
KIT - University of the State of Baden-Wuerttemberg and
National Research Center of the Helmholtz Association www.kit.edu

IPD, PROGRAMMING PARADIGMS GROUP, COMPUTER SCIENCE DEPARTMENT

A unified machine-checked model for 
multithreaded Java

Andreas Lochbihler

1



January 2011 A unified machine-checked model for the multithreaded Java IPD, programming paradigms group

Motivation

JMM formalisations by Sevcik/Aspinall and Petri/Huisman
no connection to operational semantics

SC formalisations of Java (bytecode)

Incorrect claims about the JMM
supported optimisations
litmus tests

What is intra-thread consistency?

Memory allocations and initialisations problematic

unified, machine-checked model of multithreaded Java

2

2



January 2011 A unified machine-checked model for the multithreaded Java IPD, programming paradigms group

source code

Jinja [Klein, Nipkow TOPLAS'06]

Java features:
classes, objects & fields
inheritance & late binding
exceptions
imperative features

not modelled:
reflection & class loading
interfaces
threads

3

λ →

∀
=Isa

be
lle

β

α

HOL

small-step

byte code

bytecode verifiertype safety

big-step sequential VM

type
safety

veri fied
com piler

stage 1 stage 2

3



January 2011 A unified machine-checked model for the multithreaded Java IPD, programming paradigms group

source code

JinjaThreads [ESOP’10]

3

λ →

∀
=Isa

be
lle

β

α

HOL

small-step

byte code

bytecode verifiertype safety

big-step sequential VM

type
safety

interleaving semantics concurrent VMconc. small step

single-thread VM

Java concurrency features:
arbitrary thread creation
synchronisation
thread join & interruption
wait / notify

not modelled:
java.util.concurrent
final fields

veri fied
com piler

stage 1 stage 2

3



January 2011 A unified machine-checked model for the multithreaded Java IPD, programming paradigms group

source code

3

λ →

∀
=Isa

be
lle

β

α

HOL

small-step

byte code

bytecode verifiertype safety

big-step sequential VM

type
safety

interleaving semantics concurrent VMconc. small step

single-thread VMveri fied
com piler

stage 1 stage 2

Java Memory Model

JinjaThreads

Prove:
DRF guarantee
Type safety
No thin-air reads
Compiler correctness

3



January 2011 A unified machine-checked model for the multithreaded Java IPD, programming paradigms group

Isolated traces of threads

r4 = r3.length unobservable

intra-thread consistency spans threads

4

r1 = v;
r2 = new int[r1];
w = r2;

v = 1; r3 = w;
r4 = r3.length;
print r4;          // when to print 1?

JMM: Type information and array lengths are not affected.

initially: v = 0; w = null;

4



January 2011 A unified machine-checked model for the multithreaded Java IPD, programming paradigms group

Interleaving semantics for types

5

t ⊢〈x, T〉→〈x', T'〉as 《σ, T》→《σ', T'》t
as

interleaving 

single-thread semantics interleaved semantics

5



January 2011 A unified machine-checked model for the multithreaded Java IPD, programming paradigms group

Interleaving semantics for types

5

t ⊢〈x, T〉→〈x', T'〉as 《σ, T》→《σ', T'》t
as

interleaving 

single-thread semantics interleaved semantics

type info
array lengths

5



January 2011 A unified machine-checked model for the multithreaded Java IPD, programming paradigms group

Interleaving semantics for types

5

t ⊢〈x, T〉→〈x', T'〉as 《σ, T》→《σ', T'》t
as

interleaving 

single-thread semantics interleaved semantics

locks
thread-local states

wait sets

type info
array lengths

5



January 2011 A unified machine-checked model for the multithreaded Java IPD, programming paradigms group

Interleaving semantics for types

5

t ⊢〈x, T〉→〈x', T'〉as 《σ, T》→《σ', T'》t
as

interleaving 

single-thread semantics

new thread x /
lock l / unlock l /

wait w / notify w / ...

interleaved semantics

locks
thread-local states

wait sets

type info
array lengths

5



January 2011 A unified machine-checked model for the multithreaded Java IPD, programming paradigms group

Interleaving semantics for types

5

t ⊢〈x, T〉→〈x', T'〉as 《σ, T》→《σ', T'》t
as

interleaving 

single-thread semantics interleaved semantics

typeofT a = Class C       P ⊢ C ≤ Thread        P ⊢ C sees run() = body 

t ⊢〈(addr a).start(), T〉                        〈Unit, T〉
[NewThread body]

5



January 2011 A unified machine-checked model for the multithreaded Java IPD, programming paradigms group

Interleaving semantics for types

5

t ⊢〈x, T〉→〈x', T'〉as 《σ, T》→《σ', T'》t
as

interleaving 

single-thread semantics interleaved semantics

typeofT a = Class C       P ⊢ C ≤ Thread        P ⊢ C sees run() = body 

t ⊢〈(addr a).start(), T〉                        〈Unit, T〉
[NewThread body]

《σ, T》→
《σ, T》↓  [] 《σ, T》↓  obst(as) : E

《σ, T》→《σ', T'》       《σ', T'》↓  E           t
as

trace E:《σ, T》⇓  E := ∃E'.《σ, T》↓  E' ∧ E = concat(E')

intra-thread consistency: program = maximal traces of interleaving

5



January 2011 A unified machine-checked model for the multithreaded Java IPD, programming paradigms group

Axiomatic JMM

Deviations:
no thread divergence actions
thread interruption via volatile field
ordinality of so and po

synchronisation order ω+ω
program order ω+ω

no ssw edges and legality constraint 8

6

trace

obtain po, hb, so

well-formedness

legality

initialisations:
happen before all other actions
location type may depend on read values
v = 1; r1 = (v == 1 ? new int[1] : new bool[1]);

r2 = r1[0];                               // read 0 or false

6



January 2011 A unified machine-checked model for the multithreaded Java IPD, programming paradigms group

DRF guarantee

Proof outline for correctly synchronized programs:
If each read sees a write that happens before it, execution is SC.

If not, find first violating read r,
obtain SC completion from r on, and
show that r and the writes are part of an hb data race.

by induction: justifying executions are SC.

I

7

7



January 2011 A unified machine-checked model for the multithreaded Java IPD, programming paradigms group

SC completions 

SC defined w.r.t. happens-before
traces coinductive
coinductive characterisation of SC prefixes

allocation precedes read access

construct SC completion via corecursion
cut-and-update property for thread semantics
requires type safety
restrict reads to read only type-correct values

disallows reordering with object creation:

8

r1 = x;
y = new Object();

r2 = y;
x = r2;

r1 == y?

8



January 2011 A unified machine-checked model for the multithreaded Java IPD, programming paradigms group

Summary

Unified model for multithreaded Java (bytecode)
in Isabelle/HOL
usable for proving metatheoretic results

Future work
remedy type restriction
type safety
correctness of the bytecode verifier and compiler

9

9


