
Recursive Functions on Lazy Lists
via Domains and Topologies

Andreas Lochbihler1 and Johannes Hölzl2

1 Institute of Information Security, ETH Zurich, andreas.lochbihler@inf.ethz.ch
2 Institut für Informatik, TU München, hoelzl@in.tum.de

Abstract. The usual definition facilities in theorem provers cannot han-
dle all recursive functions on lazy lists; the filter function is a prime
counterexample. We present two new ways of directly defining functions
like filter by exploiting their dual nature as producers and consumers.
Borrowing from domain theory and topology, we define them as a least
fixpoint (producer view) and as a continuous extension (consumer view).
Both constructions yield proof principles that allow elegant proofs. We
expect that the approach extends to codatatypes with finite truncations.

1 Introduction

Coinductive datatypes (codatatypes for short) are popular in theorem provers
[4,5,8,16,18,20], especially to formalise different forms of computation. Possibly
infinite (lazy) lists, the most prominent example, are used to e.g. model traces of
finite and infinite executions [17]. Today, Isabelle/HOL has a definitional package
to construct codatatypes and define primitively corecursive functions [5].

codatatype α llist = [] | α · α llist

Yet, not all functions of interest are primitively corecursive; and the definition
facilities based on well-founded recursion [13,21] cannot handle them either,
when they produce infinite codatatype values by infinite corecursion. Hence,
such functions have to be defined by other means. In this paper, we consider
recursive functions that are notoriously hard to define [8], because their recursive
specification does not uniquely determine them. In particular, we focus on the
best-known example lfilter given by the specification (spec).1

lfilter P [] = []
lfilter P (x · xs) = (if P x then x · lfilter P xs else lfilter P xs)

(spec)

Eq. (spec) is not primitively corecursive, as no constructor guards the second
recursive call. Neither can well-founded recursion handle it, as an infinite list xs
causes infinite recursion. Nor does (spec) fully specify lfilter: for P = (λ .False)
and xs = x ·x ·x · . . . the infinite repetition of some x e.g. (spec) collapses to the
vacuous condition lfilter P xs = lfilter P xs, i.e. lfilter P xs could be any lazy list.

As HOL functions are total anyway, HOL users often “totalise” a function
with a partial specification such that proving becomes easier. Following this tra-

1 We prefix functions on lazy lists with l to distinguish them from their counterpart
on finite lists; variables for lazy lists carry overbars xs, for finite lists underbars xs.

lfilter P (lfilter Q xs) = lfilter (λx. P x ∧Q x) xs (conj)

lset (lfilter P xs) = lset xs ∩ {x |P x } (lset)

lfilter P xs = []←→ ∀x ∈ lset xs.¬P x (nil)

ldistinct xs −→ ldistinct (lfilter P xs) (ldistinct)

lrel R xs ys ∧ (∀x y.R x y −→ (P1 x←→ P2 y))
−→ lrel R (lfilter P1 xs) (lfilter P2 ys)

(lrel)

Fig. 1: Proven properties of lfilter

dition, we want to define lfilter such that lfilter P xs = [] whenever xs contains no
elements satisfying P . This way, equations like (conj) and (lset) in Fig. 1 hold
unconditionally, even if xs is infinite and none of its elements satisfies P (and Q).

Of course, lfilter can be defined in an ad hoc fashion (see §5), but this has
two drawbacks. First, one must come up with another construction for each
new function. Second, such constructions typically lack a proof principle. Thus,
proofs get cluttered with construction details as the definition must be unfolded.

In this work, we present two approaches to defining functions such as lfilter.
They are inspired by two views on specifications like (spec). First, we can think
of lfilter as corecursively producing a list lazily, i.e. a function of type β⇒α llist
for some state type β; when another element is requested, it calls itself with an
updated state. Borrowing ideas from domain theory, we turn α llist into a com-
plete partial order, lift it point-wise to β⇒ α llist, and take the least fixpoint of
the functional associated with (spec) for lfilter (§2). Alternatively, we can also
view lfilter as recursively consuming a lazy list, i.e. a function of type α llist⇒β for
some result type β. In §3, we therefore define lfilter on finite lists by (primitive)
recursion and continuously extend it to infinite lists via topological limits.

Clearly, the two approaches require more machinery than ad hoc construc-
tions. But more importantly, both approaches yield proof principles: either struc-
tural induction on lazy lists and fixpoint induction (§2.3) or uniqueness of limits
and convergence on a closed set (§3.2). They allow elegant proofs with a high
degree of automation. To show them in action, we prove the five exemplary prop-
erties listed in Fig. 1. Since lfilter both produces and consumes a lazy list, it is a
good example to compare the two approaches. We do so in §4.

In this paper, we focus on lfilter, but we have defined more functions on lazy
lists this way. Our approach simplifies their (formerly ad hoc) definitions and the
proofs in an existing codatatype library [16]. We expect that our approach gen-
eralises to a large class of codatatypes (§6) and can be ported to other systems.

2 The Producer View: Least Fixpoints

In this section, we formalise lfilter as the least fixpoint solution to (spec). This
construction views lfilter as a function that produces a lazy list. First, we define
lfilter as a least fixpoint (§2.2) borrowing ideas from domain theory (introduced
in §2.1). Next, we set up the infrastructure for the induction proofs (§2.3). Fi-
nally, we show how to prove the five properties of lfilter (§2.4) listed in Fig. 1.

2.1 Background on orders and fixpoints

In this section, we review some domain theory formalised in plain HOL [14].
An order ≤ for a given type is a binary relation that is reflexive, transitive,

and antisymmetric. Given an order ≤, a chain Y is a set whose elements are
all related in ≤ (predicated by chain (≤) Y). An order ≤ on some type α and
a function

∨
:: α set⇒ α form a chain-complete partial order (ccpo) iff

∨
Y

denotes the least upper bound (lub) of every chain Y w.r.t. ≤, i.e. for all Y with
chain (≤) Y , if x ∈ Y , then x ≤

∨
Y , and whenever x ≤ z for all x ∈ Y , then∨

Y ≤ z. As the empty set is a chain, every ccpo has a least element bottom
⊥ =

∨
∅. For example, the type of sets α set ordered by inclusion ⊆ forms a ccpo

with lub
⋃
Y and bottom ∅. An order ≤ is lifted pointwise to functions: f ↑≤ g

denotes ∀x. f x ≤ g x. Analogously, the lub ↑
∨
Y on a chain Y of functions

is determined pointwise: ↑
∨
Y x =

∨
{f x. f ∈ Y }. If (

∨
,≤) is a ccpo, so is

(↑
∨
, ↑≤). Similarly, ≤×≤′ orders pairs component-wise according to ≤ and ≤′,

resp.; and (
∨
×
∨′

)Y = (
∨

(π1 ‘Y),
∨′

(π2 ‘Y)) computes the lub component-wise.
Here, π1 and π2 are the projections, and f ‘ A denotes the image of the set A
under the function f . If (

∨
,≤) and (

∨′
,≤′) are ccpos, so is (

∨
×
∨′
,≤×≤′).

A function f is monotone w.r.t. ≤ and ≤′ (written mono (≤) (≤′) f) iff
f x ≤′ f y for all x, y with x ≤ y. A monotone function f is (order) contin-
uous w.r.t. (

∨
,≤) and (

∨′
,≤′) iff it preserves lubs of non-empty chains (writ-

ten mcont (
∨
,≤) (

∨′
,≤′) f). Formally, f (

∨
Y) =

∨′
(f ‘ Y) for all Y with

chain (≤) Y and Y 6= ∅. A continuous function f is strict iff it propagates ⊥, i.e.
f (

∨
∅) =

∨′∅. A predicate P is admissible (written adm (
∨
,≤) P) iff P (

∨
Y)

for all non-empty chains Y such that P x for all x ∈ Y . Admissibility is closed
under composition with continuous functions, i.e. if adm (

∨
,≤) (λx. P x) and

mcont (
∨′
,≤′) (

∨
,≤) f , then adm (

∨′
,≤′) (λx. P (f x)).

Let F :: α ⇒ α be a monotone function on a ccpo (
∨
,≤). Then, by the

Knaster-Tarski fixpoint theorem, F has a least fixpoint fixp (
∨
,≤) F , which is

given by the lub of the transfinite iteration of F starting at ⊥.

2.2 Definition

As mentioned in §1, we define lfilter P as the least fixpoint of the functional
associated to the specification (spec); since lfilter passes the predicate P un-
changed to the recursive calls, we treat it as a fixed parameter. Thus, we obtain
the functional FP :: (α llist⇒ α llist)⇒ (α llist⇒ α llist) given by

FP f xs = (case xs of []⇒ [] | x · xs′ ⇒ if P x then x · f xs′ else f xs′) (1)

For the Knaster-Tarski fixpoint theorem, we need a ccpo on α llist⇒ α llist for
which FP is monotone. It suffices to provide one for α llist and lift it point-wise to
functions with codomain α llist. We choose the prefix order v, which (2) defines
coinductively. The least upper bound

⊔
:: α llist set⇒α llist is given by primitive

corecursion (3). Here, lhd and ltl return the head and tail of a lazy list, resp.;
and the definite descriptor ιx. P x denotes the unique x such that P x if it exists
and is unspecified otherwise. We show the ccpo properties for (

⊔
,v) by (rule or

structural) coinduction.

[] v ys
======

xs v ys
x · xs v x · ys============= (2)

⊔
Y = (if Y ⊆ {[]} then []

else let Y ′ = {xs ∈ Y. xs 6= []} in (ιx. x ∈ lhd ‘ Y ′) ·
⊔

(ltl ‘ Y ′))
(3)

The prefix order is a natural choice, as it makes the constructor · mono-
tone in the recursive argument. Monotonicity is crucial for the existence of the
fixpoint (see below). Moreover, the least element [] carries the least information
possible. In fact, v corresponds to the approximation order on the domain of
infinite streams, when we interpret [] as “undefined”, the additional value that
each domain contains. In this view, a finite lazy list represents the set of all its
extensions at the end, and this set shrinks when we extend it.

Now, we define lfilter as the least fixpoint of FP in the ccpo (↑
⊔
, ↑v) using

the partial-function package by Krauss [14]. Given the specification (spec)
as input, it constructs the functional FP , proves monotonicity, defines lfilter as
the least fixpoint, and derives (spec) and a fixpoint induction rule (4) from the
definition. The monotonicity proof decomposes the functional syntactically into
primitive operations and uses their monotonicity properties. For FP , we provide
the monotonicity theorem for · as a hint, which follows directly from (2).

This completes our first definition of lfilter. After some preparations (§2.3),
we prove in §2.4 that lfilter is in fact the desired solution for (spec).

2.3 Preparations for Proofs by Induction

Least fixpoints and the ccpo structure on lazy lists provide two induction proof
principles, which we review now. Every least fixpoint definition generates an in-
duction rule; the one for lfilter is shown in (4). The second premise requires that
the statement Q to be proved holds for the least function λ . [] where the fixpoint
iteration starts; and in the inductive step (third premise), some underapprox-
imation f replaces the function lfilter P . Admissibility (first premise) ensures
that Q is preserved when taking the lub of the iteration for the fixpoint.

adm (↑
⊔
, ↑v) Q Q (λ . []) ∀f.Q f ∧ f ↑v lfilter P −→ Q (FP f)

Q (lfilter P)
(4)

Fixpoint induction corresponds to the producer view, as it assumes nothing
about the parameter; rather, f in the inductive step returns a prefix of lfilter P .

Alternatively, structural induction over a lazy list (5) is available. The in-
ductive cases (second and third premise) yield that the property P holds for all
finite lists (predicate lfinite). Admissibility (first premise) ensures that P also
holds for the whole list xs, as all finite prefixes of xs form a chain with lub
xs. Clearly, structural induction takes the consumer point of view, because in
typical use cases, it acts on a variable xs that a function takes as argument.

adm (
⊔
,v) P P [] ∀x xs. lfinite xs ∧ P xs −→ P (x · xs)

P xs
(5)

Both induction principles require that the inductive statement is admissible.
Müller et al. [19] have already noted in the context of Isabelle’s LCF formal-
isation HOLCF that admissibility is often harder to prove than the inductive
steps. Huffman [12] describes the syntax-directed approach to automate these
proofs. Proof rules such as (6) first decompose the statement into atoms along
the logical connectives. Others then separate each atom into a predicate and its
arguments (interpreted as a function of the induction variable). If the arguments
are continuous, it suffices to show admissibility of the predicate; HOLCF includes
admissibility rules for comparisons and (in)equalities. This approach works well
in practice, because all HOLCF functions are continuous by construction.

adm (
∨
,≤) (λx.¬P x) adm (

∨
,≤) (λx.Q x)

adm (
∨
,≤) (λx. P x −→ Q x)

(6)

We have proved a similar set of syntax-directed proof rules. They achieve a
comparable degree of automation for discharging admissibility conditions. How-
ever, they require some manual setup, in particular continuity proofs. We will
discuss this now at three examples, namely lfilter, lmap and lset.

First, we prove that lfilter P is continuous. This will allow us later to switch
from the producer to the consumer view, i.e. from (4) to (5). As we have defined
lfilter P as a least fixpoint, we can leverage the general result that least fixpoints
preserve monotonicity and continuity (Thm. 1).

Theorem 1 (Least fixpoints preserve monotonicity and continuity).
Let (

∨
,≤) be a ccpo, let F :: (β⇒α)⇒ (β⇒α) satisfy mono (↑≤) (↑≤) F . If F

preserves monotonicity (continuity), then F ’s least fixpoint is monotone (contin-
uous). Formally, let g abbreviate fixp (↑

∨
, ↑≤) F . If mono (≤′) (≤) (F f) for all

f with mono (≤′) (≤) f , then mono (≤′) (≤) g. If mcont (
∨′
,≤′) (

∨
,≤) (F f)

for all f with mcont (
∨′
,≤′) (

∨
,≤) f , then mcont (

∨′
,≤′) (

∨
,≤) g.

Hence, it suffices to show that FP in (1) is monotone and continuous in xs
provided that f is so, too. Like for admissibility, we follow a syntax-directed
decomposition approach, as continuity is preserved under function composition.
We prove rules that decompose the expression into individual functions and then
show that they themselves are continuous. Unfortunately, control constructs like
case and if are in general neither monotone nor continuous if the branching term
depends on the argument. In (1), this is the case for the case combinator.

As we frequently prove functions on α llist strict, we derive a specialised con-
tinuity rule (7) (and an analogous monotonicty rule) for an arbitrary ccpo (

∨
,≤)

with bottom ⊥. (It cannot handle non-strict functions like ++ defined in (27).)

∀x.mcont (
⊔
,v) (

∨
,≤) (λys. f x ys (x · ys))

mcont (
⊔
,v) (

∨
,≤) (λxs. case xs of []⇒ ⊥ | x · ys⇒ f x ys xs)

(7)

By (7), it suffices to show for all x that λys. if P x then x · f ys else f ys is
monotone and continuous if f already is. Note that the branching condition P x
no longer depends on the bound variable ys, so it suffices to prove that the
individual branches are monotone and continuous; rule (8) formalises this.

mcont (
∨
,≤) (

∨′
,≤′) f mcont (

∨
,≤) (

∨′
,≤′) g

mcont (
∨
,≤) (

∨′
,≤′) (λx. if c then f x else g x)

(8)

Finally, we are left with proving that λys. x ·f ys and λys. f ys are monotone
and continuous, which follows immediately from · and f being so. Although this
proof seems lengthy on paper, it is a one-liner in Isabelle, as its rewriting engine
performs the decomposition automatically thanks to the setup outlined above.

The above illustrates how to prove continuity of functions defined in terms
of fixp. Other functions are defined by other means, but we want to prove them
continuous, too. For example, the codatatype packages defines lmap f , which
applies f to all elements of a lazy list (9), and lset, which converts a lazy list
to the set of its elements, but not in terms of fixp. The easiest way to prove
continuity is to show that they are the least fixpoint of the functionals in (10)
and (11), resp. Then, we reuse Thm. 1 and our machinery from above.

lmap f [] = [] lmap f (x · xs) = f x · lmap f xs (9)

Mf g xs = (case xs of []⇒ [] | x · ys⇒ f x · g ys) (10)

S f xs = (case xs of []⇒ ∅ | x · ys⇒ {x} ∪ f ys) (11)

The proofs for lmap f = fixp (↑
⊔
, ↑v) Mf and lset = fixp (↑

⋃
, ↑⊆) S fall into two

parts: (i) monotonicity of Mf and S is shown by partial-function’s monotonic-
ity prover and (ii) the actual fixpoint equation by the proof principle associated
with the definition (structural coinduction for lmap; lset requires two separate
directions with induction on lset and fixpoint induction, resp.). Monotonicity is
needed to unfold the fixpoint property in the (co)inductive steps.

2.4 Proving the Properties

With all these preparations in place, we now show how they yield concise proofs
for the properties of interest. We start with (nil), i.e. that the least fixpoint
indeed picks the desired solution for (spec). First, we illustrate the obvious ap-
proach of proving the two directions separately. From right to left, given ¬P x
for all x ∈ lset xs, we must show lfilter P xs = [], or, equivalently, lfilter P xs v [].
Structural coinduction does not work here, as (spec) may recurse forever, but
fixpoint induction is good at proving upper bounds, [] in our case. Admissibility
of λf. ∀xs. (∀x ∈ lset xs.¬P x) −→ f xs v [] follows directly from decomposition
and admissibility of comparisons. In contrast, from left to right by contraposi-
tion, we have to prove the non-trivial lower bound [] @ lfilter P xs under the
assumption P x for some x ∈ lset xs. Fixpoint induction cannot do this, so we
resort to other proof principles. Fortunately, induction on x ∈ lset xs is available,
and the cases are solved automatically by rewriting.

Alternatively, we can switch to the consumer view and prove (nil) directly
by induction on xs using (5). Rewriting solves the inductive cases. Regarding
admissibility of λxs. lfilter P xs = [] ←→ ∀x ∈ lset xs.¬P x, the rules decom-
pose it into four atoms: λxs. lfilter P xs 6= [] and λxs. lfilter P xs = [] and
λxs.∀x ∈ lset xs.¬P x and λxs.∃x ∈ lset xs. P x. For the (in)equalities and

bounded quantifiers, we have admissibility rules, and their arguments lfilter P
and lset are continuous by §2.3. Therefore, this proof of (nil) is automatic.

lemma lfilter P xs = []←→ ∀x ∈ lset xs.¬P x by(induction xs) simp-all

Next, we prove property (conj) from the introduction. Taking the consumer
view, the proof is a one-liner by induction on xs plus rewriting, because we have
already shown that lfilter P is continuous. Fixpoint induction can also prove
(conj), but the two directions “v” and “w” must be shown separately. Moreover,
we still need continuity of lfilter P for admissibility, because when going from
left to right, we have to replace lfilter Q in the context ∀xs. lfilter P (• xs) v

Property (lset) is similar to (conj). We show it by induction on xs; admissi-
bility requires continuity of lset, lfilter, and ∩. Fixpoint induction is also possible.

In the remainer of this section, we prove two more properties with user-
defined predicates. The predicate ldistinct denotes that all elements of a lazy list
are distinct, and the relator lrel R xs ys lifts a binary relation R point-wise to
the lazy lists xs and ys. The rules below define them coinductively.

ldistinct []
=========

x /∈ lset xs ldistinct xs

ldistinct (x · xs)
========================= (12)

lrel R [] []
=========

R x y lrel R xs ys

lrel R (x · xs) (y · ys)
===================== (13)

Proofs by induction require admissibility of the statement. As ldistinct is a
new predicate, we prove admissibility directly by unfolding the definition and by
coinduction on ldistinct. The proof for lrel is similar. Moreover, we also show that
non-distinctness is admissible; this follows from prefixes of distinct lists being dis-
tinct. Now, we are ready to show properties (ldistinct) and (lrel) from Fig. 1.

Taking the consumer view, we show (ldistinct) by induction on xs; as
xs occurs in the assumptions, rule (6) requires that the negated assumption, i.e.
non-distinctness, be admissible, too (there is no rule for negation). The inductive
steps are solved automatically, as we can rewrite lset (lfilter P xs) with (lset).

Alternatively, we can also take the producer view, i.e. fixpoint induction
on lfilter. This demonstrates another limitation of fixpoint induction: recall that
fixpoint induction replaces lfilter P by some underapproximation f , i.e. we cannot
use (lset) for rewriting lset (f xs). Fortunately, we get f ↑v lfilter P in the
inductive step and derive lset (f xs) ⊆ lset xs by monotonicity of lset. Otherwise,
we would have had to re-prove (lset) simultaneously in the inductive step.
This modularity problem frequently arises with fixpoint induction: all required
properties of a function have to be threaded through one big induction, which
incurs losses in proof automation and processing speed.

Finally, consider (lrel). Note that the property of not being related in lrel
is not admissible. This means that the decomposition rules do not work if the
induction variable under lrel in an assumption. Thus, we cannot induct over xs
(unless we prove admissibility manually, but we would rather not). We use fix-
point induction instead. Yet, the two occurrences of lfilter in (lrel) have different

types. As (4) replaces only occurrences of the same type, we resort to parallel
fixpoint induction. The general parallel fixpoint induction rule for two ccpos
(
∨
,≤) and (

∨′
,≤′) with least elements ⊥ and ⊥′ and two monotone functionals

F and G is shown below. Since the projections π1 and π2 are monotone and
continuous, the parallel fixpoint induction proof becomes fully automatic again.

adm (
∨
×
∨′
,≤×≤′) (λx. P (π1 x) (π2 x)) P ⊥⊥′ ∀x y. P x y−→ P (F x) (G y)

P (fixp (
∨
,≤) F) (fixp (

∨′
,≤′) G)

3 The Consumer View: Continuous Extensions

Some proofs about lfilter in §2.4 already took the consumer point of view. Now,
we do so also for defining lfilter. In general, we first define a function on finite
lists α list and then extend it to lazy lists. For the running example, we first
define filter :: (α⇒ bool)⇒α list⇒α list on finite lists using primitive recursion
(14). Then, we define lfilter as the continuous extension of filter (15).

filter P [] = []
filter P (x · xs) = (if P x then x · filter P xs else filter P xs)

(14)

lfilter P xs =
⊔
{dfilter P bysce | ys ∈ ↓xs} (15)

where ↓xs = { ys | lfinite ys ∧ ys v xs } denotes the set of finite prefixes of xs,
d e embeds finite lists in lazy lists, and b c is its inverse. This construction yields
the same function as the least fixed point in §2.2—see §3.4 for the proofs.

Why do we call this a continuous extension? To generalise this construction
method, we introduce a topology on lazy lists with two properties (§§3.2, 3.3).
First, every chain of finite lists “converges” towards a lazy (possibly finite) list.
Second, every lazy list can be “approximated” by a set of finite lists. Hence,
continuous extensions are unique if they exist. So, we extend a function f ::
α list⇒ β to a function lf :: α llist⇒ β by picking the continuous one. This also
explains why this is the consumer view: the codatatype is an argument to the
function, and the codomain is an arbitrary topology. For unique extensions, the
codomain must be a T2 topology.

3.1 Topology in Isabelle/HOL

This section summarises the formalisation of topologies in Isabelle/HOL [11].2

A topology is specified by the open sets (predicate open). In a topology, the
whole space must be open (its elements are called points), and binary intersection
and arbitrary union must preserve openness. A predicate P is a neighbourhood of
a point x if it holds on an open set which contains x. A punctured neighbourhood
P of x (written P at x) is a neighbourhood of x which not necessary holds on x.

2 As the topology formalisation relies on type classes, we now switch to type classes for
ccpos, too. Hence, we no longer write the ccpo (

∨
,≤) as a parameter for constants

like adm and mcont. Instead, it is taken from the type class.

A point x is discrete iff {x} is open. A topology is called a T2 space, if for every
two points x 6= y there exists two disjoint neighbourhoods Px at x and Py at y.

A function f converges on a point x (written f
x−−−−→ y) iff for all open sets

Y around y the predicate λx. f x ∈ Y is a punctured neighbourhood of x. The
function f is continuous at x iff f

x−−−−→ f x. Clearly, convergence is meaningless
for discrete points x, as {x} is open. Also, each f is then continuous at x.

A set is closed iff its complement is open, a predicate P is closed iff {x | P x}
is closed. Closedness of predicates is preserved under composition with con-
tinuous functions. Convergence on a closed set (16) is our main proof princi-
ple. If the predicate P ◦ f is a punctured neighbourhood of x and P is closed
(closed {x | P x}), then P also holds at the point x itself, unless x is discrete.

¬ open {x} f
x−−−−→ y closed {x | P x} P ◦ f at x

P y
(16)

3.2 Topology on a Chain-Complete Partial Order

In this section, we introduce a topology for ccpos. In the ccpo topology, an
open set is not accessible from outside, i.e. whenever the least upper bound of a
non-empty chain is in the open set, then their intersection is not empty (17).

open S ←→ (∀C. chain C −→ C 6= ∅ −→
∨
C ∈ S −→ C ∩ S 6= ∅) (17)

It differs from the usual Scott topology only in that open sets need not be upward
closed. We omit this condition for two reasons: (i) we need a T2 space, but the
Scott topology is not, and (ii) finite lists should be discrete, i.e. open {xs} if xs
is finite. Every ccpo topology is a T2 space, since open as defined in (17) fulfills
the topology axioms and separation of points.

As mentioned in §3.1, convergence f
x−−−−→ y ignores the value of f at the

point x. Thus, if x is discrete, convergence is meaningless at this point. To avoid
this issue, we introduce variants of convergence and punctured neighbourhood.3

f
x−−−−→′ y ←→ if open {x} then f x = y else f

x−−−−→ y (18)

P at′ x←→ if open {x} then P x else P at x

For continuity, both limits are equivalent: f
x−−−−→ f x iff f

x−−−−→′ f x. For at′

we get a stronger variant of (16) as proof principle: No matter if x is discrete,
the closed predicate P holds on x if P is a punctured neighbourhood of x.

closed {x | P x} P at′ x

P x
(19)

When the convergence limit exists, we select it with definite description:
Lim f x = ιy. f

x−−−−→′ y. As a ccpo topology is a T2 space, the limit is unique.

3 The formalisation of convergence in Isabelle/HOL uses topological filters for the
argument, as described in [11]. The punctured neighbourhoods at and at′ are topo-
logical filters, but for a shorter presentation we avoid their introduction.

3.3 Constructing lfilter

As lazy lists are a ccpo, they also form a ccpo topology as described in §3.2. We
first observe that the finite lists are dense in this topology, i.e. every lazy list is the
limit of a sequence of finite lists. Moreover, a lazy list is discrete iff it is finite:
open {xs} ←→ lfinite xs. This yields a nice characterization of at′ (20), from
which we easily derive that at′ behaves as expected on the constructor · (21).

P at′ xs←→ ∃ys ∈ ↓xs.∀zs ∈ ↓xs. ys v zs −→ P zs (20)

(λys. x · ys) xs−−−−→′ x · xs
(λzs. f (x · zs)) xs−−−−→′ y

f
x·xs−−−−→′ y

(21)

Hence, at′ behaves as expected on finite and infinite lists. Thus, we define
lfilter P xs as the limit of filter P :

lfilter P xs = Lim (λys. dfilter P bysce) xs (22)

Before proving lfilter’s properties, we must prove that it continuously extends
filter. Extension (23) shows that they coincide on finite lists. This follows from
(18) and uniqueness of limits by unfolding the definitions of lfilter and Lim.

lfinite xs −→ lfilter P xs = dfilter P bxsce (23)

Then, we show that lfilter is continuous everywhere (25). It suffices to show that
the limit exists, as uniqueness of limits then ensures continuity. To that end, we
prove the theorem (24): if a function f is monotone on all finite lazy lists, then
it converges on xs to the lub of the image of xs’s finite prefixes under f . This
also completes the proof, as filter is monotone. Our initial definition (15) follows
from these rules.

∀ys zs. ys v zs ∧ lfinite zs −→ f ys ≤ f xs

f
xs−−−−→′

∨
(f ‘ ↓xs)

(24)

lfilter P
xs−−−−→′ lfilter P xs (25)

3.4 Proving with Topology

In this section, we prove that the definition in (22) satisfies the specification
(spec) and the properties from Fig. 1. In general, reasoning about lfilter first
reduces the property on lazy lists to a property on finite lists. The characteri-
sation of at′ on lazy lists (20) yields the following proof principle. It is derived
from (19) by taking ys = [] as witness for the existential quantifier in (20).

closed {xs | P xs} ∀zs ∈ ↓xs. P zs

P xs
(26)

This proof rule splits a goal P xs into two subgoals: (i) closed {xs | P xs} and
(ii) ∀zs ∈ ↓xs. P zs. Closedness is usually proved automatically in two steps.
First, P xs is decomposed into an atomic predicate and functions. These are

then shown closed and continuous using pre-proven theorems such as closedness
of equality in a T2 space (§3.1) and continuity of lfilter (25). In subgoal (ii), ↓xs
consists only of finite lists. Hence, we have indeed reduced the statement from
arbitrary lazy lists to their finite subset. This goal is proved either by induction
on lfinite zs, or by rewriting with equations like (23) into functions over finite
lists. For proving the specification (spec) and the properties (conj, lset), this
approach suffices. We also use it to show that our two definitions of lfilter from
(§2.2) and (22) are equivalent.

Note that the second goal keeps the prefix relation between zs and xs. Cru-
cially, this maintains the relation of subgoal (ii) to further assumptions that
are not part of the predicate P . When we prove (ldistinct), we operate only
on the conclusion ldistinct (lfilter P xs). Closedness (subgoal (i)) follows from
ldistinct being closed and lfilter being continuous by preservation of closedness
under composition with continuous functions. Subgoal (ii) is

ldistinct xs −→ ∀zs ∈ ↓xs. ldistinct (lfilter P zs).

As prefixes of distinct lists are distinct, it suffices to show the following for all zs.

ldistinct zs −→ lfinite zs −→ ldistinct (lfilter P zs)

Existing lemmas about filter and ldistinct suffice to show this, but induction on
lfinite zs would work, too.

Property (nil) is more complicated. The statement is not a closed predicate,
so we cannot easily reduce it to finite lists. Instead we prove the direction from
left to right using (lset), and the converse using our approach from above.

4 Comparison

In this section, we compare our approaches least fixpoints (§2) and continuous ex-
tensions (§3) in five respects: the requirements on the codatatype and on the type
of the function, the role of monotonicity, proof principles, and proof elegance.

Ccpo Structure on the Codatatype. Both approaches require a ccpo structure on
the codatatype. As monotonicity is crucial for definitions and proofs (see below),
functions of interest (and the constructors in particular) should be monotone.
For lazy lists, the prefix order with [] as the least element is a natural choice. The
extended naturals enat = 0 | eSuc enat are a ccpo under the usual ordering ≤.
Even terminated lazy lists given by (α, β) tllist = TNil β | TCons α ((α, β) tllist)
form a useful ccpo under the prefix ordering extended with TNil b as least element
for any user-specified, but fixed b. Yet, we have not found useful ccpos for co-
datatypes without finite values like infinite lists α stream = Stream α (α stream).

Type Restrictions on Function Definitions. For recursive definitions, the two
approaches pose different requirements on the function. Least fixpoints need
the ccpo on the codomain whereas the domain can be arbitrary. Therefore, this

works for functions that produce a codatatype value such as iterate below. In
contrast, they cannot handle functions that only consume a codatatype value
such as lsum, which sums over a lazy list. Dually, continuous extensions require
a ccpo topology on the domain whereas the codomain can be any T2 space.
This works for functions that consume a codatatype value such as lsum, but this
approach cannot define producers such as iterate.

iterate f x = x · iterate f (f x)

sum [] = 0 sum (x · xs) = x+ sum xs lsum xs = Lim sum xs

Monotonicity. To derive the recursive specification from the definition, we have
to show well-definedness for both approaches. For least fixpoints, the associated
functional must be monotone, i.e. recursion may only occur in monotone con-
texts. For example, this approach cannot handle lmirror, because concatenation
++ is not monotone in its first argument, which contains the recursive call.

[] ++ ys = ys (x · xs) ++ ys = x · (xs++ ys) (27)

lmirror [] = [] lmirror (x · xs) = x · (lmirror xs++ [x]) (28)

This shows how the choice of ccpo determines what functions can be defined. The
partial-function package [14] automates the monotonicity proof and derives
the recursive specification. Note that the defined function need not be monotone
itself; we can e.g. define ++ as a least fixpoint for (27).

Continuous extensions need a different form of monotonicity. To derive the
recursive equations of the continuous extension, we must show that the limit
exists. By (24), it suffices to show that the function (not the functional) is
monotone. Thus, we cannot define lmirror as a continuous extension, either. This
time, the problem is not with ++, but rather lmirror, which is not monotone.

Another difference to least fixpoints is that the function need not be con-
tinuous at all points, as the continuous extension is defined pointwise. This is
essential for functions like lsum that are well-defined only on a subset of its
parameters such as the lists of positive real numbers extended with infinity.

Proof Principles. The main advantage of our approaches over ad hoc construc-
tions like in [16] is that they bring their own proof principles: fixpoint induction
(4) and structural induction (5), convergence on a closed set (19). They all re-
quire admissibility of the induction statement, since closed {x | P x} in a ccpo
topology coincides with adm (

∨
,≤) P—just unfold the definition of open sets

(17) to see this. The two notions of continuity are closely related, too. Monotonic-
ity and order continuity imply convergence in the ccpo topology. The converse
does not hold; this reflects difference between the point-wise flavour of continu-
ous extensions and the function-as-a-whole style of least fixpoints.

Convergence on a closed set (26) and structural induction on lazy lists (5) take
the consumer view, i.e. they only work for functions that consume a codatatype
value. Interestingly, the former generalises the latter. Convergence keeps the
bound zs ∈ ↓xs. In comparison, structural induction relaxes the bound zs ∈ ↓xs

to lfinite zs and inlines the induction on lfinite zs. More abstractly, (5) reduces the
statement directly to an induction on the finite subset of lazy lists. In contrast,
the topological approach translates it to a corresponding statement on the type
of finite lists by rewriting with identites such as (23)—the latter is then typically
shown by induction.

Fixpoint induction has no counterpart in continuous extensions, as it is a
proof principle for producers. It is harder to use than induction on lazy lists, see
§2.4 for examples. In particular, fixpoint induction cannot show non-trivial lower
bounds. However, it allows to prove properties such as (lrel) where the other
principles fail. In fact, we have not yet been able to prove (lrel) by topological
means, as we are not yet able to handle general predicates over two variables.

Proof Elegance. As a rough measure of proof elegance, we take the size of proofs
for the five properties in Fig. 1. In the fixpoint approach, they all consist of just
two steps: (i) the induction method generates the admissibility condition and the
inductive cases, and (ii) an automatic proof method solves them immediately.
Similarly, the topological approach first applies the proof principle (19) and then
solves the subgoals. The level of automation is similar, except when we have to
show the statement on finite lists by induction, which does not happen automat-
ically. In summary, proving (conj, lset,nil, ldistinct) takes between 2 and 5
steps with an average of 2.75. For comparison, the former ad hoc construction of
lfilter in [16] requires for proving the properties in Fig. 1 between 2 and 35 steps
each with an average of 13—not even counting any of the auxiliary lemmas such
as (30).

5 Related Work

Functions on Codatatypes. Devillers et al. [8] compare different formalisa-
tions of lazy lists that were available in 1997. They note the general difficulty of
defining lfilter and lconcat—given by (29)—and proving their properties.

lconcat [] = [] lconcat (xs · xss) = xs++ lconcat xss (29)

In [20], Paulson describes the construction of codatatypes in Isabelle and the
primitively corecursive definition of the well-known functions lmap and ++ with
coinduction as proof principle for equality. He notes that he did not know of a
natural formalisation for lconcat in HOL. Later, he defined lfilter using an in-
ductive search predicate (file LFilter.thy distributed with Isabelle until 2009).
Thus, all proofs about lfilter need corresponding lemmas about the search pred-
icate. For example, his 72-line proof of (conj) needs seven auxiliary lemmas.
For comparison, ours is one line—our preparations are not negligible, but we
reuse monotonicity and continuity in many lemmas. In Coq, Bertot [4] relies on
a similar search predicate; he transforms non-local properties like sortedness into
local ones to simplify proofs.

Matthews [18] presents a framework to define corecursive functions via con-
tractions for converging equivalence relations (CER) over a well-founded relation,
Gianantonio and Miculan generalise CERs to complete ordered families of equiv-

alences (COFE) [10]. CERs and COFEs require uniqueness of the specification
and therefore yield a proof principle for equality. To prove contraction for lfilter,
Matthews needs an inductive search predicate similar to Paulson’s, and a search
function that returns the first index of an element satisfying P .

Charguéraud [7] formalised the optimal fixpoint (OFP) combinator in Coq.
It allows to define a large class of recursive functions, but it cannot pick any par-
ticular solution if the specification is not unique. This is arguably closer to the
specification, but it complicates proofs: for the OFP of (spec), e.g. (lset) holds
only if xs is finite or P holds for infinitely many elements of xs. For proof prin-
ciples, he relies on a generalisation of COFEs, as the OFP does not provide any.

The Coinductive library [16], developed by the first author, includes func-
tions on lazy lists and lemmas about them. The approach in this paper simplifies
the definitions of and proofs about lfilter and similar functions. Previously, their
definition was rather involved; lfilter was defined as the corecursive unfolding of
ldropWhile; ldropWhile depended on ltakeWhile, llength, and ldrop; and ldrop on
further functions. The auxiliary functions have some value of their own, so the
overhead was limited. Yet, the theorems about lfilter (like those in Fig. 1) needed
other theorems about the auxiliary functions. Thus, definitions and proofs both
lacked elegance. The proof of (conj) e.g. required the specialised lemma (30).

lhd (ldropWhile P (lfilter Q xs)) = lhd (ldropWhile (λx. P x ∨ ¬Q x) xs) (30)

Domain-Theoretic Approaches. Formalisations of domain theory and Scott’s
logic of computable functions (LCF) exist in HOL [1], Coq [3], and Isabelle/HOL
[12]. They provide facilities to define domains and (non-terminating) recursive
functions as least fixpoints as well as sophisticated proof automation. They sup-
port embedding of ordinary functions into LCF, but not the converse.

Although domains and codatatypes both contain infinite values, they are dif-
ferent, as all domains contain the value “undefined”. Coinductive lists e.g. either
end with [] or are infinite. In contrast, LCF lists can also end with undefined,
e.g. filtering an infinite list whose elements all violate the predicate returns “un-
defined” instead of []. Thus, coinductive lists are almost isomorphic to infinite
streams in HOLCF, except that the domain package additionally requires that
the element type α forms a ccpo, too.

Undefinedness plays a central role in LCF: it conceptually represents all val-
ues, as monotonicity and continuity permit replacing undefined with a more
specific value. This is sensible in modelling functional programs, but also com-
plicates the theorem statements and their proofs (see e.g. [6]). Being based on
HOL, our approach need not treat [] specially and can therefore deal with non-
continuous functions, too. Our choice of topology reflects this, too. In our ccpo
topology, finite values x are discrete, i.e., open {x}. In contrast, all Scott-open
sets S are upward closed, i.e. if S contains x, then S contains all elements greater
than x, too. Hence, our topology is finer than the Scott topology, so more func-
tions are continuous, e.g. lsum on lists with a finite number of negative elements.

Two works have applied basic domain theory for defining recursive functions
in HOL. First, Agerholm [2] suggested to define arbitrary recursive function as

the least fixpoint in a domain by lifting the function’s codomain; when termina-
tion has been shown, his tool then casts the function back to plain HOL. Hence,
our application with infinite recursion is out of scope. Second, Krauss [14] re-
alised that a tail-recursive or monadic function can be defined as a least fixpoint,
because its syntactic structure ensures monotonicity. He formalised the relevant
concepts in Isabelle and implemented the partial-function package. To our
knowledge, this has only been used for the option and state-exception monads.
We re-use and extend his work to define non-monadic functions on codatatypes.

Topology for domain theory. We do not know of any formalisation that de-
fines recursive functions using topology except for Lester [15]. He formalises the
Scott topology of a directed complete partial order in PVS and uses it to prove
the existence of the fixpoint operator. Friedrich [9] formalises the Scott topology
in Isabelle/HOL to characterise liveness and security properties topologically.

6 Beyond lfilter and lazy lists

We have described how to use domain theory and topology to define recursive
functions on codatatypes. The presentation has focused on the function lfilter, as
it illustrates the main ideas well and allows us to compare the approaches. But
they are not restricted to it. We have used them with the same ccpo to define
lconcat (29), ldropWhile (31), and ldrop (32) and to prove numerous lemmas.
These functions pose the same challenge of unbounded, unproductive recursion
as lfilter. In addition, the definition of lconcat relies on ++ being monotone (and
continuous in the topological approach) in the second argument, which contains
the recursive call, and ldrop shows that we handle multiple parameters.

ldropWhile P [] = []
ldropWhile P (x · xs) = (if P x then ldropWhile P xs else x · xs) (31)

ldrop 0 xs = xs ldrop n [] = [] ldrop (eSuc n) (x·xs) = ldrop n xs (32)

In terms of automating the definitions and proofs, we have used only standard
Isabelle tools so far. Hence, we have not yet reached the level of sophisticated
packages such as HOLCF [12]. Indeed, our approaches offer more flexibility, as
they use the full function space and allow non-continuous functions to some
extent. Better automation of the function definitions is left as future work.

It is not yet clear which codatatypes can be turned into useful ccpos. Clearly,
it should be possible for codatatypes with finite truncations, i.e. whenever there
is a non-recursive constructor. Then, this constructor can cut off a possibly
infinite subtree and thus serve as bottom element. Possibly-infinite lists (α llist
and (α, β) tllist) and binary trees (α tree = Leaf | Node α (α tree) (α tree)) fall in
this class. Conversely, if the codatatype contains only infinite values, e.g. infinite
lists (α stream), a general approach seems impossible. Codatatypes with nested
recursion such as α rtree = Tree α (α rtree llist) will be more challenging. Working
out the precise boundaries of the approach is left as future work. We hope that
such insights will lead to automated constructions of ccpos for codatatypes.

Acknowledgements. J.C. Blanchette, J. Breitner, O. Maric, D. Traytel, and the
anonymous reviewers suggested many textual improvements. A. Popescu helped
generalising our topology on lazy lists to ccpos. Hölzl is supported by DFG grant
Ni 491/15-1.

References

1. Agerholm, S.: LCF examples in HOL. In: Higher Order Logic Theorem Proving
and Its Applications. LNCS, vol. 859, pp. 1–16. Springer (1994)

2. Agerholm, S.: Non-primitive recursive function definitions. In: Higher Order Logic
Theorem Proving and Its Applications. LNCS, vol. 971, pp. 17–31. Springer (1995)

3. Benton, N., Kennedy, A., Varming, C.: Some domain theory and denotational
semantics in Coq. In: TPHOLs’09. LNCS, vol. 5674, pp. 115–130. Springer (2009)

4. Bertot, Y.: Filters on coinductive streams, an application to Eratosthenes’ sieve.
In: TLCA 2005. LNCS, vol. 3461, pp. 102–115. Springer (2005)

5. Blanchette, J.C., Hölzl, J., Lochbihler, A., Panny, L., Popescu, A., Traytel, D.:
Truly modular (co)datatypes for Isabelle/HOL. In: ITP 2014. LNCS. Springer
(2014)

6. Breitner, J., Huffman, B., Mitchell, N., Sternagel, C.: Certified HLints with Is-
abelle/HOLCF-Prelude. In: Haskell and Rewriting Techniques (HART). (2013)

7. Charguéraud, A.: The optimal fixed point combinator. In: ITP 2010. LNCS, vol.
6172, pp. 195–210. Springer (2010)

8. Devillers, M., Griffioen, D., Müller, O.: Possibly infinite sequences in theorem prov-
ers: A comparative study. In: TPHOLs 1997. LNCS, vol. 1275, pp. 89–104 (1997)

9. Friedrich, S.: Topology. Archive of Formal Proofs (2004) http:

//afp.sf.net/entries/Topology.shtml, Formal proof development.
10. Gianantonio, P., Miculan, M.: A unifying approach to recursive and co-recursive

definitions. In: TYPES 2002. LNCS, vol. 2646, pp. 148–161. Springer (2003)
11. Hölzl, J., Immler, F., Huffman, B.: Type classes and filters for mathematical anal-

ysis in Isabelle/HOL. In: ITP’13. LNCS, vol. 7998, pp. 279–294. Springer (2013)
12. Huffman, B.C.: HOLCF’11: A Definitional Domain Theory for Verifying

Functional Programs. PhD thesis, Portland State University (2012)
13. Krauss, A.: Partial and nested recursive function definitions in higher-order logic.

J. Autom. Reasoning 44(4), 303–336 (2010)
14. Krauss, A.: Recursive definitions of monadic functions. In: PAR 2010. EPTCS,

vol. 43, pp. 1–13 (2010)
15. Lester, D.R.: Topology in PVS: continuous mathematics with applications. In:

AFM 2007, pp. 11–20. ACM (2007)
16. Lochbihler, A.: Coinductive. Archive of Formal Proofs (2010) http:

//afp.sf.net/entries/Coinductive.shtml, Formal proof development.
17. Lochbihler, A.: Making the Java memory model safe. ACM Trans. Program.

Lang. Syst. 35(4), 12:1–65 (2014)
18. Matthews, J.: Recursive function definition over coinductive types. In: TPHOLs

1999. LNCS, vol. 1690, pp. 73–90. Springer (1999)
19. Müller, O., Nipkow, T., Oheimb, D.v., Slotosch, O.: HOLCF = HOL + LCF. J.

Funct. Program. 9, 191–223 (1999)
20. Paulson, L.C.: Mechanizing coinduction and corecursion in higher-order logic. J.

Logic Comput. 7(2), 175–204 (1997)
21. Slind, K.: Function definition in higher-order logic. In: TPHOLs 1996. LNCS, vol.

1125, pp. 381–397. Springer (1996)

http://afp.sf.net/entries/Topology.shtml
http://afp.sf.net/entries/Topology.shtml
http://afp.sf.net/entries/Coinductive.shtml
http://afp.sf.net/entries/Coinductive.shtml

	Recursive Functions on Lazy Lists via Domains and Topologies*-0.3

