
1 28 Mar 2012 Andreas Lochbihler: A Unified, Machine-Checked Formalisation of Java and the Java Memory Model PROGRAMMING PARADIGMS GROUP

λ
→

∀
=Is

ab
el
le

β

α

HOL

PROGRAMMING PARADIGMS GROUP

A Unified, Machine-Checked Formalisation
of Java and the Java Memory Model
Andreas Lochbihler funded by DFG grants Sn11/10-1,2

KIT – University of the State of Baden-Wuerttemberg and
National Research Center of the Helmholtz Association www.kit.edu



Why do we need a memory model?

2 28 Mar 2012 Andreas Lochbihler: A Unified, Machine-Checked Formalisation of Java and the Java Memory Model PROGRAMMING PARADIGMS GROUP

x = 1;
j = y;

y = 2;
i = x;

initially: x = y = 0;

i == 0
i == 1

j == 0 j == 2

interleaving semantics

compiler and hardware
reorder statements

j = y;
x = 1;

i = x;
y = 2;

i == 0
i == 1

j == 0 j == 2



Why do we need a memory model?

2 28 Mar 2012 Andreas Lochbihler: A Unified, Machine-Checked Formalisation of Java and the Java Memory Model PROGRAMMING PARADIGMS GROUP

x = 1;
j = y;

y = 2;
i = x;

initially: x = y = 0;

i == 0
i == 1

j == 0 j == 2

interleaving semantics

compiler and hardware
reorder statements

j = y;
x = 1;

i = x;
y = 2;

i == 0
i == 1

j == 0 j == 2



Why do we need a memory model?

2 28 Mar 2012 Andreas Lochbihler: A Unified, Machine-Checked Formalisation of Java and the Java Memory Model PROGRAMMING PARADIGMS GROUP

x = 1;
j = y;

y = 2;
i = x;

initially: x = y = 0;

i == 0
i == 1

j == 0 j == 2

interleaving semantics

√

compiler and hardware
reorder statements

j = y;
x = 1;

i = x;
y = 2;

i == 0
i == 1

j == 0 j == 2



Why do we need a memory model?

2 28 Mar 2012 Andreas Lochbihler: A Unified, Machine-Checked Formalisation of Java and the Java Memory Model PROGRAMMING PARADIGMS GROUP

x = 1;
j = y;

y = 2;
i = x;

initially: x = y = 0;

i == 0
i == 1

j == 0 j == 2

interleaving semantics

√
√

compiler and hardware
reorder statements

j = y;
x = 1;

i = x;
y = 2;

i == 0
i == 1

j == 0 j == 2



Why do we need a memory model?

2 28 Mar 2012 Andreas Lochbihler: A Unified, Machine-Checked Formalisation of Java and the Java Memory Model PROGRAMMING PARADIGMS GROUP

x = 1;
j = y;

y = 2;
i = x;

initially: x = y = 0;

i == 0
i == 1

j == 0 j == 2

interleaving semantics

√
√
√

compiler and hardware
reorder statements

j = y;
x = 1;

i = x;
y = 2;

i == 0
i == 1

j == 0 j == 2



Why do we need a memory model?

2 28 Mar 2012 Andreas Lochbihler: A Unified, Machine-Checked Formalisation of Java and the Java Memory Model PROGRAMMING PARADIGMS GROUP

x = 1;
j = y;

y = 2;
i = x;

initially: x = y = 0;

i == 0
i == 1

j == 0 j == 2

interleaving semantics

√
√
√X

compiler and hardware
reorder statements

j = y;
x = 1;

i = x;
y = 2;

i == 0
i == 1

j == 0 j == 2



Why do we need a memory model?

2 28 Mar 2012 Andreas Lochbihler: A Unified, Machine-Checked Formalisation of Java and the Java Memory Model PROGRAMMING PARADIGMS GROUP

x = 1;
j = y;

y = 2;
i = x;

initially: x = y = 0;

i == 0
i == 1

j == 0 j == 2

interleaving semantics

√
√
√X

compiler and hardware
reorder statements

j = y;
x = 1;

i = x;
y = 2;

i == 0
i == 1

j == 0 j == 2√



Why do we need a memory model?

2 28 Mar 2012 Andreas Lochbihler: A Unified, Machine-Checked Formalisation of Java and the Java Memory Model PROGRAMMING PARADIGMS GROUP

x = 1;
j = y;

y = 2;
i = x;

initially: x = y = 0;

i == 0
i == 1

j == 0 j == 2

interleaving semantics

√
√
√X

compiler and hardware
reorder statements

j = y;
x = 1;

i = x;
y = 2;

i == 0
i == 1

j == 0 j == 2√ √
√

X



Why do we need a memory model?

2 28 Mar 2012 Andreas Lochbihler: A Unified, Machine-Checked Formalisation of Java and the Java Memory Model PROGRAMMING PARADIGMS GROUP

x = 1;
j = y;

y = 2;
i = x;

initially: x = y = 0;

i == 0
i == 1

j == 0 j == 2

Java memory model

√
√
√

√

compiler and hardware
reorder statements

j = y;
x = 1;

i = x;
y = 2;

i == 0
i == 1

j == 0 j == 2√ √
√ √



The Java memory model: goals

3 28 Mar 2012 Andreas Lochbihler: A Unified, Machine-Checked Formalisation of Java and the Java Memory Model PROGRAMMING PARADIGMS GROUP

1. allow compiler optimisations

too restricted
[Cenciarelli et al. 07; Ševčík, Aspinall 08; Torlak et al. 10]

2. interleaving semantics for data-race-free programs (DRF guarantee)

proofs with holes

formally proven for Java-like language

[Manson et al. 05; Aspinall, Ševčík 07; Huisman, Petri 07]

3. give semantics to all Java programs

informal, loose connection with Java

-like language formalised

main cause for technical complexity

4. support type safety and security architecture

open



The Java memory model: goals

3 28 Mar 2012 Andreas Lochbihler: A Unified, Machine-Checked Formalisation of Java and the Java Memory Model PROGRAMMING PARADIGMS GROUP

1. allow compiler optimisations
too restricted
[Cenciarelli et al. 07; Ševčík, Aspinall 08; Torlak et al. 10]

2. interleaving semantics for data-race-free programs (DRF guarantee)

proofs with holes

formally proven for Java-like language

[Manson et al. 05; Aspinall, Ševčík 07; Huisman, Petri 07]

3. give semantics to all Java programs

informal, loose connection with Java

-like language formalised

main cause for technical complexity

4. support type safety and security architecture

open



The Java memory model: goals

3 28 Mar 2012 Andreas Lochbihler: A Unified, Machine-Checked Formalisation of Java and the Java Memory Model PROGRAMMING PARADIGMS GROUP

1. allow compiler optimisations
too restricted
[Cenciarelli et al. 07; Ševčík, Aspinall 08; Torlak et al. 10]

2. interleaving semantics for data-race-free programs (DRF guarantee)
proofs with holes

formally proven for Java-like language

[Manson et al. 05; Aspinall, Ševčík 07; Huisman, Petri 07]

3. give semantics to all Java programs

informal, loose connection with Java

-like language formalised

main cause for technical complexity

4. support type safety and security architecture

open



The Java memory model: goals

3 28 Mar 2012 Andreas Lochbihler: A Unified, Machine-Checked Formalisation of Java and the Java Memory Model PROGRAMMING PARADIGMS GROUP

1. allow compiler optimisations
too restricted
[Cenciarelli et al. 07; Ševčík, Aspinall 08; Torlak et al. 10]

2. interleaving semantics for data-race-free programs (DRF guarantee)
proofs with holes

formally proven for Java-like language

[Manson et al. 05; Aspinall, Ševčík 07; Huisman, Petri 07]

3. give semantics to all Java programs
informal, loose connection with Java

-like language formalised

main cause for technical complexity

4. support type safety and security architecture

open



The Java memory model: goals

3 28 Mar 2012 Andreas Lochbihler: A Unified, Machine-Checked Formalisation of Java and the Java Memory Model PROGRAMMING PARADIGMS GROUP

1. allow compiler optimisations
too restricted
[Cenciarelli et al. 07; Ševčík, Aspinall 08; Torlak et al. 10]

2. interleaving semantics for data-race-free programs (DRF guarantee)
proofs with holes

formally proven for Java-like language

[Manson et al. 05; Aspinall, Ševčík 07; Huisman, Petri 07]

3. give semantics to all Java programs
informal, loose connection with Java

-like language formalised

main cause for technical complexity

4. support type safety and security architecture
open



The Java memory model: goals

3 28 Mar 2012 Andreas Lochbihler: A Unified, Machine-Checked Formalisation of Java and the Java Memory Model PROGRAMMING PARADIGMS GROUP

1. allow compiler optimisations
too restricted
[Cenciarelli et al. 07; Ševčík, Aspinall 08; Torlak et al. 10]

2. interleaving semantics for data-race-free programs (DRF guarantee)
proofs with holes formally proven for Java-like language
[Manson et al. 05; Aspinall, Ševčík 07; Huisman, Petri 07]

3. give semantics to all Java programs
informal, loose connection with Java-like language formalised
main cause for technical complexity

4. support type safety and security architecture
open



Quis custodiet ipsos custodes?

4 28 Mar 2012 Andreas Lochbihler: A Unified, Machine-Checked Formalisation of Java and the Java Memory Model PROGRAMMING PARADIGMS GROUP

Joana
IFC leak

formal semantics JinjaThreads

Joana: [Hammer, Snelting 09]
information flow control for
multithreaded Java

Quis custodiet:
verify IFC algorithm

λ
→

∀
=Is

ab
el
le

β

α

HOL

analyses assume interleaving semantics
⇒ DRF guarantee makes them applicable to DRF programs



JinjaThreads

5 28 Mar 2012 Andreas Lochbihler: A Unified, Machine-Checked Formalisation of Java and the Java Memory Model PROGRAMMING PARADIGMS GROUP

sequential features

classes, objects, fields, arrays
inheritance and late binding
exceptions
imperative features

concurrency
thread creation
synchronisation
wait-notify
join, interruption

small-step semantics defensive VM

native methods

thread start & finish actions

interleaved small-step

complete interleavings

Java memory model
source code bytecode

multithreaded

single thread

actions

Jinja
[Klein, Nipkow 06]



Connecting JinjaThreads with the JMM

6 28 Mar 2012 Andreas Lochbihler: A Unified, Machine-Checked Formalisation of Java and the Java Memory Model PROGRAMMING PARADIGMS GROUP

T t2 = new T();
t2.start();

class T extends Thread {
public void run() {

print(y); } }t2.join();

initially: y = 0;

A. interleave threads and record actions

1. bootstrap . . . , t1:[Init y 0], . . .
2. allocation t1:[Init t2’s fields]
3. execute constructor t1:[], . . .
4. spawn t1:[], t1:[Spawn t2 ], t1:[]
5. start t2:[Start]
6. read y t2:[Read y v ]

non-deterministic
value v

7. print y t2:[External print v ]
8. finish t2:[Finish]
9. join t1:[NotInterrupted t1, Join t2]

10. finish t1:[Finish]

B. flatten & purge
irrelevant actions

C. reconstruct orders ≤hb, ≤so
match reads and writes

v = 0

D. impose JMM
legality constraints



Connecting JinjaThreads with the JMM

6 28 Mar 2012 Andreas Lochbihler: A Unified, Machine-Checked Formalisation of Java and the Java Memory Model PROGRAMMING PARADIGMS GROUP

T t2 = new T();
t2.start();

class T extends Thread {
public void run() {

print(y); } }t2.join();

initially: y = 0;

A. interleave threads and record actions

→ 1. bootstrap . . . , t1:[Init y 0], . . .
2. allocation t1:[Init t2’s fields]
3. execute constructor t1:[], . . .
4. spawn t1:[], t1:[Spawn t2 ], t1:[]
5. start t2:[Start]
6. read y t2:[Read y v ]

non-deterministic
value v

7. print y t2:[External print v ]
8. finish t2:[Finish]
9. join t1:[NotInterrupted t1, Join t2]

10. finish t1:[Finish]

B. flatten & purge
irrelevant actions

C. reconstruct orders ≤hb, ≤so
match reads and writes

v = 0

D. impose JMM
legality constraints



Connecting JinjaThreads with the JMM

6 28 Mar 2012 Andreas Lochbihler: A Unified, Machine-Checked Formalisation of Java and the Java Memory Model PROGRAMMING PARADIGMS GROUP

T t2 = new T();
t2.start();

class T extends Thread {
public void run() {

print(y); } }t2.join();

initially: y = 0;

A. interleave threads and record actions

1. bootstrap . . . , t1:[Init y 0], . . .
→ 2. allocation t1:[Init t2’s fields]

3. execute constructor t1:[], . . .
4. spawn t1:[], t1:[Spawn t2 ], t1:[]
5. start t2:[Start]
6. read y t2:[Read y v ]

non-deterministic
value v

7. print y t2:[External print v ]
8. finish t2:[Finish]
9. join t1:[NotInterrupted t1, Join t2]

10. finish t1:[Finish]

B. flatten & purge
irrelevant actions

C. reconstruct orders ≤hb, ≤so
match reads and writes

v = 0

D. impose JMM
legality constraints



Connecting JinjaThreads with the JMM

6 28 Mar 2012 Andreas Lochbihler: A Unified, Machine-Checked Formalisation of Java and the Java Memory Model PROGRAMMING PARADIGMS GROUP

T t2 = new T();
t2.start();

class T extends Thread {
public void run() {

print(y); } }t2.join();

initially: y = 0;

A. interleave threads and record actions

1. bootstrap . . . , t1:[Init y 0], . . .
2. allocation t1:[Init t2’s fields]

→ 3. execute constructor t1:[], . . .
4. spawn t1:[], t1:[Spawn t2 ], t1:[]
5. start t2:[Start]
6. read y t2:[Read y v ]

non-deterministic
value v

7. print y t2:[External print v ]
8. finish t2:[Finish]
9. join t1:[NotInterrupted t1, Join t2]

10. finish t1:[Finish]

B. flatten & purge
irrelevant actions

C. reconstruct orders ≤hb, ≤so
match reads and writes

v = 0

D. impose JMM
legality constraints



Connecting JinjaThreads with the JMM

6 28 Mar 2012 Andreas Lochbihler: A Unified, Machine-Checked Formalisation of Java and the Java Memory Model PROGRAMMING PARADIGMS GROUP

T t2 = new T();
t2.start();

class T extends Thread {
public void run() {

print(y); } }t2.join();

initially: y = 0;

A. interleave threads and record actions

1. bootstrap . . . , t1:[Init y 0], . . .
2. allocation t1:[Init t2’s fields]
3. execute constructor t1:[], . . .

→ 4. spawn t1:[], t1:[Spawn t2 ], t1:[]
5. start t2:[Start]
6. read y t2:[Read y v ]

non-deterministic
value v

7. print y t2:[External print v ]
8. finish t2:[Finish]
9. join t1:[NotInterrupted t1, Join t2]

10. finish t1:[Finish]

B. flatten & purge
irrelevant actions

C. reconstruct orders ≤hb, ≤so
match reads and writes

v = 0

D. impose JMM
legality constraints



Connecting JinjaThreads with the JMM

6 28 Mar 2012 Andreas Lochbihler: A Unified, Machine-Checked Formalisation of Java and the Java Memory Model PROGRAMMING PARADIGMS GROUP

T t2 = new T();
t2.start();

class T extends Thread {
public void run() {

print(y); } }t2.join();

initially: y = 0;

A. interleave threads and record actions

1. bootstrap . . . , t1:[Init y 0], . . .
2. allocation t1:[Init t2’s fields]
3. execute constructor t1:[], . . .
4. spawn t1:[], t1:[Spawn t2 ], t1:[]

→ 5. start t2:[Start]
6. read y t2:[Read y v ]

non-deterministic
value v

7. print y t2:[External print v ]
8. finish t2:[Finish]
9. join t1:[NotInterrupted t1, Join t2]

10. finish t1:[Finish]

B. flatten & purge
irrelevant actions

C. reconstruct orders ≤hb, ≤so
match reads and writes

v = 0

D. impose JMM
legality constraints



Connecting JinjaThreads with the JMM

6 28 Mar 2012 Andreas Lochbihler: A Unified, Machine-Checked Formalisation of Java and the Java Memory Model PROGRAMMING PARADIGMS GROUP

T t2 = new T();
t2.start();

class T extends Thread {
public void run() {

print(y); } }t2.join();

initially: y = 0;

A. interleave threads and record actions

1. bootstrap . . . , t1:[Init y 0], . . .
2. allocation t1:[Init t2’s fields]
3. execute constructor t1:[], . . .
4. spawn t1:[], t1:[Spawn t2 ], t1:[]
5. start t2:[Start]

→ 6. read y t2:[Read y v ]

non-deterministic
value v

7. print y t2:[External print v ]
8. finish t2:[Finish]
9. join t1:[NotInterrupted t1, Join t2]

10. finish t1:[Finish]

B. flatten & purge
irrelevant actions

C. reconstruct orders ≤hb, ≤so
match reads and writes

v = 0

D. impose JMM
legality constraints



Connecting JinjaThreads with the JMM

6 28 Mar 2012 Andreas Lochbihler: A Unified, Machine-Checked Formalisation of Java and the Java Memory Model PROGRAMMING PARADIGMS GROUP

T t2 = new T();
t2.start();

class T extends Thread {
public void run() {

print(y); } }t2.join();

initially: y = 0;

A. interleave threads and record actions

1. bootstrap . . . , t1:[Init y 0], . . .
2. allocation t1:[Init t2’s fields]
3. execute constructor t1:[], . . .
4. spawn t1:[], t1:[Spawn t2 ], t1:[]
5. start t2:[Start]
6. read y t2:[Read y v ]

non-deterministic
value v

→ 7. print y t2:[External print v ]
8. finish t2:[Finish]
9. join t1:[NotInterrupted t1, Join t2]

10. finish t1:[Finish]

B. flatten & purge
irrelevant actions

C. reconstruct orders ≤hb, ≤so
match reads and writes

v = 0

D. impose JMM
legality constraints



Connecting JinjaThreads with the JMM

6 28 Mar 2012 Andreas Lochbihler: A Unified, Machine-Checked Formalisation of Java and the Java Memory Model PROGRAMMING PARADIGMS GROUP

T t2 = new T();
t2.start();

class T extends Thread {
public void run() {

print(y); } }t2.join();

initially: y = 0;

A. interleave threads and record actions

1. bootstrap . . . , t1:[Init y 0], . . .
2. allocation t1:[Init t2’s fields]
3. execute constructor t1:[], . . .
4. spawn t1:[], t1:[Spawn t2 ], t1:[]
5. start t2:[Start]
6. read y t2:[Read y v ]

non-deterministic
value v

7. print y t2:[External print v ]
→ 8. finish t2:[Finish]

9. join t1:[NotInterrupted t1, Join t2]
10. finish t1:[Finish]

B. flatten & purge
irrelevant actions

C. reconstruct orders ≤hb, ≤so
match reads and writes

v = 0

D. impose JMM
legality constraints



Connecting JinjaThreads with the JMM

6 28 Mar 2012 Andreas Lochbihler: A Unified, Machine-Checked Formalisation of Java and the Java Memory Model PROGRAMMING PARADIGMS GROUP

T t2 = new T();
t2.start();

class T extends Thread {
public void run() {

print(y); } }t2.join();

initially: y = 0;

A. interleave threads and record actions

1. bootstrap . . . , t1:[Init y 0], . . .
2. allocation t1:[Init t2’s fields]
3. execute constructor t1:[], . . .
4. spawn t1:[], t1:[Spawn t2 ], t1:[]
5. start t2:[Start]
6. read y t2:[Read y v ]

non-deterministic
value v

7. print y t2:[External print v ]
8. finish t2:[Finish]

→ 9. join t1:[NotInterrupted t1, Join t2]
10. finish t1:[Finish]

B. flatten & purge
irrelevant actions

C. reconstruct orders ≤hb, ≤so
match reads and writes

v = 0

D. impose JMM
legality constraints



Connecting JinjaThreads with the JMM

6 28 Mar 2012 Andreas Lochbihler: A Unified, Machine-Checked Formalisation of Java and the Java Memory Model PROGRAMMING PARADIGMS GROUP

T t2 = new T();
t2.start();

class T extends Thread {
public void run() {

print(y); } }t2.join();

initially: y = 0;

A. interleave threads and record actions

1. bootstrap . . . , t1:[Init y 0], . . .
2. allocation t1:[Init t2’s fields]
3. execute constructor t1:[], . . .
4. spawn t1:[], t1:[Spawn t2 ], t1:[]
5. start t2:[Start]
6. read y t2:[Read y v ]

non-deterministic
value v

7. print y t2:[External print v ]
8. finish t2:[Finish]
9. join t1:[NotInterrupted t1, Join t2]

→ 10. finish t1:[Finish]

B. flatten & purge
irrelevant actions

C. reconstruct orders ≤hb, ≤so
match reads and writes

v = 0

D. impose JMM
legality constraints



Connecting JinjaThreads with the JMM

6 28 Mar 2012 Andreas Lochbihler: A Unified, Machine-Checked Formalisation of Java and the Java Memory Model PROGRAMMING PARADIGMS GROUP

T t2 = new T();
t2.start();

class T extends Thread {
public void run() {

print(y); } }t2.join();

initially: y = 0;

A. interleave threads and record actions

1. bootstrap . . . , t1:

[

Init y 0

]

, . . .
2. allocation t1:

[

Init t2’s fields

]

3. execute constructor

t1:[],

. . .
4. spawn

t1:[],

t1:

[

Spawn t2

], t1:[]

5. start t2:

[

Start

]

6. read y t2:

[

Read y v

]

non-deterministic
value v

7. print y t2:

[

External print v

]

8. finish t2:

[

Finish

]

9. join t1:

[

NotInterrupted t1, Join t2

]

10. finish t1:

[

Finish

]

B. flatten & purge
irrelevant actions

C. reconstruct orders ≤hb, ≤so
match reads and writes

v = 0

D. impose JMM
legality constraints



Connecting JinjaThreads with the JMM

6 28 Mar 2012 Andreas Lochbihler: A Unified, Machine-Checked Formalisation of Java and the Java Memory Model PROGRAMMING PARADIGMS GROUP

T t2 = new T();
t2.start();

class T extends Thread {
public void run() {

print(y); } }t2.join();

initially: y = 0;

A. interleave threads and record actions

1. bootstrap . . . , t1:

[

Init y 0

]

, . . .
2. allocation t1:

[

Init t2’s fields

]

3. execute constructor

t1:[],

. . .
4. spawn

t1:[],

t1:

[

Spawn t2

], t1:[]

5. start t2:

[

Start

]

6. read y t2:

[

Read y v

]

non-deterministic
value v

7. print y t2:

[

External print v

]

8. finish t2:

[

Finish

]

9. join t1:

[

NotInterrupted t1, Join t2

]

10. finish t1:

[

Finish

]

B. flatten & purge
irrelevant actions

C. reconstruct orders ≤hb, ≤so
match reads and writes

v = 0

D. impose JMM
legality constraints



Connecting JinjaThreads with the JMM

6 28 Mar 2012 Andreas Lochbihler: A Unified, Machine-Checked Formalisation of Java and the Java Memory Model PROGRAMMING PARADIGMS GROUP

T t2 = new T();
t2.start();

class T extends Thread {
public void run() {

print(y); } }t2.join();

initially: y = 0;

A. interleave threads and record actions

1. bootstrap . . . , t1:

[

Init y 0

]

, . . .
2. allocation t1:

[

Init t2’s fields

]

3. execute constructor

t1:[],

. . .
4. spawn

t1:[],

t1:

[

Spawn t2

], t1:[]

5. start t2:

[

Start

]

6. read y t2:

[

Read y v

]

non-deterministic
value v

7. print y t2:

[

External print v

]

8. finish t2:

[

Finish

]

9. join t1:

[

NotInterrupted t1, Join t2

]

10. finish t1:

[

Finish

]

B. flatten & purge
irrelevant actions

C. reconstruct orders ≤hb, ≤so
match reads and writes

v = 0

D. impose JMM
legality constraints



DRF guarantee

7 28 Mar 2012 Andreas Lochbihler: A Unified, Machine-Checked Formalisation of Java and the Java Memory Model PROGRAMMING PARADIGMS GROUP

sequential consistency (SC) every read sees most recent write
data race two conflicting actions unrelated in ≤hb

read/write, write/read, write/write to non-volatile location
data race free (DRF) no data race in any SC execution of the program

DRF guarantee DRF programs behave like under interleaving semantics.

Theorem
No data race in SC executions =⇒ all executions are SC.

implications for Java programmers:
Always synchronise and forget about the JMM.
Mark all synchronisation variables (volatile, synchronized).
Use only allowed synchronisation primitives.



Implicit communication channels

8 28 Mar 2012 Andreas Lochbihler: A Unified, Machine-Checked Formalisation of Java and the Java Memory Model PROGRAMMING PARADIGMS GROUP

1. run-time type information as global state

x = true; r1 = x;
y = (r1 ? new A() : new B());

r2 = y.f();

initially: x = false; y = null;

2. synchronisation via Thread.start

y = 1;
x.start();

try { x.start();
} catch (IllegalThreadStateException _) { r = y; }

initially: x = new Thread(); y = 0;

data race?



Implicit communication channels

8 28 Mar 2012 Andreas Lochbihler: A Unified, Machine-Checked Formalisation of Java and the Java Memory Model PROGRAMMING PARADIGMS GROUP

1. run-time type information as global state

x = true; r1 = x;
y = (r1 ? new A() : new B());

r2 = y.f();

initially: x = false; y = null;

dispatch to A.f()
⇒ r1 == true

2. synchronisation via Thread.start

y = 1;
x.start();

try { x.start();
} catch (IllegalThreadStateException _) { r = y; }

initially: x = new Thread(); y = 0;

data race?



Implicit communication channels

8 28 Mar 2012 Andreas Lochbihler: A Unified, Machine-Checked Formalisation of Java and the Java Memory Model PROGRAMMING PARADIGMS GROUP

1. run-time type information as global state

x = true; r1 = x;
y = (r1 ? new A() : new B());

r2 = y.f();

initially: x = false; y = null;

dispatch to A.f()
⇒ r1 == true

disallowed synchronisatio
n

2. synchronisation via Thread.start

y = 1;
x.start();

try { x.start();
} catch (IllegalThreadStateException _) { r = y; }

initially: x = new Thread(); y = 0;

data race?



Implicit communication channels

8 28 Mar 2012 Andreas Lochbihler: A Unified, Machine-Checked Formalisation of Java and the Java Memory Model PROGRAMMING PARADIGMS GROUP

1. run-time type information as global state

x = true; r1 = x;
y = (r1 ? new A() : new B());

r2 = y.f();

initially: x = false; y = null;

dispatch to A.f()
⇒ r1 == true

disallowed synchronisatio
n

2. synchronisation via Thread.start

y = 1;
x.start();

try { x.start();
} catch (IllegalThreadStateException _) { r = y; }

initially: x = new Thread(); y = 0;

data race?



Implicit communication channels

8 28 Mar 2012 Andreas Lochbihler: A Unified, Machine-Checked Formalisation of Java and the Java Memory Model PROGRAMMING PARADIGMS GROUP

1. run-time type information as global state

x = true; r1 = x;
y = (r1 ? new A() : new B());

r2 = y.f();

initially: x = false; y = null;

dispatch to A.f()
⇒ r1 == true

disallowed synchronisatio
n

2. synchronisation via Thread.start

y = 1;
x.start();

try { x.start();
} catch (IllegalThreadStateException _) { r = y; }

initially: x = new Thread(); y = 0;

data race?



Implicit communication channels

8 28 Mar 2012 Andreas Lochbihler: A Unified, Machine-Checked Formalisation of Java and the Java Memory Model PROGRAMMING PARADIGMS GROUP

1. run-time type information as global state

x = true; r1 = x;
y = (r1 ? new A() : new B());

r2 = y.f();

initially: x = false; y = null;

dispatch to A.f()
⇒ r1 == true

disallowed synchronisatio
n

2. synchronisation via Thread.start

y = 1;
x.start();

try { x.start();
} catch (IllegalThreadStateException _) { r = y; }

initially: x = new Thread(); y = 0;

data race?

intuition: no JMM: yes



Implicit communication channels

8 28 Mar 2012 Andreas Lochbihler: A Unified, Machine-Checked Formalisation of Java and the Java Memory Model PROGRAMMING PARADIGMS GROUP

1. run-time type information as global state

x = true; r1 = x;
y = (r1 ? new A() : new B());

r2 = y.f();

initially: x = false; y = null;

dispatch to A.f()
⇒ r1 == true

disallowed synchronisatio
n

2. synchronisation via Thread.start

y = 1;
x.start();

try { x.start();
} catch (IllegalThreadStateException _) { r = y; }

initially: x = new Thread(); y = 0;

data race?disallowed synchronisatio
n



DRF guarantee

9 28 Mar 2012 Andreas Lochbihler: A Unified, Machine-Checked Formalisation of Java and the Java Memory Model PROGRAMMING PARADIGMS GROUP

Theorem (DRF guarantee)
No data race in SC executions
=⇒ all executions are SC.

single-thread semantics

interleaved small-step

complete interleavings

Java memory model

Assumptions on complete interleavings:
1. SC completions for SC prefix
2. unique initialisations before read in SC prefix

axiomatic constraints

operational semantics

coinductive
characterisation
of SC prefixes

construct SC completion corecursively,
assume “cut and update”

Insights:

proofs abstract from form of allowed synchronisation
allocations (initialisations) complicate proofs
special treatment irrelevant for DRF programs



DRF guarantee

9 28 Mar 2012 Andreas Lochbihler: A Unified, Machine-Checked Formalisation of Java and the Java Memory Model PROGRAMMING PARADIGMS GROUP

Theorem (DRF guarantee)
No data race in SC executions
=⇒ all executions are SC.

single-thread semantics

interleaved small-step

complete interleavings

Java memory model

Assumptions on complete interleavings:
1. SC completions for SC prefix
2. unique initialisations before read in SC prefix

axiomatic constraints

operational semantics

coinductive
characterisation
of SC prefixes

construct SC completion corecursively,
assume “cut and update”

Insights:

proofs abstract from form of allowed synchronisation
allocations (initialisations) complicate proofs
special treatment irrelevant for DRF programs



DRF guarantee

9 28 Mar 2012 Andreas Lochbihler: A Unified, Machine-Checked Formalisation of Java and the Java Memory Model PROGRAMMING PARADIGMS GROUP

Theorem (DRF guarantee)
No data race in SC executions
=⇒ all executions are SC.

single-thread semantics

interleaved small-step

complete interleavings

Java memory model

Assumptions on complete interleavings:
1. SC completions for SC prefix
2. unique initialisations before read in SC prefix

axiomatic constraints

operational semantics

coinductive
characterisation
of SC prefixes

construct SC completion corecursively,
assume “cut and update”

Insights:

proofs abstract from form of allowed synchronisation
allocations (initialisations) complicate proofs
special treatment irrelevant for DRF programs



DRF guarantee

9 28 Mar 2012 Andreas Lochbihler: A Unified, Machine-Checked Formalisation of Java and the Java Memory Model PROGRAMMING PARADIGMS GROUP

Theorem (DRF guarantee)
No data race in SC executions
=⇒ all executions are SC.

single-thread semantics

interleaved small-step

complete interleavings

Java memory model

Assumptions on complete interleavings:
1. SC completions for SC prefix
2. unique initialisations before read in SC prefix

axiomatic constraints

operational semantics

coinductive
characterisation
of SC prefixes

construct SC completion corecursively,
assume “cut and update”

Insights:

proofs abstract from form of allowed synchronisation
allocations (initialisations) complicate proofs
special treatment irrelevant for DRF programs



DRF guarantee

9 28 Mar 2012 Andreas Lochbihler: A Unified, Machine-Checked Formalisation of Java and the Java Memory Model PROGRAMMING PARADIGMS GROUP

Theorem (DRF guarantee)
No data race in SC executions
=⇒ all executions are SC.

single-thread semantics

interleaved small-step

complete interleavings

Java memory model

Assumptions on complete interleavings:
1. SC completions for SC prefix
2. unique initialisations before read in SC prefix

axiomatic constraints

operational semantics

coinductive
characterisation
of SC prefixes

construct SC completion corecursively,
assume “cut and update”

Insights:

proofs abstract from form of allowed synchronisation
allocations (initialisations) complicate proofs
special treatment irrelevant for DRF programs



DRF guarantee

9 28 Mar 2012 Andreas Lochbihler: A Unified, Machine-Checked Formalisation of Java and the Java Memory Model PROGRAMMING PARADIGMS GROUP

Theorem (DRF guarantee)
No data race in SC executions
=⇒ all executions are SC.

single-thread semantics

interleaved small-step

complete interleavings

Java memory model

Assumptions on complete interleavings:
1. SC completions for SC prefix
2. unique initialisations before read in SC prefix

axiomatic constraints

operational semantics

coinductive
characterisation
of SC prefixes

construct SC completion corecursively,
assume “cut and update”

Insights:

proofs abstract from form of allowed synchronisation
allocations (initialisations) complicate proofs
special treatment irrelevant for DRF programs



Conclusion

10 28 Mar 2012 Andreas Lochbihler: A Unified, Machine-Checked Formalisation of Java and the Java Memory Model PROGRAMMING PARADIGMS GROUP

Results:
1. rigorous link between Java and JMM

complete set of Java multithreading

2. DRF guarantee holds definitely
⇒ DRF guarantee formally available, e.g., for program analyses

3. all definitions and proofs machine-checked

Outlook: JMM too weak for programs with races [forthcoming PhD thesis]

type safety weak version holds
but unallocated memory can be accessed

security architecture compromised, values can appear out of thin air


