
Formalizing a Framework for Dynamic Slicing of

Program Dependence Graphs in Isabelle/HOL

Daniel Wasserrab and Andreas Lochbihler

Universität Karlsruhe (TH), Germany

August 19, 2008

Funded by DFG grant Sn11/10-1

D. Wasserrab, A. Lochbihler A Framework for PDG-Slicing TPHOLs ’08 1 / 13



Dynamic Slicing

1 sum := 0;
2 prod := 1;
3 while (i>0) {
4 sum := sum+i;
5 prod := prod*i;
6 i := i-1;

}
7 out:=sum;

Task:
For a given program trace, find all
statements that can have influenced
the last statement s.

⇒ Values used/computed by s

⇒ Execution of s
D. Wasserrab, A. Lochbihler A Framework for PDG-Slicing TPHOLs ’08 2 / 13



Dynamic Slicing

1 sum := 0;
2 prod := 1;
3 while (i>0) {
4 sum := sum+i;
5 prod := prod*i;
6 i := i-1;

}
7 out:=sum;

CFG: Entry 1

2

3

4

5

6

7

Exit

False

True

sum:=0

prod:=1

i>0

i≤0

sum:=sum+i

prod:=prod∗i

i:=i−1

out:=sum

Task:
For a given program trace, find all
statements that can have influenced
the last statement s.

⇒ Values used/computed by s

⇒ Execution of s
D. Wasserrab, A. Lochbihler A Framework for PDG-Slicing TPHOLs ’08 2 / 13



Dynamic Slicing

1 sum := 0;
2 prod := 1;
3 while (i>0) {
4 sum := sum+i;
5 prod := prod*i;
6 i := i-1;

}
7 out:=sum;

CFG: Entry 1

2

3

4

5

6Exit

7

False

True

sum:=0

prod:=1

i>0

i≤0

sum:=sum+i

prod:=prod∗i

i:=i−1

out:=sum

Task:
For a given program trace, find all
statements that can have influenced
the last statement s.

⇒ Values used/computed by s

⇒ Execution of s

Entry 1 2

345

6 3’ 7

True sum:=0

prod:=1

i>0sum:=sum+i

prod:=prod∗i
i:=i−1 i≤0

D. Wasserrab, A. Lochbihler A Framework for PDG-Slicing TPHOLs ’08 2 / 13



Dynamic Slicing

1 sum := 0;
2 prod := 1;
3 while (i>0) {
4 sum := sum+i;
5 prod := prod*i;
6 i := i-1;

}
7 out:=sum;

CFG: Entry 1

2

3

4

5

6Exit

7

False

True

sum:=0

prod:=1

i>0

i≤0

sum:=sum+i

prod:=prod∗i

i:=i−1

out:=sum

Task:
For a given program trace, find all
statements that can have influenced
the last statement s.

values ⇒ data dependences

execution ⇒ control dependences

Entry 1 2

345

6 3’ 7

True sum:=0

prod:=1

i>0sum:=sum+i

prod:=prod∗i
i:=i−1 i≤0

sum

sum

D. Wasserrab, A. Lochbihler A Framework for PDG-Slicing TPHOLs ’08 2 / 13



Dynamic Slicing

1 sum := 0;
2 prod := 1;
3 while (i>0) {
4 sum := sum+i;
5 prod := prod*i;
6 i := i-1;

}
7 out:=sum;

CFG: Entry 1

2

3

4

5

6Exit

7

False

True

sum:=0

prod:=1

i>0

i≤0

sum:=sum+i

prod:=prod∗i

i:=i−1

out:=sum

Task:
For a given program trace, find all
statements that can have influenced
the last statement s.

values ⇒ data dependences

execution ⇒ control dependences

Slice: Entry 1

34

7

2

5

6 3’

True sum:=0

prod:=1

i>0sum:=sum+i

prod:=prod∗i
i:=i−1 i≤0

sum

sum

D. Wasserrab, A. Lochbihler A Framework for PDG-Slicing TPHOLs ’08 2 / 13



Slicing captures influence

Influence is

defined in terms of semantics,

approximated by data and control dependence

Correctness property for slicing:
No other statements affect the values computed at the slicing criterion
(or its execution).

Applications of slicing exploit this property:

Debugging

Compiler technology

Software security

...

D. Wasserrab, A. Lochbihler A Framework for PDG-Slicing TPHOLs ’08 3 / 13



Aim

Previous correctness proofs suffer from

being only for while language

depending on specific program languages

not being machine-checked

having to be redone for every new programming language

but slicing algorithms are independent of the programming language

Goal:
Show that no node outside the slice has any semantic influence

1 independent of specific programming languages

2 as modular as possible

3 in Isabelle/HOL

D. Wasserrab, A. Lochbihler A Framework for PDG-Slicing TPHOLs ’08 4 / 13



Module: Control Flow Graph

The control flow graph (CFG) is
the abstract program representation:

Nodes: Set valid-node and special
nodes Entry, Exit

Edges: Edge a ∈ valid-edge between
src a and trg a.

Entry 1

2

3

4

5

6

7

Exit

False

True

sum:=0

prod:=1

i>0

i≤0

sum:=sum+i

prod:=prod∗i

i:=i−1

out:=sum

Semantics: kind labels edges with state predicates or transfer functions

Instantiate for specific programming languages to get:

Paths: n −as→∗ n ′ runs from n to n ′ via edges as

Execution: transfer (kind a) s executes a’s transfer functions on state s,
pred (kind a) s checks if s satisfies a’s predicate;
transfers and preds fold these over lists

Control n controls n ′ via as

dependence: Standard (static) control dependence and (n −as→∗ n ′)

D. Wasserrab, A. Lochbihler A Framework for PDG-Slicing TPHOLs ’08 5 / 13



Modelling effects

Model effect of transfer functions and evaluation of predicates:

Def n set of locations that n’s edges can affect

Use n set of locations that n’s edges can depend on

sval retrieves the location’s value in a state

Assume: They correctly model the semantics of edge labels

Example:

States Mappings from {i, prod, sum} to Z

sval Function application

Use 5 {i, prod}
Def 5 {prod}

5

6

sum:=sum+i

prod:=prod∗i

i:=i−1

D. Wasserrab, A. Lochbihler A Framework for PDG-Slicing TPHOLs ’08 6 / 13



Well-formedness constraints for modelling effects

1 Affected locations are in Def

a ∈ valid-edge V /∈ Def (src a)

sval (transfer (kind a) s) V = sval s V

2 Updates use only declared locations

a ∈ valid-edge ∀V∈Use (src a). sval s V = sval s ′ V V ∈ Def (src a)

sval (transfer (kind a) s) V = sval (transfer (kind a) s ′) V

3 Predicates depend only on used locations

a ∈ valid-edge ∀V∈Use (src a). sval s V = sval s ′ V

pred (kind a) s = pred (kind a) s ′

D. Wasserrab, A. Lochbihler A Framework for PDG-Slicing TPHOLs ’08 7 / 13



Data dependence

Dynamic data dependence
n influences V in n ′ via as:

V ∈ Def n n defines location V

V ∈ Use n ′ n’ uses V, and

n −as→∗ n ′ Nodes inside as do not
define V inbetween.

2

3

1

7

Entry 4

5

6Exit

False

True

sum:=0

prod:=1

i>0

i≤0

sum:=sum+i

prod:=prod∗i

i:=i−1

out:=sum

sum

D. Wasserrab, A. Lochbihler A Framework for PDG-Slicing TPHOLs ’08 8 / 13



Program dependence graph

Combine control and data dependences
in the program dependence graph (PDG)
to get dependence paths n −as→d∗ n ′

Dynamic PDG / slicing:

Remember CFG paths
in dependence edges

Match program trace
with path information

Static PDG / slicing:

Abstract from CFG paths
in dependence edges

⇒ Reachability analysis on the PDG

Overapproximates dynamic slices

Entry 1

2

3

4

5

6

7

Exit

False

True

sum:=0

prod:=1

i>0

i≤0

sum:=sum+i

prod:=prod∗i

i:=i−1

out:=sum

PDG: Entry

1 23

4 56

7

sum

sum

prod

sum

sum

prod

i

i i

i

D. Wasserrab, A. Lochbihler A Framework for PDG-Slicing TPHOLs ’08 9 / 13



Formal correctness statement

1 Take an executable program trace
n −as→∗ n ′ with initial state s and
final state s ′ = transfers (kinds as) s.

2 Compute dynamic slice bs for as

3 For all nodes not in bs, replace
outgoing transfer functions with
no-ops and predicates with True,
to get as ′.

Then preds (kinds as ′) s,
i.e. as ′ is executable,

and in the resulting state
s ′′ = transfers (kinds as ′) s:
sval s ′ V = sval s ′′ V for all V ∈ Use n ′

Proof: Induction on as

Entry 1 2

345

6 3’ 7

True sum:=0

prod:=1

i>0sum:=sum+i

prod:=prod∗i
i:=i−1 i≤0

s

s ′

D. Wasserrab, A. Lochbihler A Framework for PDG-Slicing TPHOLs ’08 10 / 13



Formal correctness statement

1 Take an executable program trace
n −as→∗ n ′ with initial state s and
final state s ′ = transfers (kinds as) s.

2 Compute dynamic slice bs for as

3 For all nodes not in bs, replace
outgoing transfer functions with
no-ops and predicates with True,
to get as ′.

Then preds (kinds as ′) s,
i.e. as ′ is executable,

and in the resulting state
s ′′ = transfers (kinds as ′) s:
sval s ′ V = sval s ′′ V for all V ∈ Use n ′

Proof: Induction on as

Entry 1 2

345

6 3’ 7

True sum:=0

prod:=1

i>0sum:=sum+i

prod:=prod∗i
i:=i−1 i≤0

s

s ′

2

5

6 3’

Entry 1

34

7

True sum:=0

prod:=1

i>0sum:=sum+i

prod:=prod∗i
i:=i−1 i≤0

sum

sum

D. Wasserrab, A. Lochbihler A Framework for PDG-Slicing TPHOLs ’08 10 / 13



Formal correctness statement

1 Take an executable program trace
n −as→∗ n ′ with initial state s and
final state s ′ = transfers (kinds as) s.

2 Compute dynamic slice bs for as

3 For all nodes not in bs, replace
outgoing transfer functions with
no-ops and predicates with True,
to get as ′.

Then preds (kinds as ′) s,
i.e. as ′ is executable,

and in the resulting state
s ′′ = transfers (kinds as ′) s:
sval s ′ V = sval s ′′ V for all V ∈ Use n ′

Proof: Induction on as

Entry 1 2

345

6 3’ 7

True sum:=0

prod:=1

i>0sum:=sum+i

prod:=prod∗i
i:=i−1 i≤0

s

s ′

2

5

6 3’

Entry 1

34

7

True sum:=0

skip

i>0sum:=sum+i

skip

skip True

sum

sum
s

s ′′

D. Wasserrab, A. Lochbihler A Framework for PDG-Slicing TPHOLs ’08 10 / 13



Formal correctness statement

1 Take an executable program trace
n −as→∗ n ′ with initial state s and
final state s ′ = transfers (kinds as) s.

2 Compute dynamic slice bs for as

3 For all nodes not in bs, replace
outgoing transfer functions with
no-ops and predicates with True,
to get as ′.

Then preds (kinds as ′) s,
i.e. as ′ is executable,

and in the resulting state
s ′′ = transfers (kinds as ′) s:
sval s ′ V = sval s ′′ V for all V ∈ Use n ′

Proof: Induction on as fails!

Entry 1 2

345

6 3’ 7

True sum:=0

prod:=1

i>0sum:=sum+i

prod:=prod∗i
i:=i−1 i≤0

2

5

6 3’

Entry 1

34

7

True sum:=0

skip

i>0sum:=sum+i

skip

skip True

sum

sum

D. Wasserrab, A. Lochbihler A Framework for PDG-Slicing TPHOLs ’08 10 / 13



Dependent live variables

Live variable analysis (LVA):
What variables (locations) are used in
the trace before being defined again?

Dependent live variables (DLV):
Consider Def/Use sets of non-slice
nodes to be empty for LVA

Induction invariant:

1 s1 and s2 agree on the (current)
set of DLV

2 Execute the original and sliced
trace one step each for s1 and s2

3 Then, the resulting states agree on
the (new) DLV set again

2Entry 1

34

7

5

6 3’

True sum:=0

prod:=1

i>0sum:=sum+i

prod:=prod∗i
i:=i−1 i≤0

sum

sum

For the trace [3, 4, 5, 6, 3, 7]:

Live variables: i, prod, sum

Dependent
live variables: i, sum

D. Wasserrab, A. Lochbihler A Framework for PDG-Slicing TPHOLs ’08 11 / 13



Strengthened correctness statement for slicing

1 Take an executable program trace n −as→∗ n ′ with initial state s1
and final state s1

′ = transfers (kinds as) s1.
2 Let s2 agree with s1 on DLV of as.
3 Compute dynamic slice bs for as

4 For all nodes not in bs, replace outgoing transfer functions with
no-ops and predicates with True, to get as ′.

Then preds (kinds as ′) s2, i.e. as ′ is executable,

and in the resulting state s2
′ = transfers (kinds as ′) s2:

sval s1
′ V = sval s2

′ V for all V ∈ Use n ′

n −as→∗ n ′ bs �b bs ′ slice-path as = bs

select-edge-kinds as bs = es select-edge-kinds as bs ′ = es ′ preds es ′ s ′

∀V xs. (V, xs, as) ∈ dependent-live-vars n ′ −→ sval s V = sval s ′ V

preds es s ∀V∈Use n ′. sval (transfers es s) V = sval (transfers es ′ s ′) V

D. Wasserrab, A. Lochbihler A Framework for PDG-Slicing TPHOLs ’08 12 / 13



Summary

Framework for dynamic slicing based on CFGs/PDGs

Generic correctness proof

Instantiable for specific programming languages

Highly modularized

Context: Quis custodiet project

Generic framework for slicing in Isabelle/HOL

Different control dependences
√

Static intraprocedural slicing
√

Static interprocedural slicing future work
Instantiated for a While language

√

Realistic languages (Jinja, CoreC++) future work

Verifying software security analyses / algorithms

D. Wasserrab, A. Lochbihler A Framework for PDG-Slicing TPHOLs ’08 13 / 13


