
On Temporal Path Conditions in Dependence Graphs

Andreas Lochbihler∗
Lehrstuhl Softwaresysteme

Universität Passau
lochbihl@fim.uni-passau.de

Gregor Snelting
Lehrstuhl Softwaresysteme

Universität Passau
snelting@fim.uni-passau.de

Abstract

Program dependence graphs are a well-established de-
vice to represent possible information flow in a program.
Path conditions in dependence graphs have been proposed
to express more detailed circumstances of a particular flow;
they provide precise necessary conditions for information
flow along a path or chop in a dependence graph. Ordinary
boolean path conditions however cannot express temporal
properties, e.g. that for a specific flow it is necessary that
some condition holds, and later another specific condition
holds.

In this contribution, we introduce temporal path con-
ditions, which extend ordinary path conditions by tempo-
ral operators in order to express temporal dependencies
between conditions for a flow. We present motivating ex-
amples, generation and simplification rules, application of
model checking to generate witnesses for a specific flow,
and a case study. We prove the following soundness prop-
erty: if a temporal path condition for a path is satisfiable,
then the ordinary boolean path condition for the path is sat-
isfiable. The converse does not hold, indicating that tempo-
ral path conditions are more precise.

1. Introduction

Program dependence graphs (PDGs) are a well-
established device to represent possible information flow
in a program. They are used for e.g. program slicing, de-
bugging, reengineering, and security analysis; e.g., infor-
mation flow control (IFC), a technique for discovering ille-
gal flow from secret variables to public ports, can be based
on PDGs, resulting in a more precise analysis than previous
type-based approaches [23, 13]. PDGs today can handle
medium-sized programs in full C or Java, but can only indi-
cate if an information flow between two program points is
possible or definitely impossible. Path conditions in PDGs,
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first proposed by Snelting [22], were to our knowledge the
first means to express more detailed circumstances of a par-
ticular flow [23]; they provide necessary and precise con-
ditions for information flow along a path in a dependence
graph. Path conditions are boolean expressions over pro-
gram variables, generated from conditions in if- or while-
statements, as well as additional constraints extracted from
a program. If a path condition cannot be satisfied, no infor-
mation flow is possible along a path even though the PDG
may indicate otherwise. If a path condition can be solved
for the input variables (e.g. by using constraint solving tech-
niques), the solved condition represents a witness for illegal
information flow: if the specific witness values are fed to
the program, the illegal flow becomes visible directly; this
might be quite useful in law suits.

It is not easy to generate path conditions for medium-
sized C or Java programs; for details see [23]. Nevertheless,
path conditions have proven useful in realistic case studies.
Path conditions as implemented today have, however, one
property which may reduce precision: Boolean path con-
ditions cannot express temporal properties, e.g. that for a
specific flow it is necessary that a specific condition holds,
and later another specific condition holds.

In this contribution, we introduce temporal path condi-
tions, which extend ordinary path conditions by temporal
operators in order to express temporal dependencies be-
tween conditions for a flow. We present motivating exam-
ples, generation and simplification rules and a case study.
Applying model checking generates witnesses for a specific
flow. We prove the following soundness property: if a tem-
poral path condition for a path is satisfiable, then the ordi-
nary boolean path condition for the path is satisfiable, too.
The converse does not hold, indicating that temporal path
conditions are more precise.

The essence of our work can be summarized as follows:
Boolean path conditions can be quite imprecise in the pres-
ence of loop-carried dependencies, but temporal path con-
ditions are not that more complicated to generate and sim-
plify, and provide considerably more insight into the de-
tailed conditions for a flow. In this contribution, we present
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their theoretical foundations but we have not yet imple-
mented them fully.

2. Path Conditions in Dependence Graphs

In this contribution, we focus on an imperative while
programming language without procedures. In the intrapro-
cedural case, the program dependence graph is simple and
straightforward to generate. (For interprocedural PDGs or
multithreaded programs, see e.g. [24].) Each program state-
ment corresponds to a graph node, control dependences and
data dependences form the edges. If statement t is con-
trol dependent on s, i. e. the mere execution of t depends
on the evaluation of the conditional expression s (e.g. an if
or while statement), there is an edge s It labelled by the
control condition c(s, t) for t being executed depending on
s, e.g. the while or if condition. A data dependence edge
s xBt models variable x being assigned in s and used in
t without being reassigned in between. s xBt is loop-car-
ried iff there is a while loop node u which execution can
reach while x is passed on from s to t such that u I∗s and
u I∗t. We write s→ t when not distinguishing control and
data dependence.

A path π : s →∗ t in the PDG means that information
can possibly flow from s to t. Slicing exploits this property:
By computing the backward slice BS (t) := { s s →∗ t }
for t, it conservatively approximates the set of statements
that can influence t, i. e. s influencing t implies s ∈ BS (t).
The forward slice FS (s) := { t s →∗ t } is the set
of all nodes that s can influence. The intersection of
forward slice for s and backward slice for t is the chop
CH(s, t) = FS (s)∩BS (t) for s and t. For an example
program and its PDG, see Fig. 1 where control dependences
are drawn with dashed arrows, data dependences with solid
ones. However, slicing can be pretty imprecise. Consider
e.g. this program fragment:

1 a[i + 3] = x;
2 if (i > 10)
3 y = a[2 * j - 42];

The standard PDG indicates an influence 1 −→ 3, but the
value of x can only reach y if i > 10 and i+3 = 2∗ j−42.
Hence (i > 10) ∧ (i + 3 = 2 ∗ j − 42) is a necessary
condition over program variables such that line 1 influences
line 3. More generally:

Definition 1 In a program run r, statement s influences
statement t (along the PDG path π) if r transports some in-
formation generated in s via control and data dependence
edges (in the same relative order as in π) to t where it is
used. A path condition PC(π) is a condition over program
variables such that PC(π) is satisfiable if an influence can
occur along π, i.e. there is a program run in which s in-

1 i = j;
2 while (i<5)

{
3 i = i+k;
4 if (i<=4)
5 x = a;
6 else
7 y = x;
8 }
9 z = y;

1 i1 = j;
2 while (i2=Φ(i1,i3),

i2<5) {
3 i3 = i2+k;
4 if (i3<=4)
5 x = a;
6 else
7 y = x;
8 }
9 z = y;

start

(i<=4)

(i<5)i=j;

i=i+k;

x=a; y=x;

T   F

T 
T 

z=y;

1     2     

3          4

5     7     

9     

Figure 1. An example program (left), its SSA
transform (center) and its PDG (right).

fluences t along π. A path condition PC(s, t) for s and t

is a condition over program variables that is satisfiable if s

influences t in some run r.

Originally, path conditions are boolean formulae whose
variables are implicitly quantified existentially. By defini-
tion, an influence between s and t can occur only along a
PDG path π : s →∗ t between the two statements s and t.
Thus, if we can compute PC(π) for every path π between s

and t, we also obtain a path condition for s and t by taking
the disjunction of these conditions for all paths between s

and t. The core idea for path conditions for a PDG path π is
that all nodes on π must be executed if the influence along
π occurs.

Definition 2 An execution condition for a PDG node v is
a necessary condition over program variables for v being
executed.

For example, we can use control dependence to build exe-
cution conditions (and thus a preliminary version for path
conditions – PCB meaning boolean path condition):

E(v) :=
∨

ρ:start I∗v

∧

u Iu′∈ρ

c(u, u′); PCB(π) :=
∧

v node in π

E(v)

For example, the execution condition for line 5 in Fig. 1 is
E(5) = (i < 5) ∧ (i ≤ 4) = (i < 5).

Note that an execution condition E(v) is always finite
because cycles in the control dependence graph (CDG) do
not contribute to E(v) due to the absorption law for ∨ [22].

However, since there are usually multiple assignments
to a variable within a program and thus a variable’s value
may change during program execution, we must transform
a program into static single assignment (SSA) form [7] first:
In SSA form, every variable occurs at most once on the
left hand side of an assignment. If necessary, we use ex-
tra indices to distinguish between different SSA variants
of a program variable x: Where control flow meets, we
introduce a Φ function that selects the appropriate source
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for uses of x. For example, reconsider Fig. 1: The pro-
gram in the center shows the SSA transform of program
on the left. Now, the execution condition for line 7 is
E(7) = (i2 < 5) ∧ ¬(i3 ≤ 4). Without the SSA trans-
formation, E(7) would be (i < 5) ∧ ¬(i ≤ 4), which is not
satisfiable and not a necessary condition.

For path conditions, Φ functions are translated into Φ
conditions, which are added conjunctively. In Fig. 1, e.g.,
i2=Φ(i1,i3) becomes Φ(i2; i1, i3) := (i2 = i1) ∨ (i2 =
i3). Besides we also have Φ conditions for data dependence
edges s xBt on a path: Let i be x’s SSA index in s and j the
x’s one in t. Then, the value of xi must equal xj’s value for
the influence to occur. Thus, we obtain the extra constraint
Φ(s xBt) = (xi = xj), which we also add conjunctively.

While SSA form ensures that execution conditions are
always correct, it does unfortunately not guarantee an SSA
variable being constant during execution because an as-
signment statement may be executed multiple times, e.g.
if loops are present. When we look at the PDG path
π := 5 xB7 in Fig. 1, we obtain the path condition
E(5) ∧ E(7) = (i2 < 5) ∧ (i3 ≤ 4) ∧ ¬(i3 ≤ 4), which is
not satisfiable although the value of a can reach y via x. As
the data dependence edge 5 xB7 is loop-carried, E(7) must
hold only one loop iteration later than E(5), i.e. we actually
use the same variable identifier i3 to refer to two different
runtime assignments to i3. Hence, to obtain correct path
conditions, we must distinguish the variables before and af-
ter loop-carried data dependences in a path condition (for
details, see [17]):

PCB(π) = (i2 < 5)∧(i3 ≤ 4)∧(i′
2

< 5)∧¬(i′
3
≤ 4). (1)

When we compute PCB(s, t), simply taking the disjunc-
tion over PCB(π) for all paths π : s →∗ t might result in an
infinite formula, e. g. if the PDG contains a cycle between
s and t. Fortunately, we can eliminate cycles: If a cycle
does not contain a loop-carried data dependence, we sim-
ply ignore the cycle [22]. Otherwise, we do not generate
any conditions for the nodes on the cycle and rename the
variables in the condition that belong to nodes before the
cycle. This way, nodes before and after the cycle are not
related. For more details on how to construct boolean path
conditions, see [22, 20, 23].

Obviously, boolean conditions as presented above are
not the only ones one can imagine as path condition for a
specific PDG path π. In order to compare two boolean path
conditions, we introduce the concept of strength. Since we
are interested in constructing path conditions that are as pre-
cise as possible, i. e. we want to limit the false witnesses to
as few cases as possible, given two boolean path conditions,
say PCB1 and PCB2, for the same PDG path π, we say
PCB1 is stronger than PCB2 iff PCB1 ⇒ PCB2 [23]. For
example, boolean path conditions with Φ conditions are, in
general, stronger than those without.

3. Temporal Path Conditions

Although boolean path conditions are quite strong in
practice, they are not able to properly take care of loop-
carried dependences. Even worse, they discard the order of
the nodes on the path because the ∧ operator is commuta-
tive. In particular, we can not express that some condition
must hold only after some other condition is fulfilled, e.g.
data dependences on a PDG path induce a temporal execu-
tion order on the nodes on the path. To address these issues,
we propose temporal path conditions based on Linear Tem-
poral Logic (LTL). LTL formulae connect boolean expres-
sions over program variables by standard boolean operators
and four temporal operators: always �, eventually ♦, next
©, and until U . (For notation, we assume that boolean oper-
ators bind stronger than temporal ones.) They are evaluated
over infinite sequences of states, i. e. assignments to the
variables. For details, see [5].

In this contribution, we restrict ourselves to imperative
programs in a While language with scalar-only variables,
i. e. we have boolean and integer variables, assignments, if
and while statements, but no gotos, no aliasing, no runtime
exceptions and no side effects inside expressions.

Whereas we use the PDG to generate LTL path formu-
lae, we obtain the state sequences which can satisfy the LTL
formula from program traces, i. e. paths in the control flow
graph (CFG) with variables assigned to their values. How-
ever, since control statements do not alter the program state,
we project these traces to assignment-only statements. As
with boolean path conditions, we need to transform the pro-
gram into SSA form. In case the program trace terminates,
we repeat the last state infinitely often to make the sequence
artificially infinite. For example, if we run the program in
Fig. 1 with initial values a = 0, j = 2, and k = 3, we
obtain the state sequence shown in Table 1.

As a motivational example, reconsider the program in
Fig. 1, but now, assume that line 4 is replaced by if

Table 1. State sequence for the program (cf.
Fig. 1) run with initial values a = 5, j = 2,
k = 3.

Time Line a i1 i2 i3 j k x y z

0 begin 0 ⊥ ⊥ ⊥ 2 3 ⊥ ⊥ ⊥
1 1 0 2 ⊥ ⊥ 2 3 ⊥ ⊥ ⊥
2 3 0 2 2 5 2 3 ⊥ ⊥ ⊥
3 5 0 2 2 5 2 3 0 ⊥ ⊥
4 9 0 2 5 5 2 3 0 ⊥ ⊥
5 end 0 2 5 5 2 3 0 ⊥ ⊥
6 end 0 2 5 5 2 3 0 ⊥ ⊥
...

...
...

...
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!(i<=4), i.e. the if’s predicate is negated. The boolean
path condition for the path π = 5 xB7 (the only path along
which 5 influcences 7) is now

PCB(π) = (i2 < 5)∧¬(i3 ≤ 4)∧(i′
2

< 5)∧(i′
3
≤ 4), (2)

which is equivalent to (1). Clearly, for this influence to oc-
cur line 5 must be executed before line 7 and in between,
execution must not leave the while loop in line 2. This can
be expressed by the formula

(i2 <5) ∧ ¬(i3≤4) ∧ (i2 <5) U ((i2 <5) ∧ (i3≤4)). (3)

In particular, we can deduce from (3) that i3 must be in-
creased between line 5 and line 7 being executed. We
can use path-insensitive data flow analysis to obtain that
i3 = i2 +k always holds after having visited node 5, i.e. we
can substitute i2 +k for i3 in (3). Hence, a constraint solver
can deduce that k < 0 must hold. Note that we can obtain
the same result from (2) with the same techniques. How-
ever, in combination with i3 being necessarily increased,
we see that (3) is not satisfiable. Obviously, we can not
prove (2) unsatisfiable because (2) ⇔ (1) and, in fact, the
influence in the original example can actually occur. (The
LTL path condition for the original example is satisfiable.)

Of course, one can come up with many different LTL
path conditions for a specific PDG path. Like in the boolean
case, we say θ1 is stronger than θ2 iff θ1 ⇒ θ2. In what
follows, we present the construction of LTL path conditions
that are reasonably strong.

3.1. Building Blocks for LTL Path Condi-
tions

Clearly, execution conditions for PDG nodes as pre-
sented in Sec. 2 are a core concept of LTL path conditions,
too. Now, we can, however, also utilize execution condi-
tions for data dependence edges:

Definition 3 Let s xBt be a data dependence edge and C

the set of assignment nodes which are on CFG paths ρ :
s �∗ t from s to t such that x is not redefined on ρ. An
execution condition for s xBt is a necessary condition over
program variables for any node in C being executed.

Obviously, E(s xBt) :=
∨

v∈C E(v) is a correct execu-
tion condition for s xBt. For example, E(5 xB7) in Fig. 1
is (i2 < 5). Since the models of interest for our LTL for-
mulae contain only states for assignment nodes, we have
restricted C to assignment nodes.

Yet, execution conditions for statements can be strength-
ened by loop termination conditions: Suppose a loop predi-
cate node u dominates node v in the CFG, i.e. all CFG paths
from the entry node to v contain u, and v is not control
dependent on u. When execution reaches v, u must have

been executed and the loop must have terminated. Hence,
the negated predicate of u holds at v. The loop termina-
tion condition L(v) for v is the conjunction thereof over all
such u. From now on, we assume that E(v) contains L(v)
(added conjunctively). For example, in Fig. 1, E(9) is now
¬(i2 < 5). Equally, when a data dependence e = v xBw

leaves the loop predicate node u, i.e. u controls v but not
w, ¬u must hold at w. The loop termination condition L(e)
for e is the conjunction of all such u. In Fig. 1, we have
L(7 y

B9) = ¬(i2 < 5).
Apart from execution and loop termination conditions,

we include Φ conditions in LTL path conditions. As be-
fore, for a data dependence s xBt, we use the constraint
Φ(s xBt). However, we can no longer capitalize on includ-
ing Φ constraints from Φ functions because, by definition of
Φ functions, every program trace, i.e. every possible model
of interest for the LTL path condition, trivially satisfies all
corresponding Φ constraints.

3.2. LTL Path Conditions for a Single Path

Given a PDG path π : s →∗ t, we want to generate an
LTL formula θ such that if there is a run r that carries an in-
fluence along π, then the state sequence for r satisfies ♦ θ.
In this case, we say that θ is a correct path condition for π.
Having presented the building blocks for LTL path condi-
tions in Sec. 3.1, we now present how to combine them to
obtain a correct path condition. Fig. 2 shows the algorithm
for computing the LTL path condition, denoted by PCL(π),
for the path π. It is motivated by the observation that given
program run r = (ri)i where in (ri)j≤i≤k statement u in-
fluences w along π (and π has at least two nodes), then there
is an l ∈ {j, . . . , k} such that in (ri)j≤i≤l u influences some
v along the first edge of π and in (ri)l≤i≤k v influences w

along the rest of π. Since we do not have states for control
nodes, if π starts with a control dependence edge u Iv, we
have l = j, i.e. there is no need for an U operator because
the execution condition for u must obviously hold in v, too.
Thus, there is an U operator for every data dependence edge
in π, which we can often (cf. Sec. 3.4) omit.

For example, in Fig. 1, consider π = e, f, 4 I7 where
e := 1 iB3 and f := 3 iB4. The LTL path condition for π

is

E(1) ∧ E(e) U (L(e) ∧ Φ (e) ∧ E(3)∧

E(f) U (L(f) ∧ Φ (f) ∧ E(4) ∧ E(7))) =

true ∧ true U (true ∧ (i1 = i2) ∧ (i2 < 5)∧

(i2 < 5) U (true ∧ (i3 = i3) ∧ (i2 < 5)∧

((i2 < 5) ∧ ¬(i3 ≤ 4))))

(4)

which simplifies to (cf. Sec. 3.4)

♦((i1 = i2) ∧ (i2 < 5) U ((i2 < 5) ∧ (i3 > 4))). (5)
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Input: π : s →∗ t path in the PDG G

Output: PCL(π)

PCPath(π)
if (π has only one node s) return E(s)
let e,π′ such that e, π′=π

if (e is a control dependence)
return (E(s) ∧ PCPath(π′))

else
return (E(s) ∧ E(e) U (L(e) ∧ Φ(e)∧PCPath(π′)))

Figure 2. Algorithm PCPath for LTL path con-
ditions for a single PDG path π.

3.3. Path Conditions for Chops

Like with boolean path conditions, we generate LTL path
conditions not only for a single path, but also for two state-
ments s and t. Again, taking the disjunction of PCL(π)
over all paths π : s →∗ t may result in infinite formulae
if the PDG contains cycles. Thus, we adapt the algorithm
(cf. Fig. 3). Suppose π : s →∗ t is a cycle-free PDG path.
Let P (π) denote the set of all paths ρ : s →∗ t such that
we obtain π when we remove all cycles from ρ. PCPath’
computes a path condition PCL(π) for π which all runs
for all paths in P (π) satisfy. Whenever a cycle may be in-
serted into π, we include an extra U operator to account for
this cycle in the run. There are no states for control depen-
dences in our model, so we can ignore control dependences.
θ, the first operand of the new U , is an execution condition
which holds for all nodes on all possible cycles which can
be inserted into π after the first edge. Note that if there is
no such cycle with a data dependence in all recursive steps,
the formula generated is equivalent to one without the ex-
tra U operators. PCChop computes the disjunction over all
cycle-free paths in the PDG G between s and t.

Let us look again at π = 1 iB3, 3 iB4, 4 I7 in Fig. 1.
Only can we add cycles to π after the first edge, namely
3 iB3 and 3 iB2, 2 I3. Hence, we include E(3) ∧
(E(3 iB3) ∨ E(3 iB2)) U (L(1 iB3) in (4):

E(1) ∧ E(e) U (L(e) ∧ Φ(e)∧

E(3) ∧ (E(3 i
B3) ∨ E(3 i

B2)) U (L(e) ∧

E(3) ∧ E(f) U (Φ(f) ∧ E(4) ∧ E(7))))

(6)

When we simplify this formula, we obtain again (5).
Note that simplification has removed the extra U oper-

ator in (6) again. This need not always be the case: Con-
sider Fig. 4 and the path ρ = 5 aB6, 6 y

B7, 7 xB6, 6 y
B9.

Let π be the path we obtain by removing the cycle from ρ.
PCL(π) (without Φ constraints) simplifies to

d ∧ (b ∧ c) U (b ∧ c ∧ ¬d).

Input: PDG G = (V, E); nodes s, t

Output: PCL(s, t)

PCPath’(G, π)
if (π has only one node s) return E(s)
let e,π′ such that e, π′=π

let v be the target node of e

let A be the set of data dependences
on any cycle through v in G

if (A 6= ∅) set θ:=
∨

a∈A E(a)
else set θ:=false

if (e = s Iv)
return (E(s) ∧ θ U PCPath’(G,π′))

else
return (E(s) ∧ E(e) U (L(e) ∧ Φ(e) ∧ E(v)∧

θ U (L(e)∧PCPath’(G, π′))))

PCChop(G, s, t)
let I ,(πi)i∈I such that (πi)i∈I enumerates all

cycle-free paths s →∗ t in G

set ρ:=false

for each i in I set ρ:=ρ∨PCPath’(G, πi)
return ρ

Figure 3. Algorithm PCChop for LTL path
conditions for a chop between s and t in the
PDG G.

Note that PCL(π) is not a correct path condition for ρ be-
cause, in fact, line 5 can influence line 9 via lines 6 and
7 some iterations later. The problem is (b ∧ c) being not
an execution condition for e = 7 xB6 because execution
leaves the if branch while e is being passed. However,
PCL(π) is correct and reads after simplification (without
Φ constraints) c∧ d∧ b U (b∧ c∧¬d). In this case, simpli-
fying the LTL formula with the extra U operator leads to a
formula where the first operand of the U operator has been
weakened.

Lemma 1 Let ρ : s →∗ t be a PDG path and π : s →∗ t

be ρ with all cycles removed. Then, PCL(ρ) ⇒ PCL(π).

A proof can be found in [18]. Thus, we are also able to
compute correct LTL path conditions for two statements:

Corollary 1 Let Π be the set of all cycle-free paths π :
s →∗ t. Then, PCL(s, t) :=

∨
π∈Π

PCL(π) is a correct
path condition for s and t.

Proof. This follows directly from the correctness of
PCL(π), Lem. 1, and the idempotence of ∨.
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1 while (b) {
2 c = !c;
3 if (c) {
4 if (d)
5 a = 5;
6 y = a+x;
7 x = y;
8 if (!d)
9 z = y;

10 }
11 d = false;
12 y = 0;
13 }

T 

start

(b)

c=!c; (c) d=false;

a=5;

(d)

y=0;

y=a+x;

(!d)

z=y;

x=y;

T  T  T

T 

T 

T T 

 T  T

1     

2     3     

4     

5     6     

       7

9     

     8

11            13

Figure 4. An example program and its PDG
to show the extra U operator for cycles being
necessary.

3.4. Simplifying LTL Path Conditions

Path conditions tend to become very long very quickly
as programs increase in size. Thus, we must simplify them
before examining them further. First, there are numerous
equivalences for LTL formulae, i.e., in many cases, we can
greatly simplify a formula by applying LTL identities (as
we have done so far in examples). Below, we list some that
have proven useful in simplifying LTL path conditions. Let
A, B, C, D, E, and F be LTL formulae such that B ⇒ D,
C ⇒ D, and E ⇒ F . Then, the following holds:

♦(A U B) ⇔ A U ♦B ⇔ ♦B ⇔ true U B (7)
B U (D U A) ⇔ D U A ⇔ D U (B U A) (8)
B ∧ E U (D ∧ F U A) ⇔ B ∧ F U A (9)

A U B ∨ A U C ⇔ A U (B ∨ C) (10)
D ∧ B U C ⇔ B U C (11)

false U A ⇔ A (12)

Also, we can often simplify LTL path conditions by slightly
weakening them using implications. Since they are only
necessary conditions for an influence, this does not affect
their correctness. For example, A U C ∨ B U C implies
(A ∨ B) U C, A implies B U A, and A U (B U C)
implies (A ∨ B) U C. Besides, U is monotone in both
operands w.r.t. to implication. Simplification can be done
completely automatically: By definition, the first operand of
an U operator in an LTL path condition is always a boolean
formula and at most one operand of any maximal conjunc-
tion is not boolean. Hence, standard constraint solvers to
decide the implications that must hold for (9), (10), and
(11) are sufficient for our simplification purposes. In fact,
a SAT solver can decide most implications, for frequently
a program predicate occurs multiple times in a formula, i.e.
we can treat boolean program expressions like propositional

variables. However, when we use these simplification rules
as rewrite rules, the order of their application is important.
Thus, we have to backtrack when rewriting gets stuck to see
if there is a different way to get to an even simpler formula.

Although these rules are a powerful means to make path
conditions understandable, instead of greatly simplifying a
formula we ought to not create unnecessary formula parts
in the first place: By construction, an LTL path condition is
a formula of nested U operators. The argument we used
to prove that an SSA transformation is not sufficient for
boolean path conditions shows us that we can not com-
pletely avoid U operators. Besides, loop termination condi-
tions require them, too. For example, the U operator along
7 y

B9 in Fig. 1 separates the loop predicate (i2 < 5) from
its termination condition ¬(i2 < 5). If we were to remove
this operator, we inevitably would have to drop some of the
constraints to preserve correctness. Sometimes, however,
we may drop the U operator introduced by a data depen-
dence:

Lemma 2 Let π : s →∗ t be a PDG path and u xBv a
data dependence in π that is not loop-carried and does not
leave a loop. Then, by conjunctively adding all operands
of the maximal conjunction that contains the U operator for
u xBv in PCL(π), except for the U term, loop termination
conditions, and Φ conditions for loop-carried data depen-
dences, to the U’s second operand, we obtain a correct path
condition.

A slightly stronger lemma is shown in [18]. The key idea
is that all SSA variables that occur in the maximal conjunc-
tion are defined in nodes which cannot be executed between
u and v. For example (Fig. 1), let π be as in (4) and (5).
Note that both 3 iB4 and 1 iB3 are not loop-carried and
3 iB4 does not leave a loop. By Lem. 2, we can insert what
is set in bold face:

♦((i1 = i2) ∧ (i2 < 5) U ((i1 = i2) ∧ (i2 < 5)∧

(i2 < 5) ∧ ((i2 < 5) ∧ ¬(i3 ≤ 4))))

Now we drop the first occurrence of (i1 = i2) and get after
simplification ♦((i1 = i2) ∧ (i2 < 5) ∧ ¬(i3 > 4)), which
contains one temporal operator less than (5).

Lem. 2 seems to make formulae grow, but this is only
due to its formulation. In fact, we employ it to move con-
straints (by dropping the original terms) into the scope of an
U operator nested more deeply and then apply (8) and (7) to
properly remove the U operator.

Regarding path conditions for chops, we may sometimes
consider fewer paths by exploiting the disjunctive absorp-
tion law: If A implies B then A ∨ B = B.

Lemma 3 Let π, ρ be PDG paths. If ♦PCL(ρ) is equiva-
lent to ♦PCL(σ) for some suffix σ of π, then ♦PCL(π)⇒
♦PCL(ρ). If ρ is a prefix of π, then PCL(π)⇒PCL(ρ).
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Proof. The first claim directly follows by the monotonicity
of ♦ w.r.t. implication, the idempotence law for ♦ and the
implication A ∧ B U C ⇒ ♦ C. By construction of LTL
path conditions, the second claim follows from the mono-
tonicity of U w.r.t. implication.

Once simplification is done, we look for conjunctions
of boolean conditions and feed them to a constraint solver
to see whether they are satisfiable at all. If not, we im-
mediately know that there is no program execution for any
path that generates this type of constraint. In case we com-
pute the LTL path condition for a chop, we drop this path
from the outermost disjunction (cf. Cor. 1), i.e. this path is
not enumerated by (πi)i∈I in Fig. 3. To increase chances
of showing unsatisfiability we can include extra constraints
which can be generated from other data flow analysis tech-
niques. Since there is a single definition for every SSA vari-
able, we can backsubstitute these definitions in the formula
until we reach a Φ function definition provided we are not
passing along loop-carried data dependences and no defini-
tion of the variables introduced by the substitution can pos-
sibly be executed along the data dependence edges for the
substitution. Unfortunately, this approach interferes with
the simplification offered by Lem. 2. Although we have
not yet implemented this additional approach, we have al-
ready seen it being useful in the motivating example from
Sec. 3 (cf. Fig. 1): In (3), we substitute i3 by i2 + k, so
we deduce that k < 0. In combination with Φ(i1, i3) = i3
given the data dependence 5 xB7, we see that i3 is decreas-
ing whereas (3) requires i3 being increased, a contradiction.
Note that although we can analyze temporal path conditions
in this way by combining a number of other static analyses,
our focus lies on model checking them (cf. Sec. 5).

3.5. Comparing Boolean and LTL Path
Conditions

In the motivating example of Sec. 3, we have seen that
temporal path conditions are more precise than boolean path
conditions. The next theorem shows that we can derive a
satisfying assignment for the boolean path condition from
a satisfying program trace of the corresponding LTL path
condition:

Theorem 1 (Soundness of LTL Path Conditions) Let π :
s →∗ t be a cycle-free PDG path and let θ denote the path
condition for π in which all unnecessary U operators for
data dependences have been dropped (cf. Lem. 2) and U
operators for all cycles that can be inserted into π have
been included (cf. Sec. 3.3). Let η denote the boolean path
condition for π, in which variables have been separated as
necessary. Then, a satisfying assignment for η can be con-
structed from a satisfying program trace for θ.

A proof can be found in [18]. Theorem 1 says that if a
witness for an influence along a PDG path π is found for the
LTL formula then we can obtain a satisfying assignment for
the boolean path condition from the witness. Moreover, in
the proof, it can be seen that we only have to look at those
states that are involved in satisfying execution conditions
and Φ constraints, i.e. that correspond to nodes on π.

Apart from temporal operators, loop termination con-
ditions, which we can not easily include in boolean path
conditions, make LTL path conditions more precise. For
example, consider the following program skeleton where
we have a data dependence e w.r.t. x that leaves a loop:

if (...) while (b) ... x = ...
if (b) ... x ...

In this case, the loop termination condition for e gives the
constraint ¬b, but the execution condition for e’s target
statement is b, a contradiction, i.e. no information can flow
along e.

3.6. LTL vs. CTL

LTL is a natural choice for temporal path conditions
when we look at a single path, but for chops, other log-
ics such as CTL may come to mind. We restrict our com-
parison to LTL and CTL here because these are the most
popular temporal logics for which high-performance model
checkers are available. When we consider LTL to be a part
of CTL∗ [5], we actually have for a path condition θ that
no influence is possible if the program model does not sat-
isfy A¬♦ θ. In LTL, every part of the formula refers to the
same program trace whereas in CTL, subformulae under the
scope of different path quantifiers may be fulfilled in differ-
ent program traces. However, due to the specific structure
of path conditions, we can prefix every U subformulae with
the existential path quantifier E to obtain a correct CTL path
condition which is equally strong. Yet, path quantifiers im-
pede simplification; e.g., if we want to simplify the path
condition θ for a chop more aggressively, we can factor out
a common suffix of the influence path: We drop its path
condition η in θ and add it conjunctively again: θ ∧ ♦ η.
With CTL, this trick is impossible since we can not ensure
that ♦ η holds in the same program trace as θ does.

4. Case Study

In this section, we present a short case study in which we
have applied LTL path conditions to discover a way of ma-
nipulating a weighing scale. [18] contains a more detailed
description. Fig. 5 shows a fragment from the measurement
software of a fictitious cheese weighing scale. For simplic-
ity, there is just one input port from which both the weight
sensor data and the keystrokes are read. In normal mode,
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1 sk0 = 65; sk1 = 43;
2 sk2 = 45; sk3 = 13;
3 mode=0;
4 p_keyb=input; p_weigh=input;
5 while (true) {
6 if (p_keyb = 27)
7 mode = 0;
8 else {
9 if ((mode = 3) && (p_keyb = sk3)) {

10 mode = 4;
11 p_keyb = input;
12 }
13 if ((mode = 2) && (p_keyb = sk2))
14 mode = 3;
15 if ((mode = 1) && (p_keyb = sk1))
16 mode = 2;

17 if ((mode = 0) && (p_keyb = sk0))
18 mode = 1;
19 }
20 if (mode = 4) {
21 if (p_keyb = 43)
22 kal_kg = kal_kg+1;
23 if (p_keyb = 45)
24 kal_kg = kal_kg-1;
25 p_keyb = input;
26 }
27 if (p_weigh > 0)
28 u_kg = p_weigh*kal_kg;
29 p_keyb = input;
30 p_weigh =input;
31 }

Figure 5. A cheese scale measurement software with service mode.

the measurement software computes the weight in kg from
the weight sensor data and the calibration factor kal kg
(lines 28-29). In service mode, which is activated by enter-
ing a specific sequence of key strokes (lines 9–18), the cali-
bration factor can be adjusted by the keyboard (lines 21-24).
We want to check if we can manipulate the weight value
u kg – shown on the display – by the keyboard. The path
condition (without SSA indices and Φ constraints, but with
the prefixed ♦) for p keyb influencing u kg simplifies to

♦((mode = 4) ∧ ((p keyb = 43) ∨ (p keyb = 45))∧

♦(p weigh > 0)).

Thus, we know that one of the calibration keys 43 and 45
must be hit while we are in service mode (mode = 4) and
later, some weight must be placed on the weight sensor.
However, this path condition does not give any informa-
tion about how to activate the service mode. By applying
constant propagation, we can rule out some of the influence
paths before taking the disjunction over all cycle-free ones.
This way, less simplification with Lem. 3 is done and we
obtain

♦((mode=0)∧(p keyb=sk0)∧

♦((mode=1)∧(p keyb=sk1)∧

♦((mode=2)∧(p keyb=sk2)∧

♦((mode=3)∧(p keyb=sk3)∧

♦((mode=4)∧((p keyb=43)∨(p keyb=45)∧

♦(p weigh>0)))))))

(13)

We see that we must enter the service mode activation keys
in the correct order to calibrate the scale. Model checking,
however, reveals that the keys need not be hit consecutively.

5. Path Conditions and Model Checking

In the previous section, we have seen that LTL path con-
ditions can become quite complex even for smallish pro-
grams. Thus, the larger a program is, the more difficult it be-
comes to decide without tool support whether a path condi-
tion is satisfiable. Boolean path conditions are therefore fed
to a constraint solver which simplifies them as far as pos-
sible and possibly can solve them for the program’s input
variables. The equivalent to a constraint solver for boolean
path conditions is the model checker for LTL ones: Model
checkers are ideal to check LTL formulae for a model. If
we transform a program into a model for a model checker,
we can use the model checker to find satisfying state se-
quences for LTL path conditions. More precisely, not only
do we have to create a compact model of the program, e.g.
using slicing and program abstraction [6, 11], but we must
also make sure to use SSA variables. However, it turns out
that this does not severely increase the number of reachable
states as many distinguished variables have the same value
anyway.

If the model checker of our choice tries to find a sat-
isfying state sequence for the LTL formula (as e.g. the ex-
plicit state model checker SPIN does with its “never claims”
[15]), we simply give the simplified path condition to the
model checker and run it on the program model. If the
model checker tries to falsify the LTL input specification
(as does e.g. the symbolic model checker NuSMV [4]), we
have to input the negated LTL path condition. Note that the
theory of symbolic model checking [19] also allows to com-
pute the set of initial program states from which satisfying
state sequences start, i. e. to solve the LTL path condition
for the program’s input variables.

For example, let us return to the case study above. Note
that the path condition in (13) does not say that we must
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enter the service mode activation keys consecutively. This
is revealed when we apply model checking: We have coded
a model for the measurement software for the model check-
ers SPIN and NuSMV and run both of them on the for-
mula as sketched above. NuSMV generates a trace that di-
rectly enters service mode and changes the calibration fac-
tor, the keycode sequence being 65, 43, 66, 13, 66, 45, 45,
13, 13. In contrast to that, SPIN reveals that typing al-
most randomly on the keyboard long enough leads to us
accidentally entering service mode (the activation keys are
not pressed consecutively) and allows to manipulate the dis-
played value. Thus, model checking has revealed a witness
for the undesired manipulation of the weight on the display.

6. Related Work

The standard approach to IFC is via type systems. See
[21] for an overview. While type systems are a fast ap-
proach, they usually lack precision. For example, most type
systems classify if (h) l=1; else l=0; l=2; as
insecure (where h is the secret variable and l is the public
variable whose result value must not depend on h’s initial
value).

Darvas/Hähnle/Sands [8] proposed to use Dynamic
Logic and a theorem prover for information flow control.
Program variables are classified as public or secret and a
formula, which contains the program of interest, is set up
to ensure that the initial state of the secret variables has no
effect on the result in the public variables. The user then
proves the formula using a semi-automatic theorem prover.
This approach is not automatic and the user must provide
loop invariants.

Hong et al. [16] also use temporal formulae for static
program analysis: They use the CFG to construct CTL for-
mulae that express a condition for data flowing from a vari-
able definition to its use. Construction rules for different
coverage criteria are provided. These formulae, which are
built from predicates for a variable being defined/used in
a state and for execution being in a specific state, are fed
to the model checker SMV to automatically generate test
cases. Their approach ignores control dependence and is
not conservative.

In [1], Ammons/Bodı́k/Larus automatically extract spec-
ification automata from dynamic program traces for the cor-
rect temporal usage of APIs and ADTs based on the as-
sumption that most usage is correct. Incorrect usage is elim-
inated from the specification automata while they are sim-
plified. Verification tools such as model checkers are then
used to find bugs in programs w.r.t. using the API/ADT.
Although they also extract temporal specifications automat-
ically, their extraction is not static and aggressive simplifi-
cation can not guarantee conservation.

Xie and Chou [25] propose to translate static program
analyses into SAT problems. Like us, they use SSA form,
but they avoid the problem of repeatedly executing an as-
signment by heavily abstracting loops in that only the last
iteration of every loop is modelled. Thus, loop-carried data
dependences cannot be handled properly.

Recently, path-sensitive static program analyses [2, 12,
10] have become popular. However, directly formulat-
ing precise IFC conditions in these terms is not as easy:
The SLAM project [3] provides a general path-sensitive
data flow analysis [2] which operates on boolean programs
which are abstracted from C programs. This way, expoiting
arithmetic to prove a path unfeasible is not possible.

Fischer et al. [12] from the BLAST project propose
dataflow analysis with path predicates: The merge opera-
tion does not join dataflow facts from paths if their predi-
cates differ, but keeps track of them separately. If necessary,
they can iteratively enlarge the predicate set and thus refine
the analysis. Nevertheless, multiple loop iterations are hard
to distinguish that way and temporal properties cannot be
modelled in the predicate set.

ESP [10, 9] instruments programs to keep track of type-
state changes which must satisfy the specification automa-
ton. An interprocedural data flow analyses tries to prove
correctness w.r.t. the automaton using property and path
simulation [14]. They also have heuristics for when to en-
large the set of predicates of which to keep track. Like
BLAST, they must be provided a specification w.r.t. which
the program is verified.

Our approach generates such specifications, thus we be-
lieve that temporal path conditions can serve as specifi-
cation input to path-sensitive static analysers when model
checking is too time-consuming. A general specification
automaton for noninterference would require many refine-
ment iterations whereas our approach would already pro-
vide all predicates of interest in a suitable specification
form.

7. Conclusion

We have seen that temporal path conditions provide pre-
cise time-dependent information about the specific circum-
stances of an information flow in a PDG. By transforming
the program into a compact model that preserves the state
sequence semantics, using e.g. slicing and program abstrac-
tion [6, 11], we can use model checkers such as SPIN [15]
or NuSMV [4] to compute a specific input or state sequence
for the information flow if one exists. Otherwise, we know
that no information flow is possible, which will turn out to
be useful for software safety and security analysis.

In fact, the approach has been developed for a while lan-
guage with arrays (arrays have been left out in the current
paper due to lack of space). But note that the current paper
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describes only theoretical foundations. Work on an imple-
mentation has just started. A lot of work remains until the
idea can be applied to realistic programs in full Java.
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