
Recursive Functions on Lazy Lists
via Domains and Topologies

Andreas Lochbihler

Institute of Information Security

ETH Zurich, Switzerland

Johannes Hölzl

Institut für Informatik

TU München, Germany

ITP 2014

Running example: filtering lazy lists

Task: Given a codatatype

α llist = [] | α · α llist
finite and

infinite lists

define a recursive function

lfilter P [] = []

lfilter P (x · xs) = (if P x then x · lfilter P xs else lfilter P xs)

and prove properties.

lfilter P (lfilter Q xs) = lfilter (λx . P x ∧ Q x) xs

Usual definition principles
• well-founded recursion

• guarded/primitive corecursion

guarded unguarded

lfilter is underspecified:

lfilter (≤ 0) (1 · [1, 1, 1, . . .]) = lfilter (≤ 0) [1, 1, 1, . . .]

Lochbihler (ETHZ), Hölzl (TUM) Recursive functions on lazy lists ITP 2014 2 / 11

Running example: filtering lazy lists

Task: Given a codatatype α llist = [] | α · α llist

finite and
infinite lists

define a recursive function

lfilter P [] = []

lfilter P (x · xs) = (if P x then x · lfilter P xs else lfilter P xs)

and prove properties.

lfilter P (lfilter Q xs) = lfilter (λx . P x ∧ Q x) xs

Usual definition principles
• well-founded recursion

• guarded/primitive corecursion

guarded unguarded

lfilter is underspecified:

lfilter (≤ 0) (1 · [1, 1, 1, . . .]) = lfilter (≤ 0) [1, 1, 1, . . .]

Lochbihler (ETHZ), Hölzl (TUM) Recursive functions on lazy lists ITP 2014 2 / 11

Running example: filtering lazy lists

Task: Given a codatatype α llist = [] | α · α llist
finite and

infinite lists

define a recursive function

lfilter P [] = []

lfilter P (x · xs) = (if P x then x · lfilter P xs else lfilter P xs)

and prove properties.

lfilter P (lfilter Q xs) = lfilter (λx . P x ∧ Q x) xs

Usual definition principles
• well-founded recursion

• guarded/primitive corecursion

guarded unguarded

lfilter is underspecified:

lfilter (≤ 0) (1 · [1, 1, 1, . . .]) = lfilter (≤ 0) [1, 1, 1, . . .]

Lochbihler (ETHZ), Hölzl (TUM) Recursive functions on lazy lists ITP 2014 2 / 11

Running example: filtering lazy lists

Task: Given a codatatype α llist = [] | α · α llist
finite and

infinite lists

define a recursive function

lfilter P [] = []

lfilter P (x · xs) = (if P x then x · lfilter P xs else lfilter P xs)

and prove properties.

lfilter P (lfilter Q xs) = lfilter (λx . P x ∧ Q x) xs

Usual definition principles
• well-founded recursion

• guarded/primitive corecursion

guarded unguarded

lfilter is underspecified:

lfilter (≤ 0) (1 · [1, 1, 1, . . .]) = lfilter (≤ 0) [1, 1, 1, . . .]

Lochbihler (ETHZ), Hölzl (TUM) Recursive functions on lazy lists ITP 2014 2 / 11

Running example: filtering lazy lists

Task: Given a codatatype α llist = [] | α · α llist
finite and

infinite lists

define a recursive function

lfilter P [] = []

lfilter P (x · xs) = (if P x then x · lfilter P xs else lfilter P xs)

and prove properties.

lfilter P (lfilter Q xs) = lfilter (λx . P x ∧ Q x) xs

Usual definition principles
• well-founded recursion

• guarded/primitive corecursion

guarded unguarded

lfilter is underspecified:

lfilter (≤ 0) (1 · [1, 1, 1, . . .]) = lfilter (≤ 0) [1, 1, 1, . . .]

Lochbihler (ETHZ), Hölzl (TUM) Recursive functions on lazy lists ITP 2014 2 / 11

Running example: filtering lazy lists

Task: Given a codatatype α llist = [] | α · α llist
finite and

infinite lists

define a recursive function

lfilter P [] = []

lfilter P (x · xs) = (if P x then x · lfilter P xs else lfilter P xs)

and prove properties.

lfilter P (lfilter Q xs) = lfilter (λx . P x ∧ Q x) xs

Usual definition principles
• well-founded recursion

• guarded/primitive corecursion

guarded

unguarded

lfilter is underspecified:

lfilter (≤ 0) (1 · [1, 1, 1, . . .]) = lfilter (≤ 0) [1, 1, 1, . . .]

Lochbihler (ETHZ), Hölzl (TUM) Recursive functions on lazy lists ITP 2014 2 / 11

Running example: filtering lazy lists

Task: Given a codatatype α llist = [] | α · α llist
finite and

infinite lists

define a recursive function

lfilter P [] = []

lfilter P (x · xs) = (if P x then x · lfilter P xs else lfilter P xs)

and prove properties.

lfilter P (lfilter Q xs) = lfilter (λx . P x ∧ Q x) xs

Usual definition principles
• well-founded recursion

• guarded/primitive corecursion

guarded unguarded

lfilter is underspecified:

lfilter (≤ 0) (1 · [1, 1, 1, . . .]) = lfilter (≤ 0) [1, 1, 1, . . .]

Lochbihler (ETHZ), Hölzl (TUM) Recursive functions on lazy lists ITP 2014 2 / 11

Running example: filtering lazy lists

Task: Given a codatatype α llist = [] | α · α llist
finite and

infinite lists

define a recursive function

lfilter P [] = []

lfilter P (x · xs) = (if P x then x · lfilter P xs else lfilter P xs)

and prove properties.

lfilter P (lfilter Q xs) = lfilter (λx . P x ∧ Q x) xs

Usual definition principles
• well-founded recursion

• guarded/primitive corecursion

guarded unguarded

lfilter is underspecified:

lfilter (≤ 0) (1 · [1, 1, 1, . . .]) = lfilter (≤ 0) [1, 1, 1, . . .]

Lochbihler (ETHZ), Hölzl (TUM) Recursive functions on lazy lists ITP 2014 2 / 11

Beyond well-founded and guarded corecursion

lfilter P [] = []
lfilter P (x · xs) = (if P x then x · lfilter P xs else lfilter P xs)

lfinite xs ∨ (∀n. ∃x ∈ lset (ldrop n xs). P x ∧ Q x) −→

lfilter P (lfilter Q xs) = lfilter (λx . P x ∧ Q x) xs

Previous approaches:

Partiality leave unspecified for infinite lists w/o satisfying elements

close to specification
properties need preconditions
no proof principles

Search function check whether there are more elements

︷ ︸︸ ︷
if ¬ find P xs then [] else

total function, no preconditions
additional lemmas about search function necessary
ad hoc solution

Lochbihler (ETHZ), Hölzl (TUM) Recursive functions on lazy lists ITP 2014 3 / 11

Beyond well-founded and guarded corecursion

lfilter P [] = []
lfilter P (x · xs) = (if P x then x · lfilter P xs else lfilter P xs)

lfinite xs ∨ (∀n. ∃x ∈ lset (ldrop n xs). P x ∧ Q x) −→
lfilter P (lfilter Q xs) = lfilter (λx . P x ∧ Q x) xs

Previous approaches:

Partiality leave unspecified for infinite lists w/o satisfying elements

close to specification
properties need preconditions
no proof principles

Search function check whether there are more elements

︷ ︸︸ ︷
if ¬ find P xs then [] else

total function, no preconditions
additional lemmas about search function necessary
ad hoc solution

Lochbihler (ETHZ), Hölzl (TUM) Recursive functions on lazy lists ITP 2014 3 / 11

Beyond well-founded and guarded corecursion

lfilter P [] = []
lfilter P (x · xs) = (if P x then x · lfilter P xs else lfilter P xs)

lfinite xs ∨ (∀n. ∃x ∈ lset (ldrop n xs). P x ∧ Q x) −→

lfilter P (lfilter Q xs) = lfilter (λx . P x ∧ Q x) xs

Previous approaches:

Partiality leave unspecified for infinite lists w/o satisfying elements

close to specification
properties need preconditions
no proof principles

Search function check whether there are more elements

︷ ︸︸ ︷
if ¬ find P xs then [] else

total function, no preconditions
additional lemmas about search function necessary
ad hoc solution

Lochbihler (ETHZ), Hölzl (TUM) Recursive functions on lazy lists ITP 2014 3 / 11

Two views on lfilter

lfilter :: (α⇒ bool)⇒ α llist⇒ α llist

1. produces a list corecursively

• lfilter :: β⇒ α llist

• find chain-complete partial
order on α llist

• take the least fixpoint for lfilter

2. consumes a list recursively

• lfilter :: α llist⇒ β

• find topology on α llist

• define lfilter on finite lists
by well-founded recursion

• take the limit for infinite lists

proof principles

 domain theory

fixpoint induction
structural induction

 topology

convergence on closed sets
uniqueness of limits

Lochbihler (ETHZ), Hölzl (TUM) Recursive functions on lazy lists ITP 2014 4 / 11

Two views on lfilter

lfilter :: (α⇒ bool)⇒ α llist⇒ α llist

1. produces a list corecursively

• lfilter :: β⇒ α llist

• find chain-complete partial
order on α llist

• take the least fixpoint for lfilter

2. consumes a list recursively

• lfilter :: α llist⇒ β

• find topology on α llist

• define lfilter on finite lists
by well-founded recursion

• take the limit for infinite lists

proof principles

 domain theory

fixpoint induction
structural induction

 topology

convergence on closed sets
uniqueness of limits

Lochbihler (ETHZ), Hölzl (TUM) Recursive functions on lazy lists ITP 2014 4 / 11

Two views on lfilter

lfilter :: (α⇒ bool)⇒ α llist⇒ α llist

1. produces a list corecursively

• lfilter :: β⇒ α llist

• find chain-complete partial
order on α llist

• take the least fixpoint for lfilter

2. consumes a list recursively

• lfilter :: α llist⇒ β

• find topology on α llist

• define lfilter on finite lists
by well-founded recursion

• take the limit for infinite lists

proof principles

 domain theory

fixpoint induction
structural induction

 topology

convergence on closed sets
uniqueness of limits

Lochbihler (ETHZ), Hölzl (TUM) Recursive functions on lazy lists ITP 2014 4 / 11

Two views on lfilter

lfilter :: (α⇒ bool)⇒ α llist⇒ α llist

1. produces a list corecursively

• lfilter :: β⇒ α llist

• find chain-complete partial
order on α llist

• take the least fixpoint for lfilter

2. consumes a list recursively

• lfilter :: α llist⇒ β

• find topology on α llist

• define lfilter on finite lists
by well-founded recursion

• take the limit for infinite lists

proof principles

 domain theory

fixpoint induction
structural induction

 topology

convergence on closed sets
uniqueness of limits

Lochbihler (ETHZ), Hölzl (TUM) Recursive functions on lazy lists ITP 2014 4 / 11

Two views on lfilter

lfilter :: (α⇒ bool)⇒ α llist⇒ α llist

1. produces a list corecursively

• lfilter :: β⇒ α llist

• find chain-complete partial
order on α llist

• take the least fixpoint for lfilter

2. consumes a list recursively

• lfilter :: α llist⇒ β

• find topology on α llist

• define lfilter on finite lists
by well-founded recursion

• take the limit for infinite lists

proof principles

 domain theory

fixpoint induction
structural induction

 topology

convergence on closed sets
uniqueness of limits

Lochbihler (ETHZ), Hölzl (TUM) Recursive functions on lazy lists ITP 2014 4 / 11

Proof principles pay off

Isabelle proofs of lfilter P (lfilter Q xs) = lfilter (λx . P x ∧ Q x) xs

Paulson’s Structural induction

Fixpoint induction

Continuous extension

Lochbihler (ETHZ), Hölzl (TUM) Recursive functions on lazy lists ITP 2014 5 / 11

The producer view: least fixpoints

• prefix order v defined coinductively

• least upper bound
⊔

Y defined by primitive corecursion

(v,⊔) forms a chain-complete partial order (CCPO) with ⊥ = []

•

•

•

• •

. . .

A
⊔

Av v v

v

v

v

•v w

• lift (v,⊔) point-wise to function space β⇒ α llist

Knaster-Tarski theorem:
If f on a ccpo is monotone, then f has a least fixpoint.

partial-function (llist) lfilter :: (α⇒ bool)⇒ α llist⇒ α llist where

lfilter P xs = (case xs of []⇒ []
| x · xs ⇒ if P x then x · lfilter P xs else lfilter P xs)

Light-weight domain theory

[] represents “undefined”, no additional values in α llist

full function space ⇒, no continuity restrictions

less automation

less expressive (no nested or higher-order recursion)

Lochbihler (ETHZ), Hölzl (TUM) Recursive functions on lazy lists ITP 2014 6 / 11

The producer view: least fixpoints

• prefix order v defined coinductively

• least upper bound
⊔

Y defined by primitive corecursion

(v,⊔) forms a chain-complete partial order (CCPO) with ⊥ = []

•

•

•

• •

. . .

A
⊔

A

v v v

v

v

v

•v w

• lift (v,⊔) point-wise to function space β⇒ α llist

Knaster-Tarski theorem:
If f on a ccpo is monotone, then f has a least fixpoint.

partial-function (llist) lfilter :: (α⇒ bool)⇒ α llist⇒ α llist where

lfilter P xs = (case xs of []⇒ []
| x · xs ⇒ if P x then x · lfilter P xs else lfilter P xs)

Light-weight domain theory

[] represents “undefined”, no additional values in α llist

full function space ⇒, no continuity restrictions

less automation

less expressive (no nested or higher-order recursion)

Lochbihler (ETHZ), Hölzl (TUM) Recursive functions on lazy lists ITP 2014 6 / 11

The producer view: least fixpoints

• prefix order v defined coinductively

• least upper bound
⊔

Y defined by primitive corecursion

(v,⊔) forms a chain-complete partial order (CCPO) with ⊥ = []

•

•

•

• •

. . .

A
⊔

Av v v
v

v

v

•v w

• lift (v,⊔) point-wise to function space β⇒ α llist

Knaster-Tarski theorem:
If f on a ccpo is monotone, then f has a least fixpoint.

partial-function (llist) lfilter :: (α⇒ bool)⇒ α llist⇒ α llist where

lfilter P xs = (case xs of []⇒ []
| x · xs ⇒ if P x then x · lfilter P xs else lfilter P xs)

Light-weight domain theory

[] represents “undefined”, no additional values in α llist

full function space ⇒, no continuity restrictions

less automation

less expressive (no nested or higher-order recursion)

Lochbihler (ETHZ), Hölzl (TUM) Recursive functions on lazy lists ITP 2014 6 / 11

The producer view: least fixpoints

• prefix order v defined coinductively

• least upper bound
⊔

Y defined by primitive corecursion

(v,⊔) forms a chain-complete partial order (CCPO) with ⊥ = []

•

•

•

• •

. . .

A
⊔

Av v v
v

v

v

•v

w

• lift (v,⊔) point-wise to function space β⇒ α llist

Knaster-Tarski theorem:
If f on a ccpo is monotone, then f has a least fixpoint.

partial-function (llist) lfilter :: (α⇒ bool)⇒ α llist⇒ α llist where

lfilter P xs = (case xs of []⇒ []
| x · xs ⇒ if P x then x · lfilter P xs else lfilter P xs)

Light-weight domain theory

[] represents “undefined”, no additional values in α llist

full function space ⇒, no continuity restrictions

less automation

less expressive (no nested or higher-order recursion)

Lochbihler (ETHZ), Hölzl (TUM) Recursive functions on lazy lists ITP 2014 6 / 11

The producer view: least fixpoints

• prefix order v defined coinductively

• least upper bound
⊔

Y defined by primitive corecursion

(v,⊔) forms a chain-complete partial order (CCPO) with ⊥ = []

•

•

•

• •

. . .

A
⊔

Av v v
v

v

v

•v w

• lift (v,⊔) point-wise to function space β⇒ α llist

Knaster-Tarski theorem:
If f on a ccpo is monotone, then f has a least fixpoint.

partial-function (llist) lfilter :: (α⇒ bool)⇒ α llist⇒ α llist where

lfilter P xs = (case xs of []⇒ []
| x · xs ⇒ if P x then x · lfilter P xs else lfilter P xs)

Light-weight domain theory

[] represents “undefined”, no additional values in α llist

full function space ⇒, no continuity restrictions

less automation

less expressive (no nested or higher-order recursion)

Lochbihler (ETHZ), Hölzl (TUM) Recursive functions on lazy lists ITP 2014 6 / 11

The producer view: least fixpoints

• prefix order v defined coinductively

• least upper bound
⊔

Y defined by primitive corecursion

(v,⊔) forms a chain-complete partial order (CCPO) with ⊥ = []

•

•

•

• •

. . .

A
⊔

Av v v
v

v

v

•v w

• lift (v,⊔) point-wise to function space β⇒ α llist

Knaster-Tarski theorem:
If f on a ccpo is monotone, then f has a least fixpoint.

partial-function (llist) lfilter :: (α⇒ bool)⇒ α llist⇒ α llist where

lfilter P xs = (case xs of []⇒ []
| x · xs ⇒ if P x then x · lfilter P xs else lfilter P xs)

Light-weight domain theory

[] represents “undefined”, no additional values in α llist

full function space ⇒, no continuity restrictions

less automation

less expressive (no nested or higher-order recursion)

Lochbihler (ETHZ), Hölzl (TUM) Recursive functions on lazy lists ITP 2014 6 / 11

The producer view: least fixpoints

• prefix order v defined coinductively

• least upper bound
⊔

Y defined by primitive corecursion

(v,⊔) forms a chain-complete partial order (CCPO) with ⊥ = []

•

•

•

• •

. . .

A
⊔

Av v v
v

v

v

•v w

• lift (v,⊔) point-wise to function space β⇒ α llist

Knaster-Tarski theorem:
If f on a ccpo is monotone, then f has a least fixpoint.

partial-function (llist) lfilter :: (α⇒ bool)⇒ α llist⇒ α llist where

lfilter P xs = (case xs of []⇒ []
| x · xs ⇒ if P x then x · lfilter P xs else lfilter P xs)

Light-weight domain theory

[] represents “undefined”, no additional values in α llist

full function space ⇒, no continuity restrictions

less automation

less expressive (no nested or higher-order recursion)

Lochbihler (ETHZ), Hölzl (TUM) Recursive functions on lazy lists ITP 2014 6 / 11

The producer view: least fixpoints

• prefix order v defined coinductively

• least upper bound
⊔

Y defined by primitive corecursion

(v,⊔) forms a chain-complete partial order (CCPO) with ⊥ = []

•

•

•

• •

. . .

A
⊔

Av v v
v

v

v

•v w

• lift (v,⊔) point-wise to function space β⇒ α llist

Knaster-Tarski theorem:
If f on a ccpo is monotone, then f has a least fixpoint.

partial-function (llist) lfilter :: (α⇒ bool)⇒ α llist⇒ α llist where

lfilter P xs = (case xs of []⇒ []
| x · xs ⇒ if P x then x · lfilter P xs else lfilter P xs)

Light-weight domain theory

[] represents “undefined”, no additional values in α llist

full function space ⇒, no continuity restrictions

less automation

less expressive (no nested or higher-order recursion)

Lochbihler (ETHZ), Hölzl (TUM) Recursive functions on lazy lists ITP 2014 6 / 11

The producer view: least fixpoints

• prefix order v defined coinductively

• least upper bound
⊔

Y defined by primitive corecursion

(v,⊔) forms a chain-complete partial order (CCPO) with ⊥ = []

•

•

•

• •

. . .

A
⊔

Av v v
v

v

v

•v w

• lift (v,⊔) point-wise to function space β⇒ α llist

Knaster-Tarski theorem:
If f on a ccpo is monotone, then f has a least fixpoint.

partial-function (llist) lfilter :: (α⇒ bool)⇒ α llist⇒ α llist where

lfilter P xs = (case xs of []⇒ []
| x · xs ⇒ if P x then x · lfilter P xs else lfilter P xs)

Light-weight domain theory

[] represents “undefined”, no additional values in α llist

full function space ⇒, no continuity restrictions

less automation

less expressive (no nested or higher-order recursion)

Lochbihler (ETHZ), Hölzl (TUM) Recursive functions on lazy lists ITP 2014 6 / 11

The producer view: induction proofs

• structural induction

adm Q Q [] ∀x xs. lfinite xs ∧ Q xs −→ Q (x · xs)

Q xs

• fixpoint induction rule generated for lfilter

Induction is sound only
for admissible statements Q •

•

•

• •

. . .

v v v

v

v
A

⊔
A

Q

 Q ()

proof automation via syntactic decomposition rules for admissibility

lemma

adm (λxs.

lfilter P (lfilter Q xs) = lfilter (λx . P x ∧ Q x) xs

)

by(induction xs) simp all

continuous contextsatomic predicate

Lochbihler (ETHZ), Hölzl (TUM) Recursive functions on lazy lists ITP 2014 7 / 11

The producer view: induction proofs

• structural induction

adm Q Q [] ∀x xs. lfinite xs ∧ Q xs −→ Q (x · xs)

Q xs

• fixpoint induction rule generated for lfilter

Induction is sound only
for admissible statements Q •

•

•

• •

. . .

v v v

v

v
A

⊔
A

Q

 Q ()

proof automation via syntactic decomposition rules for admissibility

lemma

adm (λxs.

lfilter P (lfilter Q xs) = lfilter (λx . P x ∧ Q x) xs

)

by(induction xs) simp all

continuous contextsatomic predicate

Lochbihler (ETHZ), Hölzl (TUM) Recursive functions on lazy lists ITP 2014 7 / 11

The producer view: induction proofs

• structural induction

adm Q Q [] ∀x xs. lfinite xs ∧ Q xs −→ Q (x · xs)

Q xs

• fixpoint induction rule generated for lfilter

Induction is sound only
for admissible statements Q •

•

•

• •

. . .

v v v

v

v
A

⊔
AQ

 Q ()

proof automation via syntactic decomposition rules for admissibility

lemma

adm (λxs.

lfilter P (lfilter Q xs) = lfilter (λx . P x ∧ Q x) xs

)

by(induction xs) simp all

continuous contextsatomic predicate

Lochbihler (ETHZ), Hölzl (TUM) Recursive functions on lazy lists ITP 2014 7 / 11

The producer view: induction proofs

• structural induction

adm Q Q [] ∀x xs. lfinite xs ∧ Q xs −→ Q (x · xs)

Q xs

• fixpoint induction rule generated for lfilter

Induction is sound only
for admissible statements Q •

•

•

• •

. . .

v v v

v

v
A

⊔
AQ

 Q ()

proof automation via syntactic decomposition rules for admissibility

lemma

adm (λxs.

lfilter P (lfilter Q xs) = lfilter (λx . P x ∧ Q x) xs

)

by(induction xs) simp all

continuous contextsatomic predicate

Lochbihler (ETHZ), Hölzl (TUM) Recursive functions on lazy lists ITP 2014 7 / 11

The producer view: induction proofs

• structural induction

adm Q Q [] ∀x xs. lfinite xs ∧ Q xs −→ Q (x · xs)

Q xs

• fixpoint induction rule generated for lfilter

Induction is sound only
for admissible statements Q •

•

•

• •

. . .

v v v

v

v
A

⊔
AQ

 Q ()

proof automation via syntactic decomposition rules for admissibility

lemma

adm (λxs. lfilter P (lfilter Q xs) = lfilter (λx . P x ∧ Q x) xs)

by(induction xs) simp all

continuous contextsatomic predicate

Lochbihler (ETHZ), Hölzl (TUM) Recursive functions on lazy lists ITP 2014 7 / 11

The producer view: induction proofs

• structural induction

adm Q Q [] ∀x xs. lfinite xs ∧ Q xs −→ Q (x · xs)

Q xs

• fixpoint induction rule generated for lfilter

Induction is sound only
for admissible statements Q •

•

•

• •

. . .

v v v

v

v
A

⊔
AQ

 Q ()

proof automation via syntactic decomposition rules for admissibility

lemma

adm (λxs. lfilter P (lfilter Q xs) = lfilter (λx . P x ∧ Q x) xs)

by(induction xs) simp all

continuous contextsatomic predicate

Lochbihler (ETHZ), Hölzl (TUM) Recursive functions on lazy lists ITP 2014 7 / 11

The consumer view: continuous extensions

datatype α list = [] | α · α list 1. Define filter recursively
filter :: (α⇒ bool)⇒ α list⇒ α list on finite lists.

lfilter P xs = Lim (filter P) xs 2. Take the limit.

infinite

finite filter P

L
im

introduce CCPO topology

 define the open sets

S

⊔
A

•

•

•

• •

. . .

v v v

v

v

A
non-empty overlap

Properties of a CCPO topology

limits are unique

finite elements are discrete, i.e., open {xs}

}
not the Scott topology!

Lochbihler (ETHZ), Hölzl (TUM) Recursive functions on lazy lists ITP 2014 8 / 11

The consumer view: continuous extensions

datatype α list = [] | α · α list 1. Define filter recursively
filter :: (α⇒ bool)⇒ α list⇒ α list on finite lists.

lfilter P xs = Lim (filter P) xs 2. Take the limit.

infinite

finite filter P

L
im

introduce CCPO topology

 define the open sets

S

⊔
A

•

•

•

• •

. . .

v v v

v

v

A
non-empty overlap

Properties of a CCPO topology

limits are unique

finite elements are discrete, i.e., open {xs}

}
not the Scott topology!

Lochbihler (ETHZ), Hölzl (TUM) Recursive functions on lazy lists ITP 2014 8 / 11

The consumer view: continuous extensions

datatype α list = [] | α · α list 1. Define filter recursively
filter :: (α⇒ bool)⇒ α list⇒ α list on finite lists.

lfilter P xs = Lim (filter P) xs 2. Take the limit.

infinite

finite filter P

L
im

introduce CCPO topology

 define the open sets

S

⊔
A

•

•

•

• •

. . .

v v v
v

v

A

non-empty overlap

Properties of a CCPO topology

limits are unique

finite elements are discrete, i.e., open {xs}

}
not the Scott topology!

Lochbihler (ETHZ), Hölzl (TUM) Recursive functions on lazy lists ITP 2014 8 / 11

The consumer view: continuous extensions

datatype α list = [] | α · α list 1. Define filter recursively
filter :: (α⇒ bool)⇒ α list⇒ α list on finite lists.

lfilter P xs = Lim (filter P) xs 2. Take the limit.

infinite

finite filter P

L
im

introduce CCPO topology

 define the open sets

open S

⊔
A

•

•

•

• •

. . .

v v v
v

v

A
non-empty overlap

Properties of a CCPO topology

limits are unique

finite elements are discrete, i.e., open {xs}

}
not the Scott topology!

Lochbihler (ETHZ), Hölzl (TUM) Recursive functions on lazy lists ITP 2014 8 / 11

The consumer view: continuous extensions

datatype α list = [] | α · α list 1. Define filter recursively
filter :: (α⇒ bool)⇒ α list⇒ α list on finite lists.

lfilter P xs = Lim (filter P) xs 2. Take the limit.

infinite

finite filter P

L
im

introduce CCPO topology

 define the open sets

open S

⊔
A

•

•

•

• •

. . .

v v v
v

v

A
non-empty overlap

Properties of a CCPO topology

limits are unique

finite elements are discrete, i.e., open {xs}

}
not the Scott topology!

Lochbihler (ETHZ), Hölzl (TUM) Recursive functions on lazy lists ITP 2014 8 / 11

The consumer view: proving

1. Prove that filter P is continuous!
follows from monotonicity of filter

2. Proof rule convergence on a closed set (specialised for α llist):

closed {xs |Q xs} ∀ys. lfinite ys ∧ ys v xs −→ Q ys

Q xs

lemma lfilter P (lfilter Q xs) = lfilter (λx . P x ∧ Q x) xs
by (rule converge closed[of xs]) (auto intro!: closed eq isCont lfilter)

decomposition rules
for closedness

Lochbihler (ETHZ), Hölzl (TUM) Recursive functions on lazy lists ITP 2014 9 / 11

The consumer view: proving

1. Prove that filter P is continuous!
follows from monotonicity of filter

2. Proof rule convergence on a closed set (specialised for α llist):

closed {xs |Q xs} ∀ys. lfinite ys ∧ ys v xs −→ Q ys

Q xs

lemma lfilter P (lfilter Q xs) = lfilter (λx . P x ∧ Q x) xs
by (rule converge closed[of xs]) (auto intro!: closed eq isCont lfilter)

decomposition rules
for closedness

Lochbihler (ETHZ), Hölzl (TUM) Recursive functions on lazy lists ITP 2014 9 / 11

Summary

Comparison least fixpoint continuous extension

ccpo on result type on parameter type

monotonicity of the functional of the function

proof principles structural induction = convergence on a closed set
fixpoint induction

Available in the AFP entry Coinductive

Which codatatypes can be turned into useful ccpos?

extended naturals enat = 0 | eSuc enat

n-ary trees α tree = Leaf | Node α (α tree) (α tree)

}
finite
truncations

streams α stream = Stream α (α stream) no finite elements

Lochbihler (ETHZ), Hölzl (TUM) Recursive functions on lazy lists ITP 2014 10 / 11

Summary

Comparison least fixpoint continuous extension

ccpo on result type on parameter type

monotonicity of the functional of the function

proof principles structural induction = convergence on a closed set
fixpoint induction

Available in the AFP entry Coinductive

Which codatatypes can be turned into useful ccpos?

extended naturals enat = 0 | eSuc enat

n-ary trees α tree = Leaf | Node α (α tree) (α tree)

}
finite
truncations

streams α stream = Stream α (α stream) no finite elements

Lochbihler (ETHZ), Hölzl (TUM) Recursive functions on lazy lists ITP 2014 10 / 11

Two views on lfilter

lfilter :: (α⇒ bool)⇒ α llist⇒ α llist

1. produces a list corecursively

• lfilter :: β⇒ α llist

• find chain-complete partial
order on α llist

• take the least fixpoint for lfilter

2. consumes a list recursively

• lfilter :: α llist⇒ β

• find topology on α llist

• define lfilter on finite lists
by well-founded recursion

• take the limit for infinite lists

proof principles

 domain theory

fixpoint induction
structural induction

 topology

convergence on closed sets
uniqueness of limits

Lochbihler (ETHZ), Hölzl (TUM) Recursive functions on lazy lists ITP 2014 4 / 11

Proof principles pay off

Isabelle proofs of lfilter P (lfilter Q xs) = lfilter (λx . P x ∧ Q x) xs

Paulson’s Structural induction

Fixpoint induction

Continuous extension

Lochbihler (ETHZ), Hölzl (TUM) Recursive functions on lazy lists ITP 2014 5 / 11

The consumer view: continuous extensions

datatype α list = [] | α · α list 1. Define filter recursively
filter :: (α⇒ bool)⇒ α list⇒ α list on finite lists.

lfilter P xs = Lim (filter P) xs 2. Take the limit.

infinite

finite filter P

L
im

introduce CCPO topology

 define the open sets

open S

⊔
A

•

•

•

• •

. . .

v v v

v

v

A
non-empty overlap

limits are unique

finite lists are discrete, i.e., open {xs}

}
not the Scott topology!

Lochbihler (ETHZ), Hölzl (TUM) Recursive functions on lazy lists ITP 2014 8 / 11

The producer view: least fixpoints

• prefix order v defined coinductively

• least upper bound
⊔

Y defined by primitive corecursion

(v,⊔) forms a chain-complete partial order (CCPO) with ⊥ = []

•

•

•

• •

. . .

A
⊔

Av v v

v

v

v

•v w

• lift (v,⊔) point-wise to function space β⇒ α llist

Knaster-Tarski theorem:
If f on a ccpo is monotone, then f has a least fixpoint.

partial-function (llist) lfilter :: (α⇒ bool)⇒ α llist⇒ α llist where

lfilter P xs = (case xs of []⇒ []
| x · xs ⇒ if P x then x · lfilter P xs else lfilter P xs)

Light-weight domain theory

[] represents “undefined”, no additional values in α llist

full function space ⇒, no continuity restrictions

less automation

less expressive (no nested or higher-order recursion)

Lochbihler (ETHZ), Hölzl (TUM) Recursive functions on lazy lists ITP 2014 6 / 11

