping that assigns each edge in a (multi)graph its

source node, p. 8
Â̄ The mapping that assigns each edge in a (multi)graph its

target node, p. 8
ÂMÂ Implication between LTL formulae over a language L with

respect to M ⊆MA
X,W , X ⊆ V, W ⊆ W, p. 21

cd
p .∗ The reflexive and transitive closure of the control depen-

dence relation cd
p . for an IMP program p, p. 27

w cd
p . v Node v is control dependent on node w in the CFG CFGp

for the IMP program p, p. 27
v dd

x . w The def-def dependence from v to w with respect to vari-
able x, p. 30

v dd
x,π,u. w The def-def dependence from node v to node w with re-

spect to variable x along the CFG path π loop-carried by
loop node u, p. 30

147



148 GLOSSARY

v dd
x,π. w The def-def dependence from node v to node w with re-

spect to variable x along the CFG path π, p. 30
v fd

x. w The flow dependence from v to w with respect to variable
x, p. 30

v fd
x,π,u. w The flow dependence from node v to node w with respect

to variable x along the CFG path π loop-carried by loop
node u, p. 30

v fd
x,π. w The flow dependence from node v to node w with respect

to variable x along the CFG path π, p. 30
θ Shorthand for θ[true /W (θ)], p. 20
R−1 Inverse relation of the binary relation R ⊆ X × Y , p. 8
aA The interpretation of the atomic formula a ∈ A in struc-

ture A, p. 18
eA The interpretation of expression e ∈ E in structure A,

p. 18
≺ Â Equivalence relation on LTL formulae, p. 15
≺MÂ Equivalence relation between LTL formulae over a lan-

guage L with respect to M ⊆ MA
X,W , X ⊆ V, W ⊆ W,

p. 21
θ 〈〈◦,i〉〉 The operands of the innermost binary operator of type ◦ ∈

{ U ,∨,∧,→} in the LTL formula θ one of which contains
the propositional variable i ∈ W, p. 12

θ 〈〈◦,i |κ〉〉 The LTL formula we obtain from θ by replacing the small-
est subformula of θ of type ◦ ∈ { U ,∧,∨,→} that contains
the propositional variable i ∈ W with the LTL formula κ,
p. 12

¹π v ¹π w iff node v ∈ V(π) comes no later than node w ∈
V(π) in path π, p. 9

G1 ⊆ G2 G1 is a subgraph of G2, p. 9
M⇐⇒ Congruence relation between LTL formulae over a lan-

guage L with respect to M ⊆ MA
X,W , X ⊆ V, W ⊆ W,

p. 21
≺π v ¹π w iff node v ∈ V(π) comes before node w ∈ V(π) in

path π, p. 9
MÂ=⇒ Entailment between LTL formulae over a language L with

respect to M ⊆MA
X,W , X ⊆ V, W ⊆ W, p. 21

e[e1/x1, . . . , en/xn] Expression e where variable identifier xi is simultaneously
replaced by expression ei of type LxiM, 1 ≤ i ≤ n, p. 18

θ[θ1/i1, . . . , θn/in] The LTL formula we obtain from θ by simultaneously re-
placing all occurrences of ii with θi, 1 ≤ i ≤ n, p. 11

θ[ϑ/W ] The LTL formula we obtain from θ by replacing all propo-
sitional variables in W ⊆ W with the LTL formula ϑ, p. 12
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ω[R ← P ] The environment for the Kripke structure M =
(Q,Υ, ∆, L) we obtain from the environment ω ∈ P (Q)X

by assigning P ⊆ Q to the relational variable R ∈ X , p. 96
JfKωM The set of states of the Kripke structure M in which the

µ-calculus formula f ∈ MUM holds in the environment ω,
p. 96

JθKM The set of states of the Kripke structure M modelled by
the Boolean formula θ, p. 97

⊥ The set { ⊥a,⊥b,⊥i } of undefined values in the structure
AIMP, p. 25

² Ξ ² θ iff Ξ is a model for the LTL formula θ, p. 13
fA Restriction of f : X 7→ Y on A ⊆ X, p. 8
GW Subgraph of G generated by nodes W ⊆ V (G), p. 9
.
⋃

M Disjoint union of all sets in M , p. 8
.
⋃

λ∈Λ Mλ Disjoint union over a family of sets (Mλ)λ∈Λ, p. 8⋃
M Union of all sets in M , p. 7⋃
λ∈Λ Mλ Union of a family of sets (Mλ)λ∈Λ, p. 7

|π| The length (number of edges) of path π, p. 9

A The set
{

a : Z⊥ 7→ Z⊥
∣∣∣ a(⊥i) = ⊥i

}
of values of type

array in the structure AIMP, p. 25
A The set of atomic formulae for a language L, p. 18
A A Büchi automaton, p. 91
A Structure for a language, represented by a quadruple

(A, τT , ιF , ιR), p. 18
AIMP The structure over LIMP to interpret IMP expressions and

atomic formulae in LTL formulae over, p. 24
A′

IMP The structure over LIMP to interpret IMP expressions and
atomic formulae in Boolean path conditions over, p. 25

ℵ The Hebrew letter “aleph”, usually denotes a propositional
variable, p. 10

α The labelling function for edges in a control flow graph,
p. 26

α The labelling function for edges in the control dependence
graph for an IMP program, p. 28

Ap The Büchi automaton for the IMP program p, p. 91
AX The set of all atomic formulae a ∈ A with typed variables

from X ⊆ V, i. e. V (a) ⊆ X, p. 20

B Set of the Boolean truth values, { T, F }, p. 8
B⊥ The set B ∪ { ⊥i } of values of type bool in the structure

AIMP, p. 25
i The Hebrew letter “beth”, usually denotes a propositional

variable, p. 10
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ie The propositional variable that we identify with the con-
trol dependence edge e, p. 58

viw
x The propositional variable identified with the data depen-

dence v fd
x. w or v dd

x . w, p. 58
BPC(π) Boolean path condition for the PDG path π, p. 37
BPC(s, t) Boolean path condition for the two statements s and t,

p. 37

C The set of control dependence edges in the control depen-
dence graph, p. 28

CDGp The control dependence graph for the IMP program p,
p. 28

CFGp The control flow graph for the IMP program p, p. 26
Cl (θ) The closure of the LTL formula θ, p. 93

D The set of flow and def-def dependence edges in the data
dependence graph, p. 31

k The Hebrew letter “daleth”, usually denotes a proposi-
tional variable, p. 10

DDGp The data dependence graph for the IMP program p, p. 31
def(v) The set of all IMP variable occurrences that are defined in

the IMP statement v, p. 29
δ(ρ, η) Data dependence edge conditions for the subpath ρ of def-

def-use edges, η is an arbitrary LTL formula over LIMP,
p. 52

δG(v fd
a. w) The global array constraint for the flow dependence v fd

a.
w with respect to the array variable a, p. 40

δl (e) The loop termination condition along the data dependence
edge e, p. 51

δπ(ρ) The δ constraint for the maximal def-def-use subpath ρ of
the information flow path π, p. 39

δe
x The intrastatement condition for variable x in expression

e ∈ E, p. 54
δw
x The intrastatement condition for the occurrence x of the

variable x read in statement w, p. 54
DOM (w) The set of nodes that dominate w in a CFG, p. 27
v DOMw v dominates w in a CFG, p. 26

E Set of expressions, p. 18
E((v, w), λ) Execution condition for the control dependence edge

(v, w) ∈ C and label λ ∈ α((v, w)), p. 35
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E
(
P f

eπ

)
The joint execution condition for all cyclic paths that can
be inserted in the influence path π after f ∈ E(π) ·∪ { ε }
and before eπ ∈ E(π) while maintaining the information
flow condition and that are not open array dependence
cycles, p. 64

E(π) Execution condition for the control dependence path π :
ve CDGp

I∗ v in the CDG from the entry node to node v,
p. 35

E(π) Set of edges in path π, p. 9
E(s) The execution condition for node s, p. 48
Eª(s) The execution condition from loop predicates for node s,

p. 48
Ecd(s) Execution condition from control dependence for the node

s in the PDG, p. 35
Eδ(e) The execution condition along the data dependence edge

e ∈ D, p. 51
el (θ) The set of elementary formulae of the LTL formula θ, p. 98
E% The joint execution condition for all nodes and edges in

the PDG path %, p. 60
EX The set of all expressions e ∈ E with typed variables from

X ⊆ V, i. e. V (e) ⊆ X, p. 20

GA The transition graph for the Büchi automaton A, p. 91
ג The Hebrew letter “gimel”, usually denotes a propositional

variable, p. 10
GM The transition graph for the Kripke structure M, p. 90

IC(π) The influence condition for the influence path π, p. 64
IC(s, t) The LTL influence condition for statement s influencing

statement t, p. 57
v IDOMw v immediately dominates w in a CFG, p. 27
IMP The set of all IMP programs, p. 23
ι The initial state of the Büchi automaton for an IMP pro-

gram, p. 91
ιF Interpretation function for function operators in a struc-

ture, p. 18
ιR Interpretation function for predicate operators in a struc-

ture, p. 18
ISp The set of all initial states for the IMP program p, p. 45

L The labelling function for flow and def-def dependence
edges in the data dependence graph, p. 31

L (A) The language accepted by the Büchi automaton A, p. 91
Lc

(
v dd

x . w
)

The set of loop predicate nodes that may carry the def-def
dependence from v to w with respect to variable x, p. 31
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Lc
(
v fd

x. w
)

The set of loop predicate nodes that may carry the flow
dependence from v to w with respect to variable x, p. 31

LIMP The language for IMP expressions and atomic formulae,
p. 24

Lt (s) The set of loop predicate nodes whose loop must terminate
before the statement s can be executed, p. 48

LTL The set of LTL formulae over propositional variables, p. 10
LTLL The set of all LTL formulae over the language L, p. 19
LTLLX The set of LTL formulae over L with typed variables from

X ⊆ V and no propositional variables, p. 20
LTLLX,W The set of LTL formulae over L with typed variables from

X ⊆ V and propositional variables from W ⊆ W, p. 20
Lx

(
v dd

x . w
)

The set of loop predicate nodes that are left by the def-def
dependence v dd

x . w, p. 31
Lx

(
v fd

x. w
)

The set of loop predicate nodes that are left by the flow
dependence v fd

x. w, p. 31

M A Kripke structure, p. 90
MA

X The set of all state sequences in structure A over X, p. 20
MA

X,W The set of all extended state sequences in structure A over
X and W , p. 20

Mp The Kripke structure for the IMP program p, p. 90
Mp The set of all state sequences for the IMP program p, p. 46
Mθ The tableau for the LTL formula θ, p. 98
MUM The set of µ-calculus formulae over the Kripke structure

M, p. 95
MW The set of all extended state sequences in MA

X,W that ex-
tend state sequences from M ⊆MA

X , p. 21
MW The set of all state sequences over W , p. 13

N Natural numbers 0, 1, 2, . . ., p. 8

OLTL The set of LTL operators, p. 10
OMU The set of operators for µ-calculus formulae, p. 95

P (X) The power set of X, p. 8
PC(π) The temporal path condition for the information flow path

π, p. 54
PDGp The program dependence graph for the IMP program p,

p. 32
PDOM (w) The set of nodes that postdominate w in a CFG, p. 27
v PDOMw v postdominates w in a CFG, p. 26
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pf,i State formula for function or predicate operator f that
expresses a necessary condition over parameters to f other
than the i-th one for f not being constant over AIMP except
for undefined values in the i-th parameter, p. 53

Φ(x0, x1, . . . , xn) Φ constraint generated by the Φ function x0 :=
Φ(x1, . . . , xn), p. 35

vΦw
x Φ constraint for the flow (def-def) dependence edge v fd

x.

w (v dd
x . w), p. 36

π Path in a graph G, p. 9
Π(π) The set of all information flow paths that contain the in-

fluence path π, p. 64
Π(s, t) The set of all information flow paths from s to t, p. 39
Π∗(s, t) The set of all influence paths from s to t, p. 64
Π∗∗(s, t) The set of all cycle-free information flow paths from s to

t in PDGp, p. 41
Ππ′ The set of all information flow paths from Π(π′) whose first

and last edge is identical to those of the path π′ which is
a subpath of an influence path, p. 71

π : v GI∗ w Path in graph G from v ∈ V (G) to w ∈ V (G), p. 9
pred(e) Predecessor edge to e in a path π, p. 9
pred(v) Set of predecessor nodes u ∈ V for v such that (u, v) ∈ E

in graph G = (V,E), p. 8

reuse(v) The set of all IMP variable occurrences that are reused in
the IMP statement v, p. 29

sat(η) The set of states of the tableau for the LTL formula θ in
which the subformula or elementary formula η of θ holds,
p. 98

SA
X The set of all states in structure A over X, p. 20

SF The set of all state formulae over propositional variables,
p. 10

SFL The set of all state formulae over the language L, p. 19
SFLX The set of all state formulae over L with typed variables

from X ⊆ V and no propositional variables, p. 20
SFLX,W The set of all state formulae over L with typed variables

from X ⊆ V and propositional variables from W ⊆ W,
p. 20

succ(e) Successor edge to e in a path π, p. 9
succ(v) Set of successor nodes u ∈ V to v such that (v, u) ∈ E in

graph G = (V, E), p. 8
SW The set of all states over W ⊆ W, SW = BW , p. 13

T The set of types in a language, p. 18
TGp The transition graph for the IMP program p, p. 44
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τT Type function for the universe of a structure, p. 18

use(e) The set of all IMP variable occurrences that are read in
the IMP expression e, p. 29

use(v) The set of all IMP variable occurrences that are read in
the IMP statement v, p. 29

V The set of all variables in IMP, p. 24
V The countable set of typed variable identifiers, p. 18
V (e) Set of typed variables in expression e, p. 18
V(π) Set of nodes in path π, p. 9
ve The entry node in a control flow graph, p. 26
Vp The set of program variables (identifiers) in the IMP pro-

gram p, p. 45
Vp The set of SSA program variables in the IMP program p,

p. 45
Vπ′ The set of all program variables from Vp accessed on a

CFG path that corresponds to an information flow path
from Ππ′ , p. 71

V (θ) The set of all typed variables that occur inside atomic
formulae in the LTL formula θ, p. 19

vx The exit node in a control flow graph, p. 26

W The countable set of propositional variables for LTL for-
mulae, p. 10

W (θ) The set of propositional variables that occur in the LTL
formula θ, p. 11

W+
E′ Set of nodes that are reachable in the graph G from W ⊆

V (G) via edges in E′ ⊆ E (G), p. 9

X The set of relational variables, p. 95
X∗ Set of all finite words or all tuples over X, p. 8
X+ Set of all nonempty finite words or all nonempty tuples

over X, p. 8
X/f Partition on X induced by f : X 7→ Y . X/f ={

f−1(y)
∣∣ y ∈ f(X)

}
, p. 8

Ξ Usually used to denote a state sequence, p. 13
ξ Usually used to denote a state, p. 13
ξ(a) The value of the atomic formula a ∈ A in state ξ, p. 20
ξ(e) The value of expression e ∈ E in state ξ, p. 20
Xω Set of all infinite words or infinite tuples over X, p. 8

Z Set of integers . . . ,−2,−1, 0, 1, 2, . . ., p. 8
Z Set of 32-bit integers

{−231, . . . , 231 − 1
}
, p. 8
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Z⊥ The set Z ∪ { ⊥i } of values of type int in the structure
AIMP, p. 24

ZLTL The alphabet for LTL formulae over propositional vari-
ables, p. 10

ZMU The alphabet for µ-calculus formulae, p. 95
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