Stream Fusion for Isabelle’s Code Generator
Rough Diamond

Andreas Lochbihler and Alexandra Maximova

Institute of Information Security, Department of Computer Science, ETH Zurich, Switzerland

Abstract. Stream fusion eliminates intermediate lists in functional code. We for-
malise stream fusion for finite and coinductive lists in Isabelle/HOL and imple-
ment the transformation in the code preprocessor. Our initial results show that
optimisations during code extraction can boost the performance of the generated
code, but the transformation requires further engineering to be usable in practice.

1 Introduction

Over the last decade, code extraction spurred interest in writing executable specifica-
tions rather than abstract models in theorem provers [7,12]. For example, it is now pos-
sible to verify a conference management system in a prover and compile the model into
a usable implementation [7]. Yet, satisfactory performance is hard to achieve. Existing
work on efficiency [8,9] focuses on making efficient data structures available in the
prover. The potential of optimisation during code extraction has been neglected so far.
Code extraction can boost efficiency in two ways. On the one hand, the generated
code can use optimised libraries of the target language. To that end, one specifies man-
ually how types and functions in the logic are mapped to the library. Such a mapping
is unverified, i.e., the mapping and the libraries become part of the trusted code base.
This is against the spirit of verification and should thus be avoided. On the other hand,
extraction itself can transform and optimise the code. This seems sensible for three rea-
sons. First, the transformations and the verification are carried out in the same formal
framework. This ensures that they fit together. Second, the extractor can exploit the
proven theorems (e.g., invariants, congruences) for optimisation. This knowledge gets
lost during translation, as only the definitions are extracted. Thus, the target language
compiler cannot exploit it. Third, the evaluation order and strictness requirements of the
logic may be weaker than in the target language. This gives the extractor more freedom.
There is little benefit in re-implementing in the extractor all optimisations of the
target language. Instead, one should focus on transformations that enable more optimi-
sations in the target language. Fusion techniques [1,4,13] are a good candidate, as they
transform a function designed for high-level proofs into one designed for optimisation.
In this paper, we focus on stream fusion (see §2 for an introduction), as it is more
powerful than other fusion techniques [1,3]. We have formalised stream fusion in Isa-
belle/HOL with its restrictive type system for finite and coinductive lists and imple-
mented the transformation in the code generator (§3). It is designed such that fusion af-
fects neither definitions nor proofs in applications. Our evaluation on micro-benchmarks
shows that the transformation improves the run time of the generated code by 24 % to
93 % (§4). Unfortunately, the transformation hardly triggers for applications at present.
We have identified the obstacles and discuss how they could be overcome (§6).
The formalisation and implementation are available online [11].

2 Background on Stream Fusion

Stream fusion [1,2,3] transforms programs to enable optimisations. Consider, for ex-
ample, the program sum-odd-sq n = sum (map sq (filter odd [1 ..n])). The function
sum-odd-sq computes the sum of the squares (computed by sq) of all odd numbers
up to n. The definition is designed for proving, as it composes functions like building
blocks, so proofs can use the existing lemmas about them. Yet, if sum-odd-sq is im-
plemented as given, three lists are allocated at run-time: all numbers up to n, all odd
numbers up to n, and their squares. In lazy languages, the lists are not allocated as a
whole, but the cells still are. Ideally, no list would be needed at all. But as sum, map,
and filter are recursive, compilers are unlikely to inline and optimise them aggressively.

Stream fusion transforms sum-odd-sq such that there is only one recursive function
left. Then, subsequent optimisations like inlining and call specialisation can get rid of
the intermediate allocations. To that end, it replaces a list of type « list by a stream,
which consists of a generator g :: 6 = (&, o) step and a state s :: ¢. Here, step has three
constructors: Done indicates the end of the stream, Yield x s produces the next element
x and a new state s, and Skip s represents a stuttering step. Lists and streams are linked
via two functions stream and unstream, which satisfy unstream (stream, xs) = xs.

stream [= Done stream (x-xs) = Yield x xs

unstream (g,s) = (case g s of Done = [| | Skip s’ = unstream (g,s’)
| Yield x s = x- unstream (g,s'))

Functions on lists fall into three groups: producers such as [_..] return a list, con-
sumers like sum take a list, and transformers (e.g., filter and map) do both. Every such
function f has a stream counterpart fS. For example, filterS transforms a generator g
into another generator filterS P g as follows.

filterS P g s = (case g s of Done = Done | Skip s’ = Skip s’
| Yield x s = if P x then Yield x 5" else Skip s”)

A fusion equation of the form f xs = unstream (fS stream, xs) links f and fS, e.g.,
filter P xs = unstream (filterS P stream, xs). Equations for producers and consumers omit
stream and unstream as in [n..m| = unstream ([-..m] g, n) and sum xs = sumS stream xs.
The stream fusion transformation operates in two steps. First, it replaces all list
functions with stream functions using the fusion equations. This introduces conver-
sions from streams to lists and back. Second, it eliminates adjacent conversions as in
unstream (f; stream, unstream (f> g,s)), i.e., we get unstream (f1 (f2 g),s). In the end,
only functions on streams should be left. Coutts [1] identifies sufficient conditions for
this to happen. Among others, only consumers of a stream may be recursive and trans-
formers must pass Skips along unchanged. Then, later compiler stages can inline the
functions and eliminate the step constructors and thereby the unnecessary allocations.
Note that the second step can change the type ¢ of the state for f;. That is why
streams actually have the existential type 0. (6 = (@, 0) step) X ©. Thus, a consumer
or transformer cannot examine the state type of the stream it takes. Hence, it can use
the state only via the supplied generator, i.e., it behaves the same for all state types.
Transforming a function on lists to one on streams must currently be done manually.
So, stream fusion requires that the programmer uses only library functions for which the
setup has been provided. This restriction applies to other fusion techniques, too [4,13].

3 Formalising and Performing Stream Fusion in Isabelle/HOL

Due to the restriction to pre-defined library functions, it is sensible to express fusion
in HOL and prove it correct. Otherwise, the generated code must use those library
functions of the target language, provided that they are available (we only know of list
implementations in GHC [2,3]). Such adaptations exist partly, e.g., for the Haskell func-
tion concatMap, but they are unverified and error-prone, so it is better to avoid them.

Unfortunately, stream fusion cannot be formalised as is in HOL for two reasons.
First, HOL does not have existential type quantifiers. Thus, the type variable ¢ cannot
be hidden in the stream type. Consequently, the elimination of adjacent occurrences of
stream and unstream cannot be expressed as an equality in HOL, because the state type
changes. Neither would Coutts’ induction proof over types with a logical relation [1]
work, as HOL types are not syntactic. Second, stream fusion is designed for coinductive
sequence types, as generators need not terminate. However, the formalisation should
support finite lists, too, as they are the workhorse in Isabelle/HOL. Even coinductive
lists [10], which may be infinite, pose a definitional challenge, as a generator might
always return Skip, i.e., it refuses to decide whether the list ends. In a domain-theoretic
setting, unstream could return undefined, but in HOL it must make a choice.

We avoid the first problem by changing the format of the fusion equations. In the
former fxs = unstream (fS stream, xs), we instantiate xs with unstream (g, s) and elim-
inate the stream-unstream pair immediately in the equation. Thus, our format

f (unstream (g,s)) = unstream (fS g, s) (1)

avoids stream entirely. Both formats are equivalent, as we get the standard equation
back by setting g = stream and s = xs and rewriting with unstream (stream,xs) = xs.
In our example, we have [x..y] = unstream ([-..y|q,x) and filter P (unstream (g,s)) =
unstream (filterS P g,s) and sum (unstream (g, s)) = sumsS g s.

We address the second problem by defining two subtypes of generators. First, fer-
minating generators that always reach Done after finitely many iterations. Second, pro-
ductive generators whose iteration contains only finitely many consecutive Skips. The
subtypes are defined using typedef and implemented via data refinement in the code
generator [5]. For finite lists, we define unstream on terminating generators by well-
founded recursion. Thus, well-founded induction is our proof principle for the fusion
equations. For coinductive lists, we define unstream on arbitrary generators as a least
fixpoint in the domain of functions on prefix-ordered lists [10], and proofs are by fix-
point induction. Thus, unstream interprets infinitely many consecutive Skips as the end
of the list. Additionally, we lift unstream to the type of productive generators, as some
functions have fusible implementations only for productive generators. For example,
concatenation ++ of two coinductive lists is fusible only if the first list has a produc-
tive generator. Otherwise, the fusion equation unstream (g1,s;) ++ unstream (g, s2) =
unstream (appendS g; g» s2,s1) does not hold: for g; = Skip, the left hand side is
unstream (g2, s2), but the right hand side equals [], as appendS must pass Skips along.

We have defined stream versions for the fusible list functions in Isabelle/HOL’s
list library, i.e., 4 producers, 17 transformers, and 13 consumers, and proved fusion
equations for them. For concatMap, we also formalised the flatten operator from [3],
which is easier to optimise. The consumers were the easiest, as they can be defined
in terms of their list counterpart and unstream. The fusion equation and the recursive

code equations were proved automatically from the definition. Producers and trans-
formers are not recursive either, but the proofs of termination and the fusion equation
require inductions. For coinductive lists, we have 3 producers, 10 transformers, and
7 consumers. When possible, they come in two versions for productive and arbitrary
generators. Proofs are by induction on productivity and fixpoint induction, respectively.
The stream fusion transformation itself is implemented as a rewrite procedure in
the code generator. Its preprocessor invokes the procedure on all subexpressions of the
right-hand side of each code equation. The procedure tries to rewrite the given ex-
pression with the fusion equations. It succeeds only if there are no unstream functions
left at the end; otherwise, the transformation is discarded for this invocation. Our for-
mat (1) for the fusion equations ensures that the rewriting terminates, as the unstreams
are pushed from producers outwards through transformers to consumers. The check for
left-over unstreams ensures that fusion transformation is complete, as only consumers
can eliminate the unstreams that producers have introduced. It does not seem sensible
to leave unstreams in the code, although other fusion systems do so [3,4]. In our setting,
the target language compiler does not know that stream and unstream cancel out. Thus,
the conversions would end up in the compiled code and might slow down the execution.
Our implementation is extensible. Users can register new unstream functions for
other sequence types and new fusion equations for their constants. Overlapping fusion
equations are tried in the order of registration. This allows us to use a specialised fusion
equation for flatten when the inner generator does not depend on the outer’s state.

4 Evaluation

To evaluate the potential of stream fusion in Isabelle/HOL, we applied it to three micro-
benchmarks (enum, nested, merge) from [3]. They all consist of folding addition on
integers over lists generated by concatMap and |[-..], i.e., they are designed to demon-
strate the potential benefit of fusion. We generated Haskell and SML code with fusion
enabled and disabled, and compiled it under GHC, PolyML, and mlton. Table 1 lists the
run times averaged over ten runs (the parameter n has been set to 10 000 for enum and
merge and to 1000 for nested). The measurements were performed on a 64-bit 2.4 GHz
Intel i7-3630QM with 16 GB of RAM running Ubuntu Linux 12.04 LTS.

Surprisingly, the Haskell code with stream fusion enabled is slower than without. By
looking at GHC’s intermediate representation of the programs, we discovered that GHC
does not eliminate all step constructors, because it does not specialise the consumer
foldIS to the given combination of transformers and producers. Apparently, foldlS itself
being recursive prevents the transformation. We manually applied the static argument
transformation (SAT) to the generated consumer code such that the recursion occurs
only in a nested function as shown in Figure 1. Then, the specialisation happens and
stream fusion enables run time improvements between 31 % and 42 % (row fusion+SAT
in Table 1). Unfortunately, Isabelle’s code generator cannot generate recursive subfunc-
tions, although this can be expressed with local contexts in Isabelle/HOL itself.

The SML tests show that heavily optimising compilers like mlton (approx. 93 %
faster) profit from stream fusion more than less optimising ones like PolyML (24 % to
32 9% faster). The manual SAT hardly affects PolyML and mlton as the differences are
not statistically significant. Note that the folding in the test cases ensures that everything

compiler GHC 7.8.4 with -03 PolyML 5.5.2 mlton 20100608

micro-benchmark enum nested merge enum nested merge enum nested merge
no fusion 1.33 524 1.38 16.2 60.1 16.6 5.19 304 5.48

fusion 1.53 561 148 123 41.1 123 395 1.89 392
fusion+SAT 918 3.05 .934 123 41.1 123 388 1.90 .389

Table 1. Run times in seconds averaged over ten runs; the relative standard deviation is < 2.2 %.

foldlSgfzs= foldlS g f = go
(case generator g s of { where { go z s = (case generator g s of {
Done —> z; Done —> z;
Skipa —> foldlS gfz a; Skip sa —> go z sa;
Yieldasa —>let {za=fza;} Yieldasa —>let {za=fza;}
in Prelude.seq za (foldlS g f za sa); }); in Prelude.seq za (go za sa); })};

Fig. 1. Haskell code for foldIS as generated by Isabelle (left) and after manually applying SAT
(right). The cast operator generator applies a terminating generator to a state.

gets evaluated eventually. Thus, the performance gains are due to saving allocations and
enabling subsequent optimisations. In particular, the effects of laziness introduced by
stream fusion can be neglected. Fusion replaces strict lists with streams a.k.a. lazy lists,
i.e., it introduces laziness. This can result in huge savings, as we noted previously [9].

5 Related Work

Coutts [1] introduced stream fusion for Haskell and identified sufficient conditions for
stream fusion being an optimisation. He calls our fusion equations “data abstraction
properties” and proves some of them on paper, but his implementation uses the tra-
ditional format. He justifies eliminating stream-unstream pairs by induction over type
syntax and invariants preserved by a fixed set of library functions.

Recently, Farmer et al. [3] showed that stream fusion outperforms other fusion tech-
niques [4,13] when concatMap receives special treatment. Unlike in GHC’s RULES
system, the fusion equations necessary for that can be directly expressed in Isabelle.

Huffman [6] formalised stream fusion in Isabelle/HOLCF and proved fusion rules
for seven functions on domain-theoretic lists. He focuses on proving Coutts’ fusion
equations correct, but does not implement the transformation itself. As HOLCF is in-
compatible with the code generator, we cannot use his work for our purposes.

Lammich’s framework [8] transforms Isabelle/HOL programs such that they use
use efficient data structures. It assumes that the user has carefully written the program
for efficiency. So, it does not attempt to eliminate any intermediate data structures.

6 Conclusion and Future Work

We have formalised stream fusion in Isabelle/HOL and implemented it in its code gen-
erator. Our initial results show that transformations performed during code extraction
from theorem provers can make the compiled code much faster.

In fact, our implementation is just a first step. The transformation works well on
code written with fusion in mind as in [9]. Yet, it hardly triggers in ordinary user-space
programs. For example, the termination checker CeTA [12] generates 38 K lines of
Haskell code, but stream fusion applies only once. Two main issues prevent performing
stream fusion more widely. First, we perform fusion only when a single code equation
contains the complete chain from producers via transformers to consumers. That is, if
the calls to the producer and consumer occur in different functions, the preprocessor
cannot see this and fusion is not applied. Control operators and let bindings break the
chain, too. The first issue can be addressed by improving the implementation. Transfor-
mations like let floating and inlining of non-recursive functions can help to bring fusible
functions together. Care is needed to ensure that sharing is preserved. Currently, Isa-
belle’s code preprocessor does not support such global transformations. Moreover, for
Haskell, support for local recursive functions is desirable. We leave this as future work.

Second, list functions are often defined recursively, even if they can be expressed
with list combinators. Stream fusion ignores them, as there is no automatic conversion
to streams. Yet, this restriction applies to all fusion implementations we know. At the
moment, users must either prove the alternative definition in terms of combinators or
define the counterparts on streams themselves. Fortunately, the existing definitions (and
proofs) remain unchanged, as such additions are local.

Acknowledgements We thank Joachim Breitner for helping with analysing the GHC
compilation. He, Ralf Sasse, and David Basin helped to improve the presentation.

References

1. Coutts, D.: Stream Fusion: Practical shortcut fusion for coinductive sequence types. Ph.D.
thesis, University of Oxford (2010)
2. Coutts, D., Leshchinskiy, R., Stewart, D.: Stream fusion: From lists to streams to nothing at
all. In: ICFP’07. pp. 315-326. ACM (2007)
3. Farmer, A., Honer zu Siederdissen, C., Gill, A.: The HERMIT in the stream. In: PEPM’14.
pp. 97-108. ACM (2014)
4. Gill, A., Launchbury, J., Peyton Jones, S.L.: A short cut to deforestation. In: FPCA’93. pp.
223-232. ACM (1993)
5. Haftmann, F., Krauss, A., Kuncar, O., Nipkow, T.: Data refinement in Isabelle/HOL. In:
ITP’13. LNCS 7998, pp. 100-115. Springer (2013)
6. Huffman, B.: Stream fusion. Archive of Formal Proofs, formal proof development (2009),
http://afp.sf.net/entries/Stream-Fusion.shtml
7. Kanav, S., Lammich, P., Popescu, A.: A conference management system with verified docu-
ment confidentiality. In: CAV’14. LNCS 8559, pp. 167-183. Springer (2014)
8. Lammich,P.: Automatic data refinement. In:ITP’13.LNCS 7998, pp.84-99. Springer (2013)
9. Lochbihler, A.: Light-weight containers for Isabelle: efficient, extensible, nestable. In:
ITP?13. LNCS 7998, pp. 116-132. Springer (2013)
10. Lochbihler, A., Holzl, J.: Recursive functions on lazy lists via domains and topologies. In:
ITP’14. LNCS (LNAI) 8558, pp. 341-357. Springer (2014)
11. Lochbihler,A.,Maximova,A.:Stream fusion in HOL with code generation. Archive of Formal
Proofs, formal proof development(2014),http://afp.sf.net/entries/Stream_Fusion_Code.shtml
12. Sternagel, C., Thiemann, R.: Ceta 2.18. http://cl-informatik.uibk.ac.at/software/ceta/ (2014)
13. Svenningsson, J.: Shortcut fusion for accumulating parameters & zip-like functions. In:
ICFP’02. pp. 124-132. ACM (2002)

http://afp.sf.net/entries/Stream-Fusion.shtml
http://afp.sf.net/entries/Stream_Fusion_Code.shtml
http://cl-informatik.uibk.ac.at/software/ceta/

	Stream Fusion for Isabelle's Code Generator Rough Diamond-0.5

