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Abstract. This paper presents a shallow embedding of a probabilistic
functional programming language in higher order logic. The language
features monadic sequencing, recursion, random sampling, failures and
failure handling, and black-box access to oracles. Oracles are probabilis-
tic functions which maintain hidden state between different invocations.
To that end, we propose generative probabilistic systems as the semantic
domain in which the operators of the language are defined. We prove that
these operators are parametric and derive a relational program logic for
reasoning about programs from parametricity. Several examples demon-
strate that our language is suitable for conducting cryptographic proofs.

1 Introduction

As cryptographic algorithms and protocols are becoming increasingly compli-
cated, flaws in their security proofs are more likely to be overlooked. So, security
vulnerabilities can remain undiscovered. The game playing technique [16,29,48]
helps in structuring such proofs and can thus increase the level of confidence
in their correctness. In this view, security notions are expressed as programs
(called games) in the same language as the cryptographic algorithms and pro-
tocols. The proof then consists of transforming the program in several small
steps until the desired properties obviously hold. To achieve high assurance, sev-
eral frameworks [8,14,42] and a proof assistant [13] offer machine support in
formalising algorithms and security notions and in checking such sequences of
game transformations. This way, many cryptographic constructions have been
mechanically proven secure, e.g., [6,7,43].

For security protocols such as TLS, Kerberos, and IPSec, only few mechanised
security proofs in the computational model are available, e.g., [18,21]. Instead,
symbolic analysis tools [4,19,39,47] dominate. They model protocol messages
as terms in an algebra rather than bitstrings and assume that cryptography is
perfect. Computational soundness (CS) results [1,9,25] bridge the gap between
symbolic and computational models, but to our knowledge, they have never been
mechanically checked. Yet, mechanising them is desirable for three reasons. First,
the proofs are extremely technical with many case distinctions. A proof assistant
can check that all cases are covered and no assumption is forgotten (as has hap-
pened in early CS works), and it provides automation for dealing with the easy



cases. Second, computational soundness results need to be formalised only once
per set of cryptographic primitives, not for every protocol to which the symbolic
analyser is applied. That is, one mechanised proof yields trustworthy proofs for a
whole class of protocols. Third, mechanisation supports the evolution of models
and proofs. If a primitive is added or an assumption weakened as in [10], the proof
assistant checks the proofs again and pinpoints where adaptations are needed.

Unfortunately, the existing frameworks are not suitable for formalising CS
proofs. CertiCrypt [14] and Verypto [8] formalise stateful languages in the proof
assistants Coq and Isabelle, respectively. Due to the deep embedding, program
transformations always require a proof about the semantics and programs can-
not easily reuse the existing libraries of the proof assistants. Therefore, formal-
ising cryptographic arguments requires a very substantial effort. CertiCrypt’s
successor EasyCrypt [13] provides much better automation using SMT solvers.
Its logical foundation is higher order logic (HOL), but the reasoning infrastruc-
ture focuses on proofs in relational Hoare logic. However, substantial parts of CS
proofs reason about the term algebra of the symbolic model for which EasyCrypt
provides no support at all. The foundational cryptography framework (FCF) [42]
alleviates CertiCrypt’s formalisation burden by taking a semi-shallow approach
in Coq. For pure deterministic functions, the framework reuses the language of
the logic; only probabilistic effects and interaction with oracles are modelled syn-
tactically as monads. This saves considerable effort in comparison to CertiCrypt.
Yet, the monadic language lacks features such as recursion and exceptions, which
are desirable for CS, e.g., to implement probabilistic serialisers and parsers.

Contributions. We present a framework for cryptographic proofs formalised in
higher order logic. It consists of a probabilistic functional programming lan-
guage and a logic for reasoning about programs and probabilities. The language
features monadic sequencing, recursion, random sampling, failures and their han-
dling, and black-box access to oracles. Oracles are probabilistic functions that
maintain hidden state between different invocations. We model the language
shallowly, i.e., we define the operators directly in the semantic domain. Programs
which need no access to oracles are interpreted in the monad of discrete subprob-
abilities (§2.2); recursive functions are defined in terms of a least fixpoint oper-
ator (§2.3). For programs with oracle access, we propose generative probabilis-
tic systems as semantic domain, which supports corecursive definitions (§3.2).
In particular, we define operators for composing programs with oracles and
other programs. We have implemented the framework in the proof assistant Isa-
belle/HOL [41], but it could be formalised in any other HOL-based prover, too.

The shallow embedding offers three benefits. First, we can reuse all the ex-
isting infrastructure of the proof assistant, such as name binding, higher-order
unification and the module system, but also definitional packages and existing
libraries. Second, we obtain a rich equational theory directly on programs, i.e.,
without any intervening interpretation function. Equality is important as we can
replace terms by equal terms in any context (by HOL’s substitution rule), i.e.,
there is no need for congruences. Consequently, proof automation can use the
(conditional) equations directly for rewriting. Although no syntax is formalised



in the logic, programs are still written as HOL terms. This suffices to guide
syntax-directed proof tactics. Third, the language is not restricted to a fixed set
of primitives. New operators can be defined in the semantic domain at any time.

Beyond equality, we provide a relational logic for reasoning about programs
(§2.4 and §3.3). Relational parametricity [44,50] has been our guide in that most
rules follow from the fact that the operators are parametric. In particular, we
demonstrate that several common reasoning principles in cryptographic proofs
follow from parametricity. This approach ensures soundness of the logic by con-
struction and can also guide the discovery of proof rules for new operators. Our
logic is similar to those of the other tools. The novelty is that we follow a prin-
cipled way in finding the rules and establishing soundness.

Three examples demonstrate that our framework is suitable for cryptographic
proofs. We proved indistinguishability under chosen plaintext attacks (IND-
CPA) for (i) Elgamal public-key encryption [27] in the standard model (§2.1
and §2.5), (ii) Hashed Elgamal encryption in the random oracle model (§3.1 and
§3.4), and (iii) an encryption scheme based on pseudo-random functions [42]. The
examples have been chosen to enable comparisons with the existing frameworks
(see §4). They show that our framework leads to concise proofs with the level of
proof automation being comparable to EasyCrypt’s, the current state of the art.
This indicates that the framework scales to computational soundness results, al-
though our examples are much simpler. Indeed, we have just started formalising
a CS result, so this is only a first step. The framework and all examples and
proofs have been formalised in Isabelle/HOL and are available online [37].

Preliminaries: HOL notation The meta-language HOL mostly uses everyday
mathematical notation. Here, we present basic non-standard notation and a few
types with their operations; further concepts will be introduced when needed.

HOL terms are simply typed lambda terms with let-polymorphism (we use
Greek letters α, β, . . . for type variables). Types include in particular the type
of truth values bool and the singleton type unit with its only element () and the
space of total functions α⇒ β. Type constructors are normally written postfix,
e.g., bool list denotes the type of finite lists of booleans, i.e., bitstrings. The
notation t :: τ means that the HOL term t has type τ .

Pairs (type α×β) come with two projection functions π1 and π2, and the map
function map× f g (a, b) = (f a, g b). Tuples are identified with pairs nested to
the right, i.e., (a, b, c) is identical to (a, (b, c)) and α×β×γ to α×(β×γ). Dually,
α+β denotes the disjoint sum of α and β; the injections are Inl :: α⇒α+β and
Inr :: β⇒α+β. Case distinctions on freely generated types use guard-like syntax.
The map function map+ for disjoint sums, e.g., pattern matches on x to apply the
appropriate function: map+ f g x = case x of Inl y ⇒ Inl (f y) | Inr z ⇒ Inr (g z).

Sets (type α set) are isomorphic to predicates (type α⇒ bool) via the bijec-
tions membership ∈ and set comprehension {x. }; the empty set is { }. Binary
relations are sets of pairs and written infix, i.e., x R y denotes (x, y) ∈ R. The
relators rel× and rel+ lift relations component-wise to pairs and sums.

The datatype α option = None | Some α corresponds to the Haskell type
Maybe. It adjoins a new element None to α, all existing values in α are prefixed



by Some. Maps (partial functions) are modelled as functions of type α⇒β option,
where None represents undefinedness and f x = Some y means that f maps x
to y. The empty map ∅ = (λ . None) is undefined everywhere. Map update is
defined as follows: f(a 7→ b) = (λx. if x = a then Some b else f x).

2 A Shallow Probabilistic Functional Language

Security notions in the computation model are expressed as games parametrised
by an adversary. In formalising such games, we want to leverage as much of the
prover’s infrastructure as possible. Therefore, we only model explicitly what can-
not be expressed in the prover’s term language, namely probabilities and access
to oracles. In this section, we focus on probabilities and show the framework in
action on the example of Elgamal encryption (§2.1 and §2.5).

We model games as functions which return a discrete (sub)probability dis-
tribution over outcomes. Discrete subprobabilities strike a balance between ex-
pressiveness and ease of use. They provide a monadic structure for sequencing
and failure (§2.2). Thus, games can be formulated naturally and control may be
transferred non-locally in error cases such as invalid data produced by the adver-
sary. They also host a fixpoint operator for defining recursive functions (§2.3).
In contrast, measure-theoretic (sub)probability distributions clutter proofs with
measurability requirements. For computational soundness, discrete subprobabil-
ity distributions suffice. In §2.4, we prove that the operators are relationally
parametric and derive a programming logic and common cryptographic reason-
ing principles from parametricity.

2.1 Example: Elgamal Encryption

In this section, we formalise Elgamal’s encryption scheme [27] to motivate the
features of our language. In §2.5, we prove the scheme IND-CPA secure un-
der the decisional Diffie-Hellman (DDH) assumption. We formally introduce the
language only in §2.2. For now, an intuitive understanding suffices: monadic se-
quencing is written in Haskell-style do notation and x ← uniform A samples x
as a random element from the finite set A.

For the following, consider a fixed finite cyclic group G over the type α with
generator g. We write ⊗ for group multiplication and ˆ for exponentiation with
natural numbers; |G| denotes the order of G. In Elgamal, the public key is an
arbitrary group element gˆx and the private key is the exponent x. The security
of this scheme relies on the hardness of computing the discrete logarithm. The
key generation algorithm key-gen generates a new key pair by randomly sampling
the exponent (Fig. 1b). Messages are group elements, too. To encrypt a message
m under the public key α, the algorithm multiplies m with α raised to a random
power between 0 and the order of the group (Fig. 1a).

Elgamal’s encryption scheme produces ciphertexts that are indistinguishable
under chosen plaintext attacks. Chosen plaintext attacks are formalised as the



aenc α m = do {
y ← uniform { 0 ..< |G| };
returnspmf (g ˆy, (αˆy)⊗m) }

(a) Elgamal encryption algorithm

key-gen = do {
x← uniform { 0 ..< |G| };
returnspmf (g ˆx, x) }

(b) Elgamal key generation

ind-cpa (A1,A2) = try do {
(pk, sk)← key-gen;
b← coin;
((m0,m1), σ)← A1 pk;
assert (valid-plain m0 ∧ valid-plain m1);
c∗ ← aenc pk (if b then m0 else m1);
b′ ← A2 c

∗ σ;
returnspmf (b = b′)
} else coin

(c) IND-CPA security game without oracles

Fig. 1: Examples of cryptographic algorithms and games without oracle access

game ind-cpa shown in Fig. 1c. An IND-CPA adversary A consists of two prob-
abilistic functions A1 and A2. Given a public key pk, A1 chooses two plaintexts
m0 and m1. The game then encrypts one of them as determined by the random
bit b (a coin flip) and gives the challenge ciphertext c∗ to A2 and any arbitrary
state information σ produced by A1. Then, A2 produces a guess which of the two
messages c∗ decrypts to. Indistinguishability requires that the adversary cannot
do significantly better than flipping a coin. This is measured by the IND-CPA
advantage given by adv-ind-cpa A = |ind-cpa A ! True− 1/2|. A concrete security
theorem bounds the advantage by a quantity which is known or assumed to be
small.

If any step in the game fails, ind-cpa behaves like a fair coin flip, i.e., the
advantage is 0 in that case. This happens, e.g., if the plaintexts are invalid,
i.e., not elements of the group, or the adversary does not produce plaintexts or a
guess at all. (In an implementation, the latter could be detected using timeouts.)

The DDH assumption states that given two random group elements gˆx and
gˆy, it is hard to distinguish gˆ(x · y) from another random group element gˆz.
Formally, a DDH adversary A is a probabilistic function that takes three group
elements and outputs a Boolean. We model the two settings as two games ddh0

and ddh1 parametrised by the adversary.

ddh0 A = do {
x← uniform { 0 ..< |G| };
y ← uniform { 0 ..< |G| };

A (g ˆx) (g ˆy) (g ˆ (x · y)) }

ddh1 A = do {
x← uniform { 0 ..< |G| };
y ← uniform { 0 ..< |G| };
z ← uniform { 0 ..< |G| };
A (g ˆx) (g ˆy) (g ˆz) }

The DDH advantage captures the difficulty of A distinguishing the two settings.
It is defined as adv-ddh A = |ddh0 A ! True− ddh1 A ! True|. The DDH assump-
tion states that the advantage is small, and in §2.5, we show that the IND-CPA
advantage for Elgamal is bounded by the DDH advantage.

2.2 The Monad of Discrete Subprobability Distributions

A discrete subprobability distribution is given by its subprobability mass func-
tion (spmf), i.e., a non-negative real-valued function which sums up to at most 1.



We define the type α spmf of all spmfs1 over elementary events of type α and
use variables p, q for spmfs. We make applications of spmfs explicit using the
operator !. So, p ! x denotes the subprobability mass that the spmf p assigns to
the elementary event x. An event A is a set of elementary events; its subproba-
bility measure p A is given by

∑
y∈A p ! y. Moreover, the weight ‖p‖ of p is the

total probability mass assigned by p, i.e., ‖p‖ =
∑

y p !y. If p is a probability dis-
tribution, i.e., ‖p‖ = 1, then we call p lossless following [14] (notation lossless p).
The support setspmf p = {x. p ! x > 0 } is countable by construction.

The type α spmf hosts the polymorphic monad operations returnspmf :: α⇒
α spmf and bindspmf :: α spmf⇒ (α⇒ β spmf)⇒ β spmf given by

returnspmf y ! x =

{
1 if x = y

0 otherwise
bindspmf p f ! x =

∑
y∈setspmf p

(p ! y) · (f y ! x)

In this paper and in our formalisation, we use Haskell-style do notation where
do { x← p; f } desugars to bindspmf p (λx. do f). The monad operations satisfy
the usual monad laws: (i) bindspmf is associative and (ii) returnspmf is neutral for
bindspmf. In addition, bindspmf is commutative and constant elements cancel.

bindspmf p (λx. bindspmf q (f x)) = bindspmf q (λy. bindspmf p (λx. f x y)) (1)

bindspmf p (λ . q) = scale ‖p‖ q (2)

Here, scale r p scales the subprobability masses of p by r, i.e., scale r p!x = r·(p!x)
for 0 ≤ r ≤ 1/‖p‖. In particular, if p is lossless, then bindspmf p (λ . q) = q. The
monad operations give rise to the functorial action mapspmf :: (α⇒β)⇒α spmf⇒
β spmf given by mapspmf f p = bindspmf p (λx. returnspmf (f x)).

For sampling, the monad provides an operation uniform which returns the
uniform distribution over a finite set. There are three special cases worth men-
tioning. First, for a singleton set, we have uniform {x } = returnspmf x. Second, as
fair coin flips are particularly prominent in cryptographic games, we abbreviate
uniform {True,False } with coin. Third, in case of an empty set, we let uniform {}
denote the empty subprobability distribution ⊥ which assigns no probability to
any event at all, i.e., ⊥ ! x = 0 for all x. In combination with sequencing and
recursion, uniform is fairly expressive. bernoulli r = do {

b← coin;
if b then returnspmf (r ≥ 1/2)
else if r < 1/2 then bernoulli (2 · r)
else bernoulli (2 · r − 1) }

Fig. 2: The Bernoulli distribution

For example, the Bernoulli distribution
bernoulli r, which returns True with proba-
bility r for any 0 ≤ r ≤ 1, can be sampled
from fair coin flips as shown on the right
[32]. It can be used to define probabilistic
choice.

1 In the formalisation, we construct the type α spmf by combining the existing monad
for probability mass functions [30] with an exception monad. This way, most of our
primitive operations can be defined in terms of the primitive operations of the two
monads. Hence, we can derive many of their properties, in particular parametricity
(§2.4), from the latter’s.



Moreover, the subprobability monad contains a failure element, namely ⊥.
Failure aborts the current part of the program, as ⊥ propagates: bindspmf ⊥ f =
⊥. However, we hardly use ⊥ in programs directly. It is more natural to define an
assertion statement assert b = if b then returnspmf () else ⊥. Assertions are useful
in validating the inputs received from the adversary. For example, the assertion
in the IND-CPA security game in Fig. 1c checks that the adversary A1 produced
valid plaintexts.

Failures are handled using the statement try p else q, which distributes
the probability mass not assigned by p according to q. Formally, it satisfies
(try p else q) ! x = p ! x+ (1−‖p‖) · q ! x for all x. Clearly, we have the equalities
try ⊥ else q = q and try p else q = p if p is lossless. Moreover, try commutes with
bindspmf for lossless spmfs, i.e., we can enlarge or shrink the scope of the handler.

lossless p −→ try do { x← p; f x } else q = do { x← p; try f x else q }
lossless q −→ try do { x← p; f x } else q =

try do { x← p; try f x else q } else q

The IND-CPA game in Fig. 1c treats failures as fair coin flips. This is sound as
the advantage is the probability of the outcome True less 1/2.

This completes the exposition of the language primitives except for the fix-
point combinator (see §2.3). They suffice for all examples in this paper, but note
that we are not restricted to this set of operations. If necessary, users can define
their own discrete subprobability distribution on the spot thanks to the shallow
embedding. Also remember that all the equation in this section are equalities
inside the logic. Hence, we can use them for rewriting in any context, not just
under a semantics interpretation as with a deep embedding.

2.3 Recursive Functions in the SPMF Monad

In this section, we consider the denotation of recursive functions in the spmf
monad. As usual in programming languages, we interpret a recursive specifica-
tion as the least fixpoint of the associated functional. In the case of spmf, the
approximation order v is given by p v q ↔ (∀x. p ! x ≤ q ! x) [5]. In this or-
der, every chain Y has a least upper bound (lub)

⊔
Y which is taken pointwise:⊔

Y !x = SUP { p !x. p ∈ Y } where SUP A denotes the supremum of a bounded
set A of real numbers. Thus, the approximation order is a chain-complete partial
order (ccpo) with least element ⊥ (see Prop. 1 below).

By Tarski’s fixpoint theorem, every monotone function f on a ccpo has a
least fixpoint fix f , which is obtained by the least upper bound of the transfinite
iteration of f starting at the least element. Therefore, we can define recursive
functions as the least fixpoint of the associated (monotone) functional.

Using Isabelle’s package for recursive monadic function definitions [34], we
hide the internal construction via fixpoints from the user and automate the
monotonicity proof. For example, the function bernoulli can be specified exactly
as shown in Fig. 2. The monotonicity proof succeeds as bindspmf is monotone in
both arguments. Namely, if p v q and f x v g x for all x, then bindspmf p f v



bindspmf q g. In contrast, try else is monotone only in the second argument,
but not in the first. For example, ⊥ v returnspmf 0, but try ⊥ else returnspmf 1 =
returnspmf 1 6v returnspmf 0 = try returnspmf 0 else returnspmf 1. Therefore, recursion
is always possible through bindspmf and else, but not in general through try.

Proposition 1. The approximation order v is a chain-complete partial order.

Proof. We have to show that v is a partial order and that
⊔
Y is well-defined

and the least upper bound for every chain Y , i.e., every set of spmfs all of whose
elements are comparable in v. The difficult part is to show that

⊔
Y is well-

defined. In particular, we must show that the support of
⊔
Y is countable even

if Y is uncountable. Then, it is not hard to see that
⊔
Y sums up to at most 1.

Clearly, we have setspmf (
⊔
Y ) =

⋃
p∈Y setspmf p. Yet, the union of an un-

countable sequence of increasing countable sets need not be countable in gen-
eral. In the following, we show that even for uncountable chains Y of spmfs, the
union of the supports remains countable. To that end, we identify a countable
sub-sequence of Y whose lub has the same support. The key idea is that for
v-comparable spmfs p and q, the order can be decided by looking only at the
assigned probability masses, namely, p v q iff ‖p‖ ≤ ‖q‖. So suppose without
loss of generality that Y does not contain a maximal element (otherwise, the lub
is the maximal element and we are done). The set of assigned probability masses
A = { ‖p‖. p ∈ Y } has a supemum r ≤ 1, as 1 bounds the set from above.
The closure of A contains the supremum r, so A must contain a countable in-
creasing sequence which converges to r. This sequence gives rise to a countable
sub-sequence Z of Y , for which we show (

⋃
p∈Y setspmf p) ⊆ (

⋃
q∈Z setspmf q). For

any p ∈ Y , there is a q ∈ Z such that ‖p‖ ≤ ‖q‖, as the assigned probability
masses in Z converge to r from below and p is not maximal. Hence, p v q as p
and q are related in v, and therefore setspmf p ⊆ setspmf q as setspmf is monotone.

The attentive reader might wonder why we need transfinite iteration for the
fixpoint despite having shown that uncountable chains can be reduced to count-
able ones for the purpose of lubs. Countable fixpoint iteration, which defines
the least fixpoint as

⊔
{ f i ⊥. i ∈ N }, does not suffice. (Here, function itera-

tion is defined by f0 = id and fn+1 = f ◦ fn.) The reason is that the chain
{ f i ⊥. i ∈ N } might stop before the least fixpoint is reached. Consider, e.g., the
monotone spmf transformer f :: unit spmf⇒ unit spmf given below.

f p ! x = if p ! x < 1
2 then 2·p!x+1

4 else 1

The countable iteration of f starting at ⊥ yields a sequence of spmfs which
assign to () the masses 0, 1/4, 3/8, 7/16, 15/32, . . . The least upper bound of this
sequence assigns 1/2 to (). That is, the iteration has not yet reached f ’s fixed
point, which assigns the mass 1 to (). This is because f is not (chain) continuous,
i.e., it does not preserve lubs.

Overall, arbitrary chains and transfinite iteration are superior to ordinary
fixpoint iteration in two ways. First, our fixpoint combinator can handle more
functions, i.e., we can accept more recursive specifications. Second, the proof
obligations that recursive specifications incur are simpler: monotonicity is usually
easier to show than continuity.



2.4 Lifting and Parametricity

Game playing proofs transform games step by step. In each step, we have to
bound the probability that the adversary can distinguish the original game from
the transformed one. For some transformations, the equational theory suffices
to prove the games equal—then, the probability is 0. Other transformations are
justified by cryptographic assumptions. To bound the probability in such cases,
our framework provides a relational logic for programs.

To that end, we first define an operation to lift relations over elementary
events to relations over spmfs. With this lifting operator, our primitive operations
are parametric. Then, we can derive the logic from parametricity.

Lifting The lifting operation relspmf transforms a binary relation R over elemen-
tary events into a relation over spmfs over these events. For lossless distributions,
a number of definitions have appeared in the literature. We generalise the one
from [30] as the relator associated with the natural transformation setspmf [45].
Formally, relspmf R relates the spmfs p :: α spmf and q :: β spmf iff there is an
spmf w :: (α × β) spmf such that (i) setspmf w ⊆ R, (ii) mapspmf π1 w = p, and
(iii) mapspmf π2 w = q, We call w a R-joint spmf of p and q.

This definition reformulates the one by Larsen and Skou [36] for lossless
spmfs. They consider w as a non-negative weight function on the relation such
that the marginals are the original distribution., i.e., w must satisfy (i) x R y
whenever w!(x, y) > 0, (ii)

∑
y w!(x, y) = p!x for all x, and (iii)

∑
x w!(x, y) = q!y

for all y, Using the functorial structure of spmfs, our definition expresses the same
conditions more abstractly without summations. In previous work [30], this led
to considerably shorter proofs.

Recently, Sack and Zhang [46] showed that if p and q are lossless, then

p (relspmf R) q iff ∀A. measure p A ≤ measure q { y. ∃x ∈ A. x R y, }

generalising Desharnais’ proof for the finite case [26]. In our formalisation, we
assume the “if” direction of the equivalence. We have not yet proved it formally,
as it relies on the max-flow min-cut theorem for countable networks [3], which
itself requires a substantial formalisation effort. Still, we formally derive the
following characterisation of relspmf R for arbitrary spmfs from this assumption.

Lemma 1 (Characterisation of relspmf).
The following are equivalent for all R, p, and q.

(a) p (relspmf R) q
(b) setspmf w ⊆ R and mapspmf π1 w = p and mapspmf π2 w = q for some w
(c) measure p A ≤ measure q { y. ∃x ∈ A. x R y } for all A and ‖p‖ ≥ ‖q‖

The relator enjoys a number of useful properties. For example, (i) it gener-
alises equality, namely relspmf (=) = (=), (ii) it distributes over relation compo-
sition, and (iii) it is monotone: p (relspmf R) q implies p (relspmf R

′) q if x R′ y
whenever x R y and x ∈ setspmf p and y ∈ setspmf q.



Parametricity The program logic describes the interaction between the spmf
operations and the relator. As it turns out, relational parametricity [44,50] helps
us to find the rules and prove them sound.2

Parametricity expresses that a polymorphic function does not inspect the
values of type variables, but works uniformly for all instances. Relational para-
metricity formalises this as follows. Types are interpreted as relations and type
constructors as relation transformers. A polymorphic function is (relationally)
parametric iff it is related to itself in its type’s relation where type variables are
interpreted as arbitrary relations. For spmfs, the relator relspmf is the appropriate
relation transformers. For example, parametricity for returnspmf :: α⇒ α spmf is
expressed as returnspmf (R Z⇒ relspmf R) returnspmf for all R :: (α × β) set. Here,
the relator R Z⇒ S for the function space relates two functions f and g iff they
transform relatedness in R into relatedness in S, i.e., x R y implies (f x) S (g y)
for all x and y.

Wadler [50] proved that all functions of the polymorphic lambda calculus are
parametric. He also demonstrated that adding polymorphic equality destroys
this property. Higher order logic has polymorphic equality (=) and description
operators, so not all HOL functions are parametric. Thus, parametricity is not
a free theorem in our setting; we have to prove it. For returnspmf, parametricity
follows directly from unfolding the definitions and taking returnspmf (x, y) as
the joint spmf for returnspmf x and returnspmf y for all x A y. For bindspmf, the
parametricity statement is

∀R R′. bindspmf (relspmf R Z⇒ (R Z⇒ relspmf R
′) Z⇒ relspmf R

′) bindspmf

The proof is similar to the one for returnspmf: after having unfolded the definitions,
we take bindspmf w h as the joint spmf for bindspmf p f and bindspmf q g where w
is the R-joint spmf for p and q and h (x, y) denotes the R′-joint spmf for f x
and g y for all x R y.

As function application preserves parametricity, any combination of para-
metric functions is parametric, too. For example, parametricity of mapspmf and
assert follows. Similarly, try else is parametric, too. Thus, this extends to
whole probabilistic programs, which we will exploit in §3.4. Such parametricity
proofs are highly automated in Isabelle [31,35].

For reasoning about probabilistic programs, we derive more conventional
rules by supplying some arguments. For example, we get the following rules for
the monad operations. Note that parametricity dictates the shape of the rules.

x R y

returnspmf x (relspmf R) returnspmf y

p (relspmf R) q ∀(x, y) ∈ R. f x (relspmf R
′) g y

bindspmf p f (relspmf R
′) bindspmf q g

2 As our embedding is shallow, we cannot define a deduction system in the logic.
Rather, we derive the rules directly from the semantics, i.e., show soundness. Com-
pleteness is therefore achieved dynamically: new rules can be derived if necessary, in
particular when a new operation is introduced.



However, not all functions are parametric. The function uniform A, e.g., is
not, because it relies on polymorphic equality: the cardinality of a set depends
on the equality of elements. In detail, the relator for relset R relates two sets A
and B iff R relates each element of A with one in B and vice versa; formally,
∀x ∈ A. ∃y ∈ B. x R y and ∀y ∈ B. ∃x ∈ A. x R y. Now,

uniform (relset R Z⇒ relspmf R) uniform (3)

holds if (and only if) the relation R respects equality, i.e., (=) (R Z⇒ R Z⇒ relbool)
(=) holds, where relbool is the identity relation on Booleans (type bool). Interest-
ingly, this restricted parametricity property is equivalent to optimistic sampling
in cryptographic proofs. Namely, if f is injective on A, then

mapspmf f (uniform A) = uniform (f ‘A) (4)

where f ‘A denotes the image of A under f . This is one example of Wadler’s free
theorems [50] in our context. If we specialise A to bitstrings of a given length and
f to the bitwise exclusive or (xor) with a fixed bitstring, we obtain the well-known
one-time-pad lemma: mapspmf (xor s) (uniform { 0, 1 }n) = uniform { 0, 1 }n where
s is a bitstring of length n and { 0, 1 }n denotes the set of all bitstrings of length n.

Parametricity also connects the relator with probabilities of events. Recall
that measure p A denotes the probability of event A under the spmf p. The rule

p (relspmf R) q A (relpred R) B

measure p A = measure q B

follows directly from parametricity of measure, namely

measure (relspmf R Z⇒ relpred R Z⇒ relreal) measure

Here, the relator relpred treats sets as predicates, i.e., relpred R A B iff x ∈ A ↔
y ∈ B for all x R y, and relreal is the identity relation on real numbers.

For example, this rule plays an important role in Bellare’s and Rogaway’s
fundamental lemma [16]. Lacking syntax, we cannot express their syntactic con-
dition in HOL. Borrowing ideas from EasyCrypt [13], we instead rephrase the
condition in terms of the relator.

Lemma 2 (Fundamental lemma [13,16]). Let A, F1 and B, F2 be events of
two spmfs p and q, respectively, such that

p (relspmf { (a, b). a ∈ F1 ↔ b ∈ F2 ∧ (b /∈ F2 −→ a ∈A↔ b ∈B) }) q.

Then, the probability difference between A occurring in p and B in q is bounded
by the probability of F1 in p, which equals F2’s in q.

|measure p A−measure q B| ≤ measure p F1 = measure q F2

Optimistic sampling and the fundamental lemma have illustrated how cryp-
tographic arguments follow from parametricity. But parametricity offers yet an-
other point of view. Mitchell [40] uses parametricity to express representation
independence, i.e., one can change the representation of data without affecting
the overall result. In §3.4, we will exploit representation independence in the
bridging steps of the game transformations.



The Fixpoint Combinator We have not yet covered one important building block
of our probabilistic language in our analysis: the fixpoint combinator on spmfs.
It turns out that it preserves parametricity.3

Theorem 1 (Parametricity of spmf fixpoints).
If f :: α spmf⇒ α spmf and g :: β spmf⇒ β spmf are monotone w.r.t. v and
f (relspmf R Z⇒ relspmf R) g, then fix f (relspmf R) fix g.

To avoid higher-kinded types, the theorem generalises parametricity to the pres-
ervation of relatedness. In the typical use case, f and g are instances of the same
polymorphic function.

We prove Thm. 1 by parallel induction on the two fixpoints. Both inductive
cases are trivial. The base case requires relspmf R to be strict, i.e., it relates the
least elements, which holds trivially. The step case is precisely the relatedness
condition of f and g which the theorem assumes. The hard part consists of
showing that parallel induction is a valid proof principle. To that end, we must
show that relspmf R is admissible. A relation R :: (α× β) set is admissible w.r.t.
two ccpos iff for any chain Y ⊆ R of pairs in the product ccpo (the ordering is
component-wise), R relates the component-wise lubs of Y .

Proposition 2. relspmf is admissible.

Proof. We exploit the characterisation of relspmf in terms of measure. We must
show (

⊔
(π1 ‘ Y )) (relspmf R) (

⊔
(π2 ‘ Y )) for all chains Y of pairs in relspmf R.

By the characterisation (Lem. 1), this holds by the following reasoning. The first
and last step exploit that the lub commutes with measure, and the inequality
follows from monotonicity of SUP and the characterisation of relspmf for elements
of the chain.

measure (
⊔

(π1 ‘ Y )) A = SUP (p, ) ∈ Y. measure p A
≤ SUP ( , q) ∈ Y. measure q { y. ∃x ∈ A. x R y }
= measure (

⊔
(π2 ‘ Y )) { y. ∃x ∈ A. x R y }

Note that it is not clear how to prove admissibility via the characterisation
in terms of joint spmfs. The issue is that the joint spmfs for the pairs in the
chain need not form a chain themselves. So we cannot construct the joint spmf
for the lubs as the lub of the joint spmfs.

Admissibility of relators is preserved by the function space (ordered point-
wise) and products (ordered component-wise). Thus, analogues to Thm. 1 hold
for fixpoints over ⇒ α spmf, α spmf × β spmf, etc. They are useful to show
parametricity of (mutually) recursive probabilistic functions (§3.3) rather than
recursively defined spmfs.

3 Wadler showed that if all types are ω-ccpos, all functions are continuous and all
relations are admissible and strict, then the fixpoint operator (defined by countable
iteration) is parametric [50]. We do not consider the fixpoint operator as part of the
language itself, but as a definition principle for recursive user-specified functions.
That is, we assume that fix is always applied to a (monotone) function. Consequently,
preservation of parametricity suffices and we do not need Wadler’s restrictions of the
semantic domains. Instead, monotonicity (instead of continuity, see the discussion
in §2.3) is expressed as a precondition on the given functions.



2.5 Security of Elgamal Encryption

We are now ready to prove Elgamal encryption (§2.1) IND-CPA secure under
the decisional Diffie-Hellman (DDH) assumption. The security theorem bounds
the IND-CPA advantage by the DDH advantage. For Elgamal, we prove

adv-ind-cpa A = adv-ddh (elgamal A)

where the reduction elgamal transforms an IND-CPA adversary into a DDH
adversary as shown in Fig. 3.

elgamal (A1,A2) α β γ = try do {
b← coin;
((m0,m1), σ)← A1 α;
assert (valid-plain m0 ∧ valid-plain m1);
let m = if b then m0 else m1;
b′ ← A2 (β, γ ⊗m) σ;
returnspmf (b = b′)
} else coin

Fig. 3: Reduction for Elgamal encryption

The proof consists of two steps.
First, observe that ddh0 (elgamal A)
= ind-cpa A, because after the defini-
tions have been unfolded, both sides
are the same except for associativity
and commutativity of bindspmf and the
group law (gˆx)ˆy = gˆ(x ·y). Second,
we show that ddh1 (elgamal A) = coin.
Note that the message m is indepen-
dent of γ, which is sampled uniformly.
Multiplication with a fixed group element m is a bijection on the carrier. By (4),
we can omit the multiplication and the guess b′ becomes independent of b. Hence,
the adversary has to guess a random bit, which is equivalent to flipping a coin.

Formally, the second proof is broken up into three step. First, we rewrite the
game using the identities about bindspmf, try, and mapspmf such that we can apply
(4) on the multiplication. Second, we rewrite the resulting game such that we can
apply (4) once more on the equality test. Finally, we show that the irrelevant as-
signments cancel out. This holds even if the adversary is not lossless thanks to the
surrounding try else coin. Thus, our statement does not need any technical side
condition like losslessness of the adversary in CertiCrypt [14] and EasyCrypt [13].

Modules Note that the definition of IND-CPA security does not depend on the
Elgamal encryption scheme. In the formalisation, we abstract over the encryption
scheme using Isabelle’s module system [11]. Like an ML-style functor, the IND-
CPA module takes an encryption scheme and specialises the definitions of game
and advantage and the proven theorems to the scheme. Similarly, the DDH
assumption has its own module which takes the group as argument. This allows
to reuse security definitions and cryptographic algorithms in different contexts.
For Elgamal, we import the DDH module for the given group and the IND-CPA
module for the Elgamal encryption scheme.

3 Adversaries with Oracle Access

In many security games, the adversary is granted black-box access to oracles. An
oracle is a probabilistic function which maintains mutable state across different
invocations, but the adversary must not get access to this state. In this section,
we propose a new semantic domain for probabilistic functions with oracle access
(§3.2). Like in §2.4, we derive reasoning rules from parametricity and explore the



aenc α m = do {
y ← uniform { 0 ..< |G| };
h← call (αˆy);
returngpv (xor h m) }

(a) Hashed Elgamal encryption

record X x = do {
y ← call x;
returngpv (y, insert x X) }

(b) Recorder for oracle calls

ind-cpa (A1,A2) = try do {
(pk, sk)← key-gen;
b← sample coin;
((m0,m1), σ)← A1 pk
assert (valid-plain m0 ∧ valid-plain m1);
c∗ ← aenc pk (if b then m0 else m1);
b′ ← A2 c

∗ σ;
returngpv (b = b′)
} else sample coin

(c) IND-CPA security game with oracle access

Fig. 4: Example programs in the gpv monad

connection to bisimulations (§3.3). We motivate and illustrate the key features by
formalising a hashed version of Elgamal encryption (HEG) in the random oracle
model (ROM) [15] (§3.1) and verifying its security under the computational
Diffie-Hellman (CDH) assumption (§3.4).

3.1 Example: Hashed Elgamal Encryption

Elgamal’s encryption scheme from §2.1 requires messages to be group elements,
but often bitstrings of a given length are more convenient. Therefore, we consider
a version of Elgamal encryption where a hash functionH converts group elements
into bitstring [48]. We model the hash function as a random oracle, which acts
like a random function. In detail, we replace the multiplication with the group
element α ˆ y in Fig. 1a with the xor of its hash h; Fig. 4a shows the resulting
encryption algorithm. The encryption algorithm obtains the hash by calling the
oracle with a random group element.

In §3.4, we prove that HEG is IND-CPA secure under the computational
Diffie Hellman (CDH) assumption. For now, we explain how the formalisation
changes. Figure 4c shows the new game for chosen plaintext attacks where the
key generation algorithm, the encryption function and the adversary have access
to an oracle. In comparison to Fig. 1c, the monad has changed: the game uses
the new monad of generative probabilistic values (gpv) rather than spmf; see
§3.2 for details. Accordingly, the coin flips coin are embedded with the monad
homomorphism sample.

In one step of the security proof, we will have to keep track of the calls that
the adversary has made. This is achieved by using the oracle transformation
record in Fig. 4b. It forwards all calls x and records them in its local state X.

As before, all these definitions live in different modules that abstract over
the encryption scheme, group, and oracle. In fact, the programs in Fig. 4 are
completely independent of the concrete oracle. We compose the game with the
oracle only when we define the advantage. Thus, it now depends on an oracle O
with initial state s: adv-ind-cpa O s A = |run O (ind-cpa A) s ! True− 1/2|. Here,
run binds the oracle calls in ind-cpa A to the oracle O. It thus reduces a program
with oracle access to one without, i.e., a spmf.



3.2 Generative Probabilistic Values

The example from the previous section determines a wish list of features for
the language of probabilistic programs with oracle access: assertions and fail-
ure handling, calls to unspecified oracles, embedding of probabilistic programs
without oracle access, and composition operators. In this section, we propose
a semantic domain for probabilistic computations with oracle access and show
how to express the above features in this domain.

We start by discussing why spmfs do not suffice. In our probabilistic language
of spmfs, we can model an oracle as a function of type σ⇒ α⇒ (β × σ) spmf,
which takes a state and the arguments of the call and returns a subprobability
distribution over the output and the new state. Unfortunately, we cannot model
the adversary as a probabilistic program parametrised over the oracle and its
initial state. Suppose we do. Then, its type has the shape (σ⇒α⇒(β×σ) spmf)⇒
σ⇒ spmf. To hide the oracle state from the adversary despite passing it as an
argument, we could require that the adversary be parametric in σ. This expresses
that the adversary behaves uniformly for all states, so it cannot inspect the state.
Yet, we must also ensure that the adversary uses the state only linearly, i.e., it
does not call the oracle twice with the same state. As we are not aware of a
semantic characterisation of linearity, we cannot model the adversary like this.

Instead, we explicitly model the interactions between the adversary and the
oracle. To that end, we propose the following algebraic codatatype of generative
probabilistic values (gpv):4

codatatype (α, γ, ρ) gpv = GPV (α+ γ × (α, γ, ρ) rpv)) spmf
type-synonym (α, γ, ρ) rpv = ρ⇒ (α, γ, ρ) gpv

Conceptually, a gpv is a probabilistic system in which each state chooses proba-
bilistically between failing, terminating with a result of type α, and continuing by
producing an output γ and transitioning into a reactive probabilistic value (rpv),
which waits for a non-deterministic response of the environment (e.g., the oracle)
of type ρ. Upon reception, the rpv transitions to the generative successor state.

As we are interested in a shallow embedding, the type gpv only models the
observations (termination with result or failure and interaction with the envi-
ronment) of the system rather than the whole system with the states. This yields
a richer equational theory, i.e., we can prove more properties by rewriting with-
out resorting to bisimulation arguments. Any probabilistic system with explicit
states can be transformed into a gpv by identifying bisimilar states. The coitera-
tor coitergpv :: (σ⇒(α+γ×(ρ⇒σ)) spmf)⇒σ⇒(α, γ, ρ) gpv formalises this: given
a probabilistic system and an initial state, it constructs the corresponding gpv.

Basic operations The basic operations for gpv are the monadic functions returngpv

and bindgpv, calling an oracle call, sampling sample, exceptional termination fail
(from which we derive assertions assert) and failure handling try else . They

4 Note that gpv is not the greatest fixpoint of a polynomial functor, as the recursion
goes through the non-polynomial functor spmf. Still, the type is well-defined, as spmf
is a bounded natural functor [30] which Isabelle’s codatatype package supports [22].



returngpv x = GPV (returnspmf (Pure x))
call o = GPV (returnspmf (IO o returngpv))
sample p = GPV (mapspmf Pure p)
fail = GPV ⊥
assert b = if b then returngpv () else fail

bindgpv (GPV p) f = GPV (do {
x← p;
case x of Pure y ⇒ un-GPV (f y)
| IO c r ⇒ returnspmf

(IO c (λw. bindgpv (r w) f)) })
try GPV p else v =

GPV (try mapspmf (map+ id (map× id (λr x. try (r x) else v))) p else un-GPV v)

Fig. 5: Primitive operations for gpvs

can be implemented as shown in Fig. 5, where Pure = Inl and IO o r = Inr (o, r)
and id is the identity and un-GPV the inverse of GPV. Note that bindspmf and
try else can be defined by primitive corecursion.

The operations behave as expected. In particular, returngpv and bindgpv satisfy
the monad laws, fail propagates, and sample is a monad homomorphism.

bindgpv fail f = fail sample (returnspmf x) = returngpv x sample ⊥ = fail

sample (do {x← p; f x }) = do { x← sample p; sample (f x) }
sample (assert b) = assert b sample (try p else q) = try sample p else sample q

The resulting equational theory is rich again, but not as rich as for spmfs. Com-
mutativity (1) and cancellation (2), e.g, do not carry over to bindgpv in general.

Composition operators Two gpvs can be composed such that one (the callee)
processes all the calls of the other (the caller). Thereby, the callee may issue
further calls. In games, composition is mainly used to intercept and redirect the
oracle calls of the adversary, i.e., the callee is an oracle transformation like record.
Syntactically, composition corresponds to inlining the callee into the caller. If
programs were modelled syntactically, implementing inlining would be trivial;
but with a shallow approach, we cannot rely on syntax.

v c
a1 u1

w1

u2

w2b1

a2

b2x

in
lin

e
c
v

Instead, we define inlining by a combination of recursion
and corecursion as shown in Fig. 6. The sequence diagram on
the right illustrates what is happening in an example. The
caller v issues calls of type γ which return values of type ρ.
The callee c is a function from γ to a gpv which may issue
further calls of type γ′ which return values of type ρ′. The
callee maintains its own state of type σ between invocations.
Therefore, like oracles, the callee additionally takes a state as
argument and the results of the gpv are the return values and the new states.
The function inline first calls the auxiliary function search, which searches for
the first call issued by the callee during a call by the caller. If search finds none,
it returns the result x of the caller and the updated state s′ of the callee. Then,
inline terminates with the same outcome. Otherwise, inline issues the call u and
forwards the return value w to the rpv r′ of the callee, which may issue further
calls (u2 in the diagram). The result b of the callee is then fed to the rpv r of
the caller and inline corecurses with the updated state s′ of the callee.



inline :: (σ⇒ γ⇒ (ρ× σ, γ′, ρ′) gpv)
⇒ (α, γ, ρ) gpv⇒ σ
⇒ (α× σ, γ′, ρ′) gpv

inline c v s = GPV (do {
z ← search c v s
case z of Inl (x, s′)⇒ Pure (x, s′)
| Inr (u, r′, r)⇒

IO u (λw. do {
(b, s′)← r′ w;
inline c (r b) s′ } })

search :: (σ⇒ γ⇒ (ρ× σ, γ′, ρ′) gpv)
⇒ (α, γ, ρ) gpv⇒ σ
⇒ (α× σ +

γ′ × (ρ× σ, γ′, ρ′) rpv× (α, γ, ρ) rpv) spmf

search c v s = do {
z ← un-GPV v;
case z of Pure x⇒ returnspmf (Inl (x, s))
| IO a r ⇒ do {
y ← un-GPV (c s a);
case y of Pure (b, s′)⇒ search c (r b) s′

| IO u r′ ⇒ returnspmf (Inr (u, r′, r)) } }

Fig. 6: Composition operator for gpvs

The function search recursively goes through the interactions between the
caller and the callee. If the caller terminates with result x, there are no calls
and the search terminates. Otherwise, the caller issues a call a and becomes the
rpv r. In that case, search analyses the callee under the argument a. If the callee
returns b without issuing a call itself, the search continues recursively on r b.
Otherwise, the first call is found and the search terminates.

Note that search operates in the spmf monad. So, it can be defined using the
fixpoint operator on spmf (§2.3). Conversely, inline operates in the gpv monad.
So, corecursion is the appropriate definition principle. Accordingly, we prove
properties about search by fixpoint induction and about inline by coinduction.
For example, we show that inline is a monad homomorphism. It is also associative
(we omit reassociations of tuples for clarity; f ◦◦g denotes λ(x, y) z. f (g x z) y):

inline c1 (inline c2 v s2) s1 = inline (inline c1 ◦◦ c2) v (s2, s1)

If the callee is an oracle O, i.e., an spmf rather than a gpv, it cannot issue
further calls. Thus, search O always returns a result of the form Inl (x, s′), i.e.,
the corecursion in inline is not needed. Therefore, we define the execution of a
gpv v with O as follows (where projl is the left inverse to Inl).

exec :: (σ⇒ γ⇒ ρ× σ spmf)⇒ (α, γ, ρ) gpv⇒ σ⇒ (α× σ) spmf
exec O v s = mapspmf projl (search (λs x. sample (O s x)) v s)

When O’s final state does not matter, we use run c v s = mapspmf π1 (exec c v s).

A T O′
inline T A

exec O′ ◦◦ T

Fig. 7: Associativity of
composition illustrated

Reductions are the primary use case for composition.
They transform the adversary A for one game into an
adversary for another game. In general, the oracles of the
two games differ. So, the reduction emulates the origi-
nal oracle O using an oracle transformation T , which
has access to the new oracle O′. In this view, the new
adversary is built from the composition inline T A and
the cryptographic assumption executes it with access to
O′. By associativity of composition (see Fig. 7), this is equivalent to executing
the original adversary A with access to the emulated oracle exec O′ ◦◦ T . Thus,
it suffices to establish that the emulation exec O′ ◦◦ T of O is good enough.



3.3 Parametricity and Bisimulation

Our framework provides a set of rules (a logic) for reasoning about the rela-
tion between games with oracles. This logic complements the equational theory
derived from the shallow embedding. Like for spmf, parametricity guides us in
choosing the rules and proving them sound. As the first step, we therefore define
a relator relgpv for gpvs. As gpvs form a codatatype, the canonical definition is
as a coinductive relation, namely the one specified by (5).5

un-GPV v (relspmf (rel+ A (rel× C ((=) Z⇒ relgpv A C)))) un-GPV v′

v (relgpv A C) v′
================================================================ (5)

Canonicity ensures parametricity of the coiterator coitergpv, the constructor GPV,
and the selector un-GPV. For coitergpv, e.g., we obtain that for all S, A, and C,

coitergpv ((S Z⇒ relspmf (rel+ A (rel× C ((=) Z⇒ S)))) Z⇒ S Z⇒ relgpv A C) coitergpv

Consequently, all the primitive operations in Fig. 5 are parametric, too. As the
fixpoint operator preserves parametricity (Thm. 1), search is also parametric.
And so are inline and exec and run. Thus, parametricity links relgpv with all the
gpv operations.

Similar to spmfs (§2.4), this link leads to rules for reasoning about game
transformations. We do not go into the details here. Instead, we consider the
example of replacing an oracle with a bisimilar one as formalised by (6). This
rule follows from the parametricity of run by unfolding the definitions.6 The
premises express that S is a bisimulation relation between the oracles O1 and
O2 and relates their initial states. Bisimulation means that whenever two states
s1 and s2 are related and the oracles are called with c, then they return the
same value and the states are related again. The “then” part is expressed by
the relation rel× (=) S which relspmf lifts to subprobability distributions. The
second premise states that S relates the initial states. In the conclusion, we get
that running a gpv v (e.g., the adversary) with two bisimilar oracles produces
the same outcomes.

∀s1 s2 c. s1 S s2 −→ O1 s1 c (relspmf (rel× (=) S)) O2 s2 c s1 S s2

run O1 v s1 = run O2 v s2
(6)

5 The type constructor gpv takes three type arguments, so we should expect relgpv to
take three relations, too. However, the third argument occurs in a negative position
in the codatatype definition. Therefore, the relator does not enjoy useful properties
such as monotonicity and distributivity over relation composition. Consequently,
Isabelle’s infrastructure for parametricity treats these arguments as fixed (dead in
the terminology of [22]). So, relgpv takes only relations for the first two arguments
and fixes the third to the identity relation (=) as can be seen in (5). In practice, we
have not found this specialisation to be restrictive.

6 In fact, parametricity actually yields a rule stronger than (6), namely the gpv v need
not be the same on both sides. If v1 (relgpv A (=)) v2 and the premises of (6) hold,
then run O1 v1 s1 (relspmf A) run O2 v2 s2.



lcdh A = do {
x← uniform { 0 ..< |G| };
y ← uniform { 0 ..< |G| };
Z ← A (g ˆx) (g ˆy);
returnspmf (g ˆ (x · y) ∈ Z) }

Fig. 8: Computational Diffie-Hellman game

hash-O sO x =
case sO x of None⇒ do {
bs← uniform { 0, 1 }n;
returnspmf (bs, sO(x 7→ bs)) }

| Some bs⇒ returnspmf (bs, sO)

Fig. 9: Random hash oracle

In fact, the derivation may be seen as an instance of representation indepen-
dence [40,44]. By design, the gpv has only black-box access to the oracle, i.e.,
they interface only via calls and returns. Thus, the first premise expresses exactly
the requirement of representation independence: a relation S that is preserved
by all operations of the interface. In Isabelle [31], so-called transfer rules express
preservation in point-free style; here, O1 (S Z⇒ (=) Z⇒ relspmf (rel× (=) S)) O2.
The HEG example exploits this idea in two game transformations (§3.4).

There are also limits to what we can derive from parametricity. For example,
consider the case where only one of the oracles enters an error state, say because
the adversary has guessed a secret. Then, the adversary can distinguish be-
tween the oracles and behave differently, i.e., it is not related by relgpv any more.
Therefore, we would need a notion of bisimulation up to error, but relational
parametricity cannot express this. Thus, we prove the Lem. 3 directly.

Lemma 3 (Oracle bisimulation up to error states). Let S be a relation
between the states of two oracles O1 and O2 and let F1 and F2 be the sets of
error states. Define the relation R by (x, s1) R (y, s2) iff s1 ∈ F1 ↔ s2 ∈ F2 and
if s2 /∈ F2 then x = y and s1 S s2. Then exec O1 v s1 (relspmf R) exec O2 v s2 if

– O1 (S Z⇒ (=) Z⇒ relspmf R) O2, and
– s1 S s2 and s1 ∈ F1 ↔ s2 ∈ F2, and
– O1 and O2 are lossless in error states and error states are never left, and
– v issues finitely many calls and never fails, i.e., all spmfs in v are lossless.

3.4 Security of Hashed Elgamal Encryption

Now, we illustrate how our framework supports proofs about games with oracles
by reducing the IND-CPA security of Hashed Elgamal encryption to the com-
putational Diffie-Hellman (CDH) assumption. The CDH assumption states that
it is hard to compute g ˆ (x · y) given g ˆ x and g ˆ y. For comparison with the
existing proofs in Certicrypt [14] and EasyCrypt [13] (§4), we reduce the security
to the set version LCDH of CDH, where the adversary may return a finite set of
candidates for gˆ(x · y). The reduction from LCDH to CDH is straightforward.

LCDH is formalised as follows. The LCDH adversary A is a probabilistic
function from two group elements to a set of group elements. Its advantage
adv-lcdh A is the probability of True in the security game lcdh shown in Fig. 8.

In the random oracle model [15], hash functions are idealised as random
functions. The random oracle hash-O shown in Fig. 9 implements such a ran-
dom function. Its state sO is a map from group elements (inputs) to bitstrings



(outputs), which associates previous queries with the outputs. Upon each call,
the oracle looks up the input x in the map sO and returns the corresponding
output if found. If not, it returns a fresh bitstring bs of length n and updates
the map sO to associate x with bs.

The security of HEG is shown by a sequence of game transformations. They
closely follow [13], so we do not present them in detail here. Instead, we focus
on some steps to highlight the use of parametricity, equational reasoning, and
the program logic. In the following, we assume a fixed IND-CPA adversary A =
(A1,A2) which makes only finitely many calls and does not fail. This technical
restriction is necessary to apply Lem. 3.

The first step changes the game such that it records the adversary’s queries
to the hash oracle using the oracle transformation record from Fig. 4b. So the
first game game1 is the same as ind-cpa from Fig. 4c except that the calls to
the adversary are replaced by (((m0,m1), σ), X)← inline record (A1 pk) {} and
(b′, X ′)← inline record (A2 c

∗ σ)X. The equality ind-cpaA = game1 follows from
parametricity and bisimilarity of record and the identity oracle transformation
ID = λσ x. do { y ← call x; returngpv (y, σ) } due to representation independence,
and the fact that ID is the identity for gpv composition. The bisimulation relation
S = { (σ,X). True } identifies all states. The equality is proven automatically by
Isabelle’s prover for representation independence [31] using the transfer rules
() S {} and ID (S Z⇒ (=) Z⇒ relspmf (rel× (=) S)) record and equational rewrit-
ing. In fact, the latter rule is another instance of representation independence,
as the two oracle transformations differ only in the update of the local state.
The transfer rule (λ s. s) ((=) Z⇒ S Z⇒ S) insert formalises the connection. The
parametricity prover derives the transfer rule for the oracles from this.

In the second step, we push the oracle transformation into the oracle exploit-
ing associativity (cf. Fig. 7) and distribute the outermost run to the calls of the
adversary. This changes the monad from gpv to spmf, in which bindspmf commutes
(1). Additionally, the new game game2 returns a second boolean to flag whether
the adversary caused a call to the hash oracle with the group element gˆ(x·y). By
equational reasoning only, we prove that run hash-O game1 ∅ = mapspmf π1 game2
where the hash oracle starts in the initial state ∅.

hElgamal (A1,A2) α β = do {
(((m0,m1), σ), s)← exec hash-O (A1 α) ∅;
try do {

assert (valid-plain m0 ∧ valid-plain m1);
h← uniform { 0, 1 }n;
(b′, s′)← exec hash-O (A2 (β, h) σ) s;
returnspmf (dom s′)
} else returnspmf (dom s) }

Fig. 10: Reduction for Hashed Elgamal

The third transformation re-
places the hash for the challenge
ciphertext with a random bitstring
which is not recorded in the hash
oracle’s map. By the fundamental
lemma, the difference in the suc-
cess probabilities is bounded by
the error event, which is in this
case the flag introduced in game2.
The assumption of the fundamen-
tal lemma is proven using the rules of the program logic. In particular, we apply
Lem. 3 on the call to A2, as the oracles are not bisimilar if any of the remaining
queries calls the hash function on g ˆ (x · y).



We do not go into the details of the remainder of the proof, as it applies the
same techniques as before. The one time pad lemma is used to make the challenge
ciphertext independent of the challenge bit b similar to optimistic sampling in
§2.5. As the set of queries now is just the domain of the map of the hash oracle,
we replace exec hash-O◦◦ record with hash-O using representation independence.
Finally, we show by equational reasoning that the first boolean of the game is just
a coin flip and the second corresponds to the LCDH game for the transformed
adversary hElgamal A (see Fig. 10).7 In summary, we obtain

adv-ind-cpa hash-O ∅ A ≤ adv-lcdh (hElgamal A)

4 Comparison with Existing Frameworks

In this section, we compare our framework with the existing tools CertiCrypt
[14], EasyCrypt [13], FCF [42], and Verypto [8] in four respects: readability,
expressiveness, the trusted codebase, and the formalisation effort.

Readability is important for two reasons. First, security definitions should re-
semble those in the cryptographic literature such that cryptographers are able
to understand and evaluate them. Second, intuitive syntax supports the users
during the formalisation, as they can focus on formalising the arguments rather
than trying to understand hardly readable programs. All frameworks achieve
good readability, but in different ways. CertiCrypt and EasyCrypt embed an
imperative procedural language in their logics. They closely model Bellare’s and
Rogaway’s idea of a stateful language with oracles as procedures [16]. Verypto
deeply embeds a higher order language with mutable references based on de
Bruijn indices in HOL. Readability is regained by reflecting the syntax in HOL’s
term language using parsing and pretty-printing tricks. In contrast, FCF and
our framework shallowly embed a functional language with monadic sequencing
in Coq and Isabelle/HOL, respectively. Like in Shoup’s treatment [48], the state
of the adversary and the oracles must be passed explicitly. This improves clarity
as it makes explicit which party can access which parts of the state. Conversely,
it can also be a source for errors, as it is the user who must ensure that the
states be used linearly.

Expressiveness has two dimensions. First, the syntax and the semantic domain
determine the expressiveness of the language. CertiCrypt and EasyCrypt sup-
port discrete subprobability distributions and a procedural while language, but
no fixpoint operator, although fixpoints could be defined in CertiCrypt’s seman-
tic domain similar to our work (§2.3 and Thm. 1). Fixpoints do not increase
the expressiveness over a while combinator, but lead to more natural formula-
tions of programs. EasyCrypt additionally provides a module system to support
abstraction and reuse. Verypto is the most general framework, as it builds on

7 The oracle transformation in this reduction is degenerate, as hElgamal emulates the
oracle without access to further oracles. Thus, we use exec directly instead of inline.



measure theory and therefore supports continuous distributions and higher or-
der functions—at the price of incurring measurability proof obligations. FCF’s
semantics allows only probability distributions with finite support, so no fix-
point operator can be defined. The syntax further restricts probabilistic effects
to random sampling of bitstrings and conditional probabilities. For programs
with oracle access, FCF provides equivalents to our operations call, sample, and
inline. Further effectful operators (such as try else cannot be added by the
user, but require changes to the language formalisation itself. Conversely, FCF’s
deterministic pure sublanguage includes all functions and types from the library
of the proof assistant thanks to the shallow embedding. Abstraction and reuse
come from Coq’s module system. Like FCF, our framework is integrated with
the libraries and facilities of the proof assistant. It extends this advantage to
probabilistic programs with oracle access, as we define also these languages di-
rectly in the semantic domain. Thus, users can define new control structures on
the spot, if needed. It supports discrete subprobabilities similar to CertiCrypt
and EasyCrypt and in addition features a fixpoint operator.

Second, the embedding and the logic determine what kind of security proper-
ties can be formalised. All frameworks support concrete security proofs. Thanks
to the deep embedding, CertiCrypt and Verypto also support statements about
efficiency and thus asymptotic security statements, which is impossible in Easy-
Crypt and ours, because HOL functions are extensional. FCF comes with an
axiomatic cost model for efficiency, which is not formally connected to an op-
erational model. This is possible despite the shallow embedding as long as ex-
tensionality is not assumed. In these three frameworks, asymptotic bounds are
derived from concrete bounds. So no work is saved by reasoning asymptotically.

The trusted code base influences the trustworthiness of a mechanised proof and
should be as small as possible. Proof assistants like Coq and Isabelle consist of
a small kernel and can additionally produce proof terms or proof objects that
an independent checker can certify. Consequently, CertiCrypt, FCF, and our
framework achieve high ranks there. Verypto falls behind because its measure
theory is only axiomatized rather than constructed definitionally. EasyCrypt
does not have a small kernel, so the whole implementation in OCaml and the
external SMT solvers must be trusted.

The formalisation effort determines the usability of a framework. For this com-
parison, we estimate the effort by the proof length measured in line counts.
Clearly, proof styles affect line counts, so the numbers must be taken with a
grain of salt. Nevertheless, they roughly indicate the effort required to produce
such proofs. Table 1 lists the length (in lines) of the security statement for
different cryptographic algorithms and frameworks. The line count includes the
statement of the concrete security theorem, its proof, and all intermediate games.
It does not cover the cryptographic algorithm itself nor the security definition.
We obtained the numbers by inspecting the proof scripts distributed with the
frameworks. Unfortunately, there are no line counts for Verypto because we could
not get access to the sources.



Encryption Framework

algorithm ours CertiCrypt EasyCrypta FCFb

Elgamal in the standard model (§2.1) 52 238 58 156
Hashed Elgamal in the ROM (§3.1) 236 810 210
Pseudo-random function [42] 352 1166

a Version 27a6617 on github.com/EasyCrypt/easycrypt.git, 4 Jan 2016
b Version a445b73 on github.com/adampetcher/fcf, 13 Dec 2015

Table 1: Framework comparison by line counts of concrete security theorems

As Petcher and Morrisett have already observed [43], shallow embeddings
(FCF, ours) have an advantage over deep ones (CertiCrypt, Verypto), as all
the reasoning infrastructure and libraries of the proof assistant can be reused
directly; a deep embedding would need to encode the libraries in the syntax
of the language. Despite being more general, our framework leads to shorter
proofs than FCF. We see two reasons for this gap. First, our language works
directly in the semantic domain, even for effectful programs. This gives a richer
equational theory and all conversions between syntax and semantics become
superfluous. For example, their rule for loop fission holds only in the relational
logic, but it is a HOL equality in our model. Second, Isabelle’s built-in proof
automation, in particularly conditional rewriting, provides a reasonable level
of automation, especially for the equational proofs mentioned above. So far,
we have not yet implemented any problem-specific proof tactics. Such tactics
could automate the proofs even more, especially the manual reasoning with
commutativity of sequencing. In comparison to EasyCrypt, the state of the art
in proof automation, we achieve a similar degree of automation.

5 Further Related Work

In §4, we have already compared our framework with the existing ones for mech-
anising game playing proofs. In this section, we review further related work.

The tool CryptoVerif by Blanchet [20] can prove secrecy and correspondence
properties such as authentication of security protocols. As it can even discover
intermediate games itself, the tool achieves a much higher degree of automation
than any of the frameworks including ours. The language—a process calculus
inspired by the π calculus—distinguishes between a unique output process and
possibly many input processes, which communicate via channels. Our gpvs also
distinguish between inputs and outputs, but composition works differently. In
CryptoVerif, several input processes may be able to receive an output and the
semantics picks one uniformly randomly. In our setting, the callee represents all
input processes and receives all calls. In principle, one could embed Blanchet’s
calculus in our semantic domain of gpvs using a different composition operator.
Then, CryptoVerif’s abstractions could be proven sound in our framework.

The functional programming language F∗ [17,49] has been used to verify
implementations of cryptographic algorithms and protocols [12]. Security prop-

https://github.com/EasyCrypt/easycrypt.git
https://github.com/adampetcher/fcf


erties are formulated as type safety of an annotated, dependently-typed program
and the type checker ensures type safety. While this approach scales to larger
applications [18], the security properties cannot be stated concisely as the typing
assertions are scattered over the whole implementation.

Affeldt et al. [2] formalise pmfs in Coq and apply this to coding theory.
Audebaud and Paulin-Mohring [5] formalised the spmf monad in Coq. They

also define the approximation order v on spmfs and show that it forms an ω-com-
plete partial order, i.e., countable chains have least upper bounds. Using Kleene’s
fixpoint theorem, they obtain a fixpoint operator for continuous functions. We
generalise their result in that arbitrary spmf chains have least upper bounds.
Thus, monotonicity (rather than continuity) suffices for the fixpoints.

CertiCrypt [14] uses their monad as the semantic domain for programs and
adds the lifting operator relspmf. Zanella Béguelin proves a special case of Thm. 1,
where the functions f and g are projections of a joint continuous function [51].

Cock [24] develops a shallow embedding of a probabilistic guarded com-
mand language in HOL. Programs are interpreted as monotone transformers
of bounded expectations, which form a complete lattice. So, recursive functions
can be defined using fixpoints. He focuses on proving functional correctness prop-
erties using non-relational Hoare triples and verification conditions.

Our framework reuses the existing infrastructure for relational parametricity
in Isabelle/HOL, but in new ways. The Lifting package [31] exploits representa-
tion independence to transfer theorems between raw types and their quotients
or subtypes. Lammich’s tool AutoRef [35] uses transfer rules to refine abstract
datatypes and algorithms to executable code. Blanchette et al. [23] use para-
metricity to express well-formedness conditions for operators under which core-
cursion may appear in corecursive functions. In contrast, we derive a relational
logic for reasoning about shallowly embedded programs from parametricity and
apply representation independence to replace oracles in games by bisimilar ones.

6 Conclusion and Future Work

In this paper, we have integrated a language for monadic probabilistic functions
with black-box access to oracles in higher order logic. Several examples demon-
strate that cryptographic algorithms and security definitions can be expressed
in this language. A rich equational theory and a relational logic support the
formalisation of cryptographic arguments. The definitions and proofs have been
mechanised using the proof assistant Isabelle/HOL.

Although our logic is similar to those in FCF and EasyCrypt, our approach is
different: we derive the rules in a principled way from parametricity of the oper-
ators. This approach can help in finding the appropriate rules when new opera-
tions are introduced, and in proving them sound. Petcher and Morrisett, e.g., add
a monadic map operation to FCF’s language and an appropriate reasoning rule
to their logic [43]. They show soundness for the rule by induction, which takes
22 proof steps. In our approach, their rule is an instance of parametricity of the
map operator, which Isabelle’s parametricity prover can establish automatically.



This work is motivated by the goal of formalising computational soundness
results. Whether our framework scales to such large applications is still an open
question. In our cryptographic examples, it compares favourably to the state of
the art. Indeed, our initial attempts in formalising the CoSP framework [9] are
encouraging that our approach will work. Therefore, the next steps will focus on
formalising these results and improving proof automation.

Our framework cannot express efficiency notions such as polynomial runtime
yet. Hence, asymptotic reasoning, which dominates in CS proofs, can be used
only in limited ways. This is the flipside of the shallow embedding: As HOL
functions are extensional, we cannot exploit HOL syntax in the reasoning. It
seems possible to adapt Petcher’s and Morrisett’s axiomatic cost model [42], but
the benefits are not yet clear. A less axiomatic alternative is to formalise a small
programming language, connect it to HOL’s functions and derive the bounds in
terms of the operational semantics. Verypto [8] and the higher-order complexity
analysis for Coq by Jouannaud and Xu [33] might be good starting points.

Beyond cryptographic arguments and computational soundness, our semantic
domain of generative probabilistic values could be applied in different contexts.
In previous work [38], we used a (less abstract) precursor to model interactive
programs in HOL. The domain could also serve as a basis for formalising and
verifying CryptoVerif or as a backend for the new EasyCrypt, as EasyCrypt’s
logic and module system resemble Isabelle’s.

In this direction, it would be interesting to investigate whether gpvs admit
a ccpo structure in which where the basic operations are monotone. Currently,
corecursion and coinduction are available. The ccpo structure would allow us
to additionally define functions recursively and use induction as proof principle.
The problem is that limits must preserve discreteness of the subprobability dis-
tributions. It is not easy to move to arbitrary measure-theoretic distributions, as
codatatypes in HOL require a cardinality bound on the functor through which
they recurse; otherwise, they cannot be defined in HOL [28].

Acknowledgements Johannes Hölzl helped us with formalising spmfs on top of his
probability formalisation and with the proof of countable support of spmf chains.
Christoph Sprenger and Dmitriy Traytel and the anonymous reviewers suggested im-
provements of the presentation and the examples. This work was supported by SNSF
grant 153217 “Formalising Computational Soundness for Protocol Implementations”.

References

1. Abadi, M., Rogaway, P.: Reconciling two views of cryptography (The computa-
tional soundness of formal encryption). J. Cryptology 15(2), 103–127 (2002)

2. Affeldt, R., Hagiwara, M., Sénizergues, J.: Formalization of Shannon’s theorems.
J. Automat. Reason. 53(1), 63–103 (2014)

3. Aharoni, R., Berger, E., Georgakopoulos, A., Perlstein, A., Sprüssel, P.: The max-
flow min-cut theorem for countable networks. J. Combin. Theory Ser. B 101, 1–17
(2011)

4. Armando, A., et al.: The AVANTSSAR platform for the automated validation of
trust and security of service-oriented architectures. In: TACAS 2012. LNCS, vol.
7214, pp. 267–282. Springer (2012)



5. Audebaud, P., Paulin-Mohring, C.: Proofs of randomized algorithms in Coq. Sci.
Comput. Program. 74(8), 568–589 (2009)

6. Bacelar Almeida, J., Barbosa, M., Bangerter, E., Barthe, G., Krenn, S.,
Zanella Béguelin, S.: Full proof cryptography: Verifiable compilation of efficient
zero-knowledge protocols. In: CCS 2012. pp. 488–500. ACM (2012)

7. Backes, M., Barthe, G., Berg, M., Grégoire, B., Kunz, C., Skoruppa, M.,
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13. Barthe, G., Grégoire, B., Heraud, S., Zanella Béguelin, S.: Computer-aided security
proofs for the working cryptographer. In: CRYPTO 2011. LNCS, vol. 6841, pp. 71–
90. Springer (2011)
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