Daniel Wasserrab and Andreas Lochbihler

Universitit Karlsruhe (TH), Germany

August 19, 2008

o Funded by DFG grant Sn11/10-1 @




1 sum:= 0O;
2 prod := 1,
3 while (i>0) {
4 sum : = sumki ;
5 prod : = prodxi;
6 i =1i-1;
}
7 out:=sum
Task:

For a given program trace, find all
statements that can have influenced
the last statement s.

= Values used/computed by s

= Execution of s



1 sum:= 0;
2 prod := 1,
3 while (i>0) {
4 sum : = sumki ;
5 prod : = prodxi;
6 i =1i-1;

}

7 out:=sum

Task:

For a given program trace, find all
statements that can have influenced
the last statement s.

= Values used/computed by s

= Execution of s




sum: = 0O;

prod := 1;

while (i>0) {
sum : = sunti;
prod : = prodxi;
i =1i-1;

O WNPE

}

out : =sum

~

Task:
For a given program trace, find all 5 \gum=sum+ir ™

. 4
statements that can have influenced N
the last statement s. prod:=prodi

= Values used/computed by s 6 P=im1 N
/comp y (3)

= Execution of s




1 sum:= 0;
2 prod := 1,
3 while (i>0) {
4 sum : = sumki ;
5 prod : = prodxi;
6 i =1i-1;

}

7 out:=sum

Task:

For a given program trace, find all
statements that can have influenced
the last statement s.

prod-=prodxi

i=i—1

values = data dependences

6

execution = control dependences




1 sum:= 0;

3 while (i>0) {
4 sum : = sumki;

}

7 out:=sum
Slice:

Task:

For a given program trace, find all

statements that can have influenced
the last statement s.

values = data dependences

execution = control dependences




Influence is

@ defined in terms of semantics,

@ approximated by data and control dependence

Correctness property for slicing:
No other statements affect the values computed at the slicing criterion
(or its execution).

Applications of slicing exploit this property:
@ Debugging
o Compiler technology
@ Software security



Previous correctness proofs suffer from
@ being only for while language
@ depending on specific program languages
@ not being machine-checked
@ having to be redone for every new programming language

but slicing algorithms are independent of the programming language

Goal:
Show that no node outside the slice has any semantic influence

© independent of specific programming languages
© as modular as possible
© in Isabelle/HOL



The control flow graph (CFG) is
the abstract program representation:

Nodes: Set valid-node and special
nodes Entry, Exit

Edges: Edge a € valid-edge between
src a and trg a.

Semantics: kind labels edges with state predicates or transfer functions

Instantiate for specific programming languages to get:
Paths: n —as—x* n’ runs from n to n’ via edges as
Execution: transfer (kind a) s executes a's transfer functions on state s,
pred (kind a) s checks if s satisfies a's predicate;
transfers and preds fold these over lists
Control n controls n' via as
dependence: Standard (static) control dependence and (n —as—x n’)

rab, A. Lochbihler



Model effect of transfer functions and evaluation of predicates:

Def n set of locations that n's edges can affect
Use n set of locations that n's edges can depend on
sval retrieves the location’s value in a state

Assume: They correctly model the semantics of edge labels

Example:

States Mappings from {i, prod, sum} to Z
sval Function application
Use 5 {i, prod}
Def 5 {prod}

prod:=prodxi



@ Affected locations are in Def
a € valid-edge V & Def (src a)

sval (transfer (kind a) s) V = sval s V

© Updates use only declared locations
a € valid-edge V VeUse (src a). sval s V= sval s’ V V € Def (src a)
sval (transfer (kind a) s) V' = sval (transfer (kind a) s") V

© Predicates depend only on used locations
a € valid-edge V VeUse (src a). sval s V= sval s' V
pred (kind a) s = pred (kind a) s’




Dynamic data dependence
n influences V in n’ via as:

V € Def n n defines location V
V e Usen’ n' uses V, and

n —as—x* n’ Nodes inside as do not
define V inbetween.




Combine control and data dependences
in the program dependence graph (PDG)
to get dependence paths n —as—g* n’

Dynamic PDG / slicing:
® Remember CFG paths
in dependence edges

@ Match program trace
with path information

Static PDG / slicing:
@ Abstract from CFG paths
in dependence edges

= Reachability analysis on the PDG

@ Overapproximates dynamic slices

b, A. Lochbihler




© Take an executable program trace

Then

and

n —as—x* n’ with initial state s and
final state s’ = transfers (kinds as) s.

Compute dynamic slice bs for as

For all nodes not in bs, replace
outgoing transfer functions with
no-ops and predicates with True,
to get as’.

preds (kinds as’) s,

i.e. as’is executable,

in the resulting state

s = transfers (kinds as’) s:

sval s' V = sval s’ V for all V € Use n’

Proof: Induction on as




© Take an executable program trace

Then

and

Proof: Induction on as

n —as—x* n’ with initial state s and
final state s’ = transfers (kinds as) s.

Compute dynamic slice bs for as

For all nodes not in bs, replace
outgoing transfer functions with
no-ops and predicates with True,

to get as’.

preds (kinds as’) s,

i.e. as’is executable,

in the resulting state

s = transfers (kinds as’) s:

sval s’ V= sval s” Vfor all V€ Usen




© Take an executable program trace
n —as—x n’ with initial state s and
final state s’ = transfers (kinds as) s.

© Compute dynamic slice bs for as

© For all nodes not in bs, replace
outgoing transfer functions with
no-ops and predicates with True,
to get as’.
Then preds (kinds as’) s,
i.e. as’is executable,

and in the resulting state
s = transfers (kinds as’) s:
sval s' V = sval s’ V for all V € Use n’

Proof: Induction on as




© Take an executable program trace

Then

and

Proof: Induction on as fails!

n —as—x* n’ with initial state s and
final state s’ = transfers (kinds as) s.

Compute dynamic slice bs for as

For all nodes not in bs, replace
outgoing transfer functions with
no-ops and predicates with True,

to get as’.

preds (kinds as’) s,

i.e. as’is executable,

in the resulting state

s = transfers (kinds as’) s:

sval s’ V = sval s" V for all V € Use n’

chbihler



Live variable analysis (LVA):
What variables (locations) are used in
the trace before being defined again?

Dependent live variables (DLV):
Consider Def/ Use sets of non-slice
nodes to be empty for LVA

Induction invariant:

© s and s, agree on the (current)
set of DLV

© Execute the original and sliced
trace one step each for s; and s,

© Then, the resulting states agree on
the (new) DLV set again

prod:-=1

sum: sum—l—:‘ i>0
prod:=prodxi
i=i—1 f\ <0 ‘

For the trace [3, 4, 5, 6, 3, 7]:
Live variables: i, prod, sum

Dependent
live variables: i, sum



Take an executable program trace n —as—= n’ with initial state s
and final state s,’ = transfers (kinds as) s;.

Let s, agree with s; on DLV of as.

Compute dynamic slice bs for as

For all nodes not in bs, replace outgoing transfer functions with
no-ops and predicates with True, to get as’.

o
12
o
o

Then preds (kinds as’) s,, i.e. as’ is executable,
and in the resulting state s,’ = transfers (kinds as’) s,:
sval s’ V = sval s’ V for all V € Use n’

n —as—x n' bs <p, bs’ slice-path as = bs
select-edge-kinds as bs = es select-edge-kinds as bs’ = es’ preds es’ s’
V V xs. (V, xs, as) € dependent-live-vars n' — sval s V = sval s’ V

preds ess YV VeUse n'. sval (transfers es s) V = sval (transfers es’ s') V

rab, A. Lochbihler




Framework for dynamic slicing based on CFGs/PDGs

@ Generic correctness proof
@ Instantiable for specific programming languages

@ Highly modularized

Context: Quis custodiet project
@ Generic framework for slicing in Isabelle/HOL

@ Different control dependences V
o Static intraprocedural slicing v
o Static interprocedural slicing future work
@ Instantiated for a While language v
@ Realistic languages (Jinja, CoreC++) future work

@ Verifying software security analyses / algorithms



