
1

PROGRAMMING PARADIGMS GROUP

Quis Custodiet Ipsos Custodes? funded by DFG Ni491/11, Sn11/10

Jasmin Blanchette, Lukas Bulwahn, Andreas Lochbihler, Denis Lohner,
Tobias Nipkow, Gregor Snelting, Daniel Wasserrab

KIT – University of the State of Baden-Wuerttemberg and
National Laboratory of the Helmholtz Association www.kit.edu



Quis Custodiet Ipsos Custodes? [Juvenal]

2

Who will guard the Guards?
Many software security analysis algorithms are published without
soundness proof, some with a manual proof only

Vision of our Project:

provide machine-checked proofs for IFC algorithms
reach a new level of reliability in language based security (LBS)
develop new techniques to validate the underlying language
description
integrate semantics, theorem provers and program analysis with LBS

Ultimate Goal: automatically generate an executable, completely
machine-verified, PDG-based IFC tool



Quis Custodiet Ipsos Custodes? [Juvenal]

2

Who will guard the Guards?
Many software security analysis algorithms are published without
soundness proof, some with a manual proof only

Vision of our Project:

provide machine-checked proofs for IFC algorithms
reach a new level of reliability in language based security (LBS)
develop new techniques to validate the underlying language
description
integrate semantics, theorem provers and program analysis with LBS

Ultimate Goal: automatically generate an executable, completely
machine-verified, PDG-based IFC tool



Starting Point and Goals

3

KIT: Joana
PDG-based IFC for Java

TUM: Jinja
Java semantics in Isabelle

λ
→

∀
=Is

ab
el
le

β

α

HOL

Project Idea

1. verify the PDG-based IFC
algorithm using Isabelle

2. support verification by innovative
counter example generators



Starting Point and Goals

3

KIT: Joana
PDG-based IFC for Java

TUM: Jinja
Java semantics in Isabelle

λ
→

∀
=Is

ab
el
le

β

α

HOL

Project Idea

1. verify the PDG-based IFC
algorithm using Isabelle

2. support verification by innovative
counter example generators



A tiny PDG

4

1 a = input ();
2 while (n>0) {
3 x = input ();
4 if (x>0)
5 b = a;
6 else
7 c = b;
8 }
9 z = c;

Slicing Theorem:
no path x →∗ y =⇒ information flow x → y impossible
∃ path x →∗ y =⇒ potential information flow x → y

Precise PDG construction for full Java is very complex
requires precise points-to analysis
scales to ca. 100 kLOC



Interprocedural PDG-based IFC is correct

5

low-equality non-interference

slicing theorem

PDG / SDG

control flow graph

JinjaThreadsWhile CoreC++

interprocedural!

input & output
declassification

call graph & points-to analysis
concurrency & memory model



Interprocedural PDG-based IFC is correct

5

low-equality non-interference

slicing theorem

PDG / SDG

control flow graph

JinjaThreadsWhile CoreC++

interprocedural!

input & output
declassification

call graph & points-to analysis
concurrency & memory model



Counter-Example Generation

6

Idea: Find errors in defintions & theorems early
Generate counter-examples for incorrect theorems automatically!

Nitpick translate HOL formula to propositional logic
hand it to a SAT solver

generally applicable, requires a lot of fine tuning

Quickcheck evaluate the formula
test data generation:

random
exhaustive with intelligent generators
symbolic execution + narrowing

fast, but requires executability



Results

7

KIT:

PDGs & slicing for full Java bytecode
[FSE ’03, PASTE ’04, SCAM ’07a, TPHOLs’ 08, Hamm ’09, JASE ’09a]

path conditions in PDGs: necessary conditions for information flow
[SAS ’96, ICSE ’02, TOSEM ’06, SCAM ’07b, PLAS ’08, JASE ’09b]

IFC for full Java based on PDGs
[ISSSE ’06, ISOLA ’06, PLAS ’08, IJIS ’09, PLAS ’09, Verify ’10]

Semantics for Java and C++
[OOPSLA ’06, FOOL ’08, ESOP ’10, ITP ’11]

TUM:
Nitpick
[TAP ’09, TAP ’10, ITP ’10, IJCAR ’10, LPAR ’10, PPDP ’11, FroCoS ’11]

Quickcheck
[SEFM ’03, TPHOLs ’09, ICLP ’11, ITP ’11, FroCoS ’11]



Ongoing Work in Quis Custodiet

8

Isabelle proof for full algorithm including
points-to, threads & memory model
automatically generate an executable, completely machine-verified,
PDG-based IFC tool
extend and engineer Nitpick & Quickcheck
application to Quis Custodiet theorems

Quis Custodiet Ipsos Custodes?

Isabelle!



Ongoing Work in Quis Custodiet

8

Isabelle proof for full algorithm including
points-to, threads & memory model
automatically generate an executable, completely machine-verified,
PDG-based IFC tool
extend and engineer Nitpick & Quickcheck
application to Quis Custodiet theorems

Quis Custodiet Ipsos Custodes?
Isabelle!


	Overview

