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Abstract This article presents JinjaThreads, a unified, type-safe model of multithreaded
Java source code and bytecode formalised in the proof assistant Isabelle/HOL. The se-
mantics strictly separates sequential aspects from multithreading features like locks, forks
and joins, interrupts, and the wait-notify mechanism. This separation yields an interleaving
framework and a notion of deadlocks that are independent of the language, and makes the
type safety proofs modular. JinjaThreads’s non-optimising compiler translates source code
into bytecode. Its correctness proof guarantees that the generated bytecode exhibits exactly
the same observable behaviours as the source code, even for infinite executions and under
the Java memory model. The semantics and the compiler are executable.

JinjaThreads builds on and reuses the Java formalisations Jinja, Bali, µJava, and Java`ight

by Nipkow’s group. Being the result of more than fifteen years of studying Java in Is-
abelle/HOL, it constitutes a large and long-lasting case study. It shows that fairly standard
formalisation techniques scale well and highlights the challenges, benefits, and drawbacks
of formalisation reuse.

Keywords Java · concurrency · type safety · compiler verification · operational semantics

1 Introduction

The formal analysis of the Java programming language started soon after it had been released
in 1995. The Bali project, e.g., lead to a comprehensive model Java`ight of the JavaCard
language, a sequential subset of Java [59, 62–65, 74, 75]. Using Isabelle/HOL, Nipkow’s
group formalised the type system and a big-step semantics with a proof of type safety, and
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Tel.: +41-44-6328470
Fax: +41-44-6321172
E-mail: andreas.lochbihler@inf.ethz.ch



an axiomatic Hoare-style semantics that they proved sound and relatively complete. At the
same time, they studied the interaction between Java source code and bytecode for a smaller
subset that was named µJava. This line of work [8, 28–30, 34, 35, 58, 60, 67, 80, 81] lead to
formal models of the Java virtual machine (VM), of the bytecode verifier, and to a compiler
from source code to bytecode. These are complemented by proofs of type safety for source
code and bytecode, and preservation of type correctness and semantics for the compiler.
Later, Jinja by Klein and Nipkow [32] extended the core parts of µJava with a small-step
semantics for source code, which they proved equivalent to the big-step semantics. Java`ight ,
µJava, and Jinja were considered milestones in formalised semantics [83, 85].

All these models consider only sequential Java, although multithreading has been envi-
sioned as future work from the start [59]. In this article, I extend Jinja with concurrency in
the form of Java threads and the Java memory model (JMM). My new model JinjaThreads
covers all of Jinja: the source code language (except for the big-step semantics), the byte-
code language, the type safety proofs, and the compiler with its correctness statements.

In detail, I present a type-safe model of Java threads for source code and bytecode
(Section 2). It includes synchronisation via monitors and volatile fields, the wait-notify
mechanism, forks and joins, interrupts, and spurious wake-ups (Section 1.1 reviews these
synchronisation mechanisms). Thus, it covers all concurrency features from the Java lan-
guage specification 8 [21] except the following: (i) the deprecated methods stop, destroy,
suspend, and resume in class Thread; (ii) timing-related features like timed wait and
Thread.sleep because JinjaThreads does not model time; and (iii) low-level memory op-
erations from the java.util.concurrent package that lack a specification in terms of
the Java memory model. In particular, my model includes an atomic compare-and-set op-
eration on volatile fields that suffices to implement most of the lock-free algorithms and
synchronisation primitives from the java.util.concurrent package.

The sequential features include classes with objects, fields, and methods, inheritance
with method overriding and dynamic dispatch, arrays, exception handling, assignments, lo-
cal variables, and standard control structures. Like its predecessor, JinjaThreads omits some
sequential Java features to remain tractable, e.g., static and final fields and methods, visibil-
ity modifiers, interfaces, generics, class initialisation, and garbage collection. I develop a se-
mantics for the concurrency features that is independent of the sequential parts and the Java
memory model. This way, I can reuse the same multithreading semantics for both source
code and bytecode and conduct proofs about concurrency without being overwhelmed by
the details of the sequential parts. For example, type safety for source code and bytecode
(Section 3) follows from lemmas about the single-threaded semantics by a generic argu-
ment. Deadlocks in particular are captured and dealt with abstractly in the proofs.

Two memory models specify the shared heap: sequential consistency and the JMM (Sec-
tion 4). I only sketch them as they have been presented in detail in a companion article [50].

Moreover, I have formally verified a (non-optimising) compiler that connects source
code and bytecode (Section 5). To my knowledge, this is the first Java compiler that has
been shown correct under the Java memory model. Even without optimisations, concur-
rency poses two challenges for compiler verification: non-deterministic interleaving and
different granularity of atomic operations. I address non-deterministic interleaving using a
bisimulation approach for sequential programs. Thanks to the separation of semantics, the
correctness proof for the compiler reduces to a correctness proof for individual threads. As
the observable behaviour of a thread includes all accesses to shared memory, method calls
and synchronisation, I obtain a bisimulation for the multithreaded program from bisimula-
tions for individual threads. Bisimulation also addresses the atomicity issue: unobservable
steps may be decomposed into arbitrarily many unobservable steps, observable ones into
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multiple unobservable ones followed by an observable one. Moreover, the bisimulation ap-
proach yields stronger correctness guarantees than Jinja’s, even in the single-threaded case.

The complete model and all proofs are available online [45] in the Archive of Formal
Proofs. In the presentation, I often omit the formal definitions of parts that are not directly
relevant for concurrency. More details can be found in my PhD thesis [49].

Contributions. First, JinjaThreads is a unified model of Java concurrency, which is more
than the sum of its parts. Indeed, JinjaThreads makes it possible to study how Java’s sequen-
tial parts interact with the multithreading features. As I have strictly separated the single-
threaded semantics from the multithreaded one, the formalisation itself makes these interac-
tions explicit. The separation also applies to the theorems like type safety and compiler cor-
rectness. For example, I identify sufficient conditions under which the single-threaded state-
ments extend to the multithreaded case and prove that source code and bytecode meet them.

Second, the separation yields a language-independent formalisation of multithreading
with many synchronisation options. Thus, this framework could be reused for other lan-
guages that use similar forms of synchronisation. The sufficient conditions, too, are ex-
pressed independently of the language and therefore the extension proofs carry over. For
type safety, in particular, the statement must account for the possibility of deadlocks that
multithreading introduces. In my framework, I propose a precise semantic definition of
deadlock for the type safety statement, which does again not depend on the language. This
addresses a short-coming of typical type safety proofs for concurrent languages, which over-
approximate deadlocks syntactically and therefore unnecessarily weaken the guarantees.

Third, for the compiler verification, I identify a notion of bisimulation that guaran-
tees preservation of terminating, non-terminating and deadlocking behaviours. This gives
stronger correctness guarantees for the compiler. For example, even in the sequential case,
my proof guarantees that non-terminating programs get compiled to non-terminating pro-
grams, which µJava’s and Jinja’s verifications cannot.

Forth, JinjaThreads constitutes a large formalization case study; it is the culmination of
more than fifteen years of Java formalisation efforts. It thus demonstrates that formalisation
reuse is possible at a large scale and that fairly standard techniques scale well. I discuss the
challenges, benefits, and drawbacks of formalisation reuse and illustrate them with examples
from JinjaThreads (Section 6.2).

Relation to previous work. Earlier versions of the multithreading semantics and the type
safety proof for the source language have been presented in [46]. This article addition-
ally treats the bytecode language and extends the list of concurrency features by interrupts,
joins, spurious wake-ups, volatile fields, atomic compare-and-set operations, and the JMM.
Adding various kinds of synchronisation required a re-design of the multithreaded seman-
tics to support a modular treatment of different synchronisation primitives and to simplify
the proofs that the single-threaded semantics meet the requirements of the lifting theorems.
For the JMM, I have separated the single-threaded semantics from the concrete heap model
via an abstract heap interface.

A short version of the compiler verification has been published at ESOP [47]. This article
extends the correctness guarantees to diverging executions, deadlocks, and to the JMM. The
stronger guarantees require a stronger (bi-)simulation notion, as discussed in Section 5.2.

The formalisation of the JMM itself and its connection with JinjaThreads has been de-
scribed in detail in [48,50] except for the compiler verification part and the compare-and-set
operations. Here, I only sketch the connection to the JMM (Section 4). Instead, this article
focuses on how Java threads are modelled in JinjaThreads, how type safety is proven, and
how the compiler is verified.
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Organisation. The technical sections 2, 3, and 5 present the semantics, the type safety proof,
and the compiler verification, respectively, in great detail. Each of these section starts with
a subsection that gives a high-level overview of the challenges and achievements of the
section. These subsections can be read independently of the subsequent technical material
such that readers can quickly get an idea of the most interesting aspects of each part. Sec-
tion 4 sketches the two memory models for the shared heap. Formalisation choices, the pros
and cons of formalisation reuse, and this project’s motivations and benefits are presented in
Section 6. Related work is discussed in Section 7.

1.1 Multithreading in Java

For this article to be self-contained, this section gives a quick tour of the concurrency fea-
tures of Java 8. Java concurrency revolves around threads, i.e., parallel strands of execution
with shared memory. A program controls a thread through its associated object of (a sub-
class of) class Thread. To spawn a new thread, one allocates a new object of class Thread (or
any subclass thereof) and invokes its start method. The new thread will then execute the run
method of the object, in parallel with all other threads. Each thread must be spawned at most
once, every further call to start raises an IllegalThreadState exception. The thread terminates
when run terminates, either normally or abruptly due to an exception. The static method
currentThread in class Thread returns the object associated with the executing thread.

Java offers five kinds of synchronisation between threads: locks, wait sets, forks, joins,
and interrupts. The package java.util.concurrent in the Java API [26] builds sophisti-
cated forms of synchronisation from these primitives and atomic compare-and-set operations
on volatile fields, which JinjaThreads also models (see below).

Every object (and array) has an associated monitor with a lock and a wait set. Locks are
mutually-exclusive and re-entrant, i.e., at most one thread can hold a lock at a time, but the
thread can acquire the lock multiple times [21, §17.1]. For locking, Java uses synchronized
blocks that take a reference to an object or array. A thread acquires the object’s lock be-
fore it executes the block’s body and releases the lock afterwards. If another thread al-
ready holds the lock, the executing thread must wait until the other thread has released
it. Thus, synchronized blocks on the same object never execute in parallel. The method
modifier synchronized is equivalent to wrapping the method’s body in a synchronized

block on the this reference [21, §8.4.3.6]. Java bytecode has explicit instructions for lock-
ing (monitorenter) and unlocking (monitorexit) of monitors. The major difference to
synchronized blocks is that they can be used in unstructured ways; if the executing thread
does not hold the lock, monitorexit fails with an IllegalMonitorState exception.

To avoid busy waiting, a thread can suspend itself to the wait set of an object by
calling the object’s method wait [21, §17.8]. To enter the wait set, the thread must have
locked the object’s monitor and must not be interrupted; otherwise, an IllegalMonitorState
or Interrupted exception, respectively, is raised. If successful, the call also releases the moni-
tor’s lock completely. The thread remains in the wait set until (i) another thread interrupts or
notifies it, or (ii) if wait is called with a time limit, the specified amount of time has elapsed,
or (iii) it wakes up spuriously. After having been removed, the thread reacquires the lock
on the monitor before its execution proceeds normally or, in case of interruption, by raising
an Interrupted exception. The methods notify and notifyAll remove one unspecified or all
threads from the wait set of the call’s receiver object. Like for wait, the calling thread must
hold the lock on the monitor. After the notifying thread has released the lock, the notified
thread competes with the other threads for acquiring the lock.
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When a thread calls join on another thread, it blocks until (i) the thread associated with
the receiver object has terminated, or (ii) another thread interrupts the joining thread, or
(iii) an optionally-specified amount of time has elapsed. In the second case, the call raises
an Interrupted exception; otherwise, it returns normally.

Interruption [21, §17.8.3] provides asynchronous communication between threads. Call-
ing the interrupt method of a thread sets its interrupt status. If the interrupted thread is wait-
ing or joining, it aborts that, raises an Interrupted exception, and clears its interrupt status.
Otherwise, interruption has no immediate effect on the interrupted thread. Instead, class
Thread implements two methods to observe the interrupt status. First, the static method
interrupt returns and resets the interrupt status of the executing thread. Second, the method
interrupted returns the interrupt status of the receiver object’s thread without changing it.

Beyond threads and synchronisation, Java also specifies how shared memory behaves
under concurrent accesses, which is known as the Java memory model [21, §17.4]. Volatile
fields in particular are used to implement lock-free synchronisation constructs within Java
that do not rely on the above kinds. To that end, a compare-and-set operation is crucial: it
atomically checks whether a volatile field stores a given value and, if so, replaces it with
another given value; and returns whether the comparison was successful. No knowledge of
the JMM is needed for this article; a detailed account can be found in [50].

1.2 Notation

In this article, I mostly use standard mathematical notation. This section introduces further
notation and in particular some basic data types and operations on them.

Implication in Isabelle/HOL is written −→ or =⇒ and associates to the right. Since
the latter form stems from Isabelle’s natural deduction framework, it separates assumptions
from conclusions in proof rules, but cannot occur inside other HOL formulae. Multiple
assumptions are enclosed in J and K with the separator “;”. For example, modus ponens is
written JP−→Q; PK =⇒Q. Biimplication P←→Q is shorthand for P−→Q and Q−→ P.

The set of HOL types includes the basic types of truth values, natural numbers, integers
and 32 bit machine words, which are called bool, nat, int, and word32, respectively. The
space of total functions is denoted by⇒. Type variables are written ′a, ′b, etc. t :: τ means
that the HOL term t has HOL type τ . To distinguish variables from defined constants, I
typeset variables in italics (e.g., x, y, f ) and defined names slantedly (e.g., x, y, f).

Pairs come with two projection functions fst :: ′a× ′b⇒ ′a and snd :: ′a× ′b⇒ ′b. Tuples
are identified with pairs nested to the right, i.e., (a,b,c) is identical to (a,(b,c)) and ′a×
′b× ′c to ′a× (′b× ′c). Dually, ′a+ ′b denotes the disjoint sum of ′a and ′b; the injections are
Inl :: ′a⇒ ′a+ ′b and Inr :: ′b⇒ ′a+ ′b. Like ×, + associates to the right.

Sets (type ′a set) are isomorphic to predicates (type ′a⇒bool) with bijections ∈ and
{x | }. /0 denotes the empty set. The predicate finite on sets characterises all finite sets. The
operator ] :: ′a set⇒ ′b set⇒ (′a+ ′b) set denotes disjoint union on sets.

The definite description operator ιx. P x is known as Russell’s ι-operator. It denotes the
unique x such that P x holds, provided exactly one exists. Hilbert’s choice, written εx. P x,
denotes one (fixed, but underspecified) x such that P x holds, provided P is satisfiable at all.
Otherwise, both operators are unspecified.

Lists (type ′a list) come with the empty list [] and the infix constructor · for consing.
Variable names ending in “s” usually stand for lists. The infix operator @ concatenates two
lists, |xs| denotes the length of xs, and set converts lists into sets. If i < |xs|, xs[i] denotes
the i-th element of xs, and xs[i := x] replaces the i-th element of xs with x. Further standard
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operations on lists are available: hd xs returns the first element of xs and take n xs returns the
first n elements of xs; replicate n x constructs the list [x,x, . . . ,x] of length n; rev xs reverses
xs; map f xs applies the function f to all elements of the list xs; zip xs ys combines xs and ys
elementwise into a list of pairs; and foldl f a xs reduces the list xs with the binary operator
f and start value a, associating to the left.

datatype ′a option = None | Some ′a adjoins a new element None to ′a, all existing
elements in type ′a are also in ′a option, but prefixed by Some. For succinctness, I write
bac for Some a. For example, bool option consists of the three values None, bTruec, and
bFalsec. Variables whose name ends in “o” usually have option type.

Case distinctions on datatypes use guard-like syntax. For example, case xo of None⇒
a | bxc ⇒ f pattern-matches on xo. If xo is None, it returns a; if xo is bxc, the result is f
where f may refer to x. Function update is defined as follows: Let f :: ′a⇒ ′b, a :: ′a, and
b :: ′b. Then, f (a :=b) = λx. if x = a then b else f x.

As all functions in HOL are total, partial functions are modelled as functions of type ′a⇒
′b option where None represents undefinedness and f x = bycmeans that f maps x to y. I ab-
breviate ′a⇒ ′b option by ′a⇀ ′b and call such functions maps. The notation f (x 7→ y) is short-
hand for f (x := byc), and it extends to lists: f (xs [7→] ys) means f

(
x[0] 7→ y[0]

)
. . .

(
x[i] 7→ y[i]

)
where i is the minimum of |xs|−1 and |ys|−1. The everywhere undefined map λ . None is
written empty. Updates of empty are written [x 7→ y] and [xs [7→] ys]. The domain of f (writ-
ten dom f ) is the set of points at which f is defined. The order m1 ⊆m m2 on maps denotes
that m2’s domain contains m1’s and m1 and m2 are equal on dom m1.

Locales [4] are Isabelle’s approach to modularisation. A locale declaration defines the
signature of a context, which consists of the locale parameters with fixed types (fixes) and
the assumptions about the parameters (assumes). A locales can import other locales where
parameters may be instantiated and names prefixed as necessary. A locale context collects
declarations such as theorems and definitions, which may depend on the parameters and
assumptions. Locale interpretations instantiate the parameters of a locale and discharge the
assumptions. This specialises all collected declarations to the given arguments.

For example, the locale semigroup below declares a context whose parameter, i.e., ab-
stract operation, is the binary operator� that is assumed to be associative. The locale monoid
imports the semigroup context with the name prefix p and renames the parameter to ⊕. It
also adds another operation e and assumes that e is the neutral element. The type of the
semigroup and monoid elements is a type variable ′a rather than an opaque type. This way,
the locale interpretation free-monoid can instantiate ′a with the type of lists.
locale semigroup = fixes � :: ′a⇒ ′a⇒ ′a assumes assoc : (a�b)� c = a� (b� c)
locale monoid = p : semigroup ⊕ for ⊕ +fixes e :: ′a assumes a⊕ e = a and e⊕a = a
interpretation free-monoid : monoid @ [] 〈〈proof〉〉

2 Modelling multithreaded Java source code and bytecode

In this section, I present a language-independent interleaving semantics (Section 2.2) and
the JinjaThreads multithreaded semantics for Java source code (Section 2.3) and bytecode
(Section 2.4) after having discussed the design principles and core ideas (Section 2.1).

2.1 High-level overview

Two design principles guided the modelling of multithreaded Java: separation of concerns
and sharing (and reuse) of definitions and proofs. Both are key to obtain a tractable model.
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To disentangle concurrency from sequential features, I developed a language-indepen-
dent interleaving semantics, which is parametrised by the semantics of individual threads.
So, the source code and bytecode formalisations share the multithreading semantics. This
makes sense as they provide the same multithreading features. Moreover, it simplifies the
type safety proofs as the concurrency features are dealt with in the multithreading semantics.
Without the separation, I would have had to consider them twice, once for the source code
and once for the bytecode.

The multithreading semantics relieves the single-thread semantics from the burdens of
multithreading. It manages the multithreaded state (i.e., the locks, wait sets, the thread pool,
and interrupts) and interleaves the individual threads. It also isolates the local states of the
threads from each other. I achieve this separation and isolation by ensuring that neither can
the single-threaded semantics directly access the multithreaded state nor does the multi-
threaded semantics look at the thread-local states. Instead, every single-threaded transition
is labelled by a so-called thread action, which communicates to the interleaving semantics
the preconditions on and atomic updates to the multithreaded state. When the interleaving
semantics executes a step, it changes the multithreaded state according to the thread action.
These actions are the only means of communication between the two levels. Since this is
unidirectional, the multithreaded semantics can transfer information to the single-threaded
semantics only by picking one step that the latter offers. Hence, the single-threaded seman-
tics must anticipate in its steps all possible answers it is willing to accept. Thanks to this
clear and restricted interface, I can reduce proofs about the multithreaded semantics to the
level of threads, as threads interact only via thread actions (and the shared heap).

Some synchronisation primitives perform complicated checks and updates to the multi-
threaded state, which must all be executed atomically. For example, a call to wait on some
monitor a must check that the current thread holds the lock on a and that it does not have a
pending interrupt; it then releases the lock on a and suspends itself to a’s wait set. So this
single transition checks and updates the locks, the interrupts, and the wait sets. To avoid
redundancies in the definitions and proofs, thread actions are built from basic thread actions
(BTA), each of which deals with only one aspect. There are BTAs for checking, acquiring
and releasing the lock state of a monitor, for spawning a new thread, for setting, clearing,
and testing for pending interrupts, notifying other threads, etc. The single-threaded seman-
tics modularly combine these BTAs into one thread action that encodes all the desired checks
and updates. Although the BTAs are clearly inspired by Java’s synchronisation mechanism,
they are more abstract and modular. So they could be used for modelling synchronisation
primitives of other languages, too. In fact, thread actions can express more than what is
needed for Java threads. This generality sometimes complicates reasoning as proofs must
deal with BTA combinations that the single-threaded semantics never use.

In return, the decomposition into BTAs ensures that the proofs about the multithreaded
semantics are simple and modular, too, as they can also focus on a particular aspect of
concurrency, e.g., on locking. To that end, the multithreaded state is also partitioned into five
components (locks, thread pool, shared heap, wait sets, and pending interrupts).1 This way,
every BTA except for one depends on and affects only one component of the state. The BTA
semantics can thus be defined for component individually and then composed at the end.

The strict separation into single-threaded and multithreaded semantics also helps with
reuse. As the single-threaded semantics need not manage the multithreaded state, I was able

1 The interrupt status of a thread is like a global variable that all threads can access and modify. Thus,
it could also have been part of the shared heap, which the single-threaded semantics manages. However, I
model it explicitly in the interleaving semantics because interruption is relevant for deadlocks (Section 3.3).
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to reuse the existing sequential Jinja semantics with only small modifications (but signifi-
cantly extended with the concurrency features). As I have been careful to make the exten-
sions fit into the existing design, many theorems about the semantics, in particular about
the sequential aspects, needed only small adaptations. I was thus able to benefit from many
years of experience that have gone into Jinja.

The key ideas of the source code formalisation are the following: The semantics is a
standard small-step semantics where subexpression reduction rules determine the evaluation
order. Raised exceptions slowly propagate outwards to an exception handler via exception
propagation rules. The synchronized blocks ensure that the lock is released when the
block is left, normally or due to an exception. Method calls are inlined dynamically; local
variables are nevertheless statically scoped as the type system ensures that all method bodies
are closed expressions. Native methods implement many of the concurrency features such
as the wait-notify mechanism, interruption, and thread spawns. Like in Java, JinjaThreads
programs must declare native methods as methods without body. This ensures that method
lookup and overriding work uniformly for ordinary and native methods. The compare-and-
set operation is a language construct of its own, as opposed to a native method like in Java,
because the field must be given as an argument. This is done using reflection in Java, but
JinjaThreads does not model reflection. I therefore formalise compare-and-set as a separate
language construct.

Bytecode programs differ from source code only in the method bodies. As class, field
and method declarations use the same abstract syntax as source code, the lookup functions
are shared, too. The virtual machine interprets the instructions of a method body on a stack-
based state machine. When an exception is raised, the VM looks for a suitable exception
handler in the current method; execution immediately jumps to the handler or reraises the
exception at the call site of the current method. The instructions for locking and unlocking
need not follow a block structure, so unlocking may fail in case the lock is not held. Native
methods share the formalisation with source code. Like in source code, compare-and-set is
formalised as an instruction instead of a native method. There are two VM versions. The
aggressive VM assumes that there are always sufficiently many operands of the expected
types on the stack; if not, the behaviour is unspecified. The defensive VM checks these
conditions and aborts the execution with an error if the check fails. The bytecode verifier
abstractly interprets the instructions and ensures that these checks always succeed.

To support different memory models, both semantics operate on an abstract heap model.
In Section 4, I instantiate it with sequential consistency and the Java memory model. The ab-
stract model is formalised as a locale that fixes the abstract heap operations (empty heap, al-
location, reading, writing, and dynamic address types) and their properties. Allocation, read-
ing, and writing are formalised as relations such that they may fail or be non-deterministic,
which is necessary under the JMM. The abstract heap model differs from other memory
model formalisations [41, 69] in that the assumed properties are very weak. For example, I
do not assume that writing a value to some heap location l and then immediately reading
from l again yields the same value, as this is not guaranteed and may be sometimes forbidden
under the JMM. Instead, my assumptions identify the properties on which the type safety
and compiler correctness proofs rely. For example, dynamic address types do not change
once they have been determined.

Figure 1 shows the structure of JinjaThreads. In comparison to Jinja, new parts are set
in bold, adapted ones normally, and dropped ones in grey with dotted lines. Source code
and bytecode share some general infrastructure and the multithreading semantics with two
memory models (sequential consistency and the JMM). The compiler translates source code
into bytecode in two stages.
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Fig. 2 JinjaThreads stack of semantics

The semantics themselves are organised in a stack of seven layers that separate the se-
quential aspects, the concurrency features, and the memory model from one another (Fig-
ure 2). For example, to switch from source code to bytecode, one only needs to exchange
layer 3, which defines the semantics of the language primitives. Analogously, the type safety
proof holds for both memory models as they differ only in layers 1, 4, and 7.

2.2 Interleaving semantics

The multithreading semantics relieves the single-thread semantics from the burdens of mul-
tithreading. It manages the multithreaded state (i.e., the locks, wait sets, the thread pool,
and interrupts) and interleaves the individual threads. It also isolates the local states of the
threads from each other. Interaction between individual threads and the interleaving seman-
tics happens only via thread actions. This way, the multithreading semantics is oblivious of
thread-local states. Thus, I can use it for both source code and bytecode.

2.2.1 The multithreaded state

The multithreaded state s = (ls, tp,h,ws, is) consists of five components:
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has-locks None t = 0
has-locks b(t ′,n)c t = (if t = t ′ then n+1 else 0)

may-lock None t = True
may-lock b(t ′,n)c t = (t = t ′)

lock None t = b(t,0)c
lock b(t ′,n)c t = b(t ′,n+1)c

unlock None = None
unlock b(t,n)c = (if n = 0 then None else b(t,n−1)c)
acquire L t n =
(if n = 0 then L else acquire (lock L t) t (n−1))

release None t = None
release b(t ′,n)c t = (if t ′ = t then None else b(t ′,n)c)

Fig. 3 Implementation of lock operations

1. The lock status ls stores in a map of type ′l⇀(′t×nat) (denoted by (′l, ′t) locks) for every
lock l how many times it is held by a thread, if any, where ′l and ′t denote the types of lock
and thread identifiers, respectively. A thread with ID t holding the lock l exactly n+ 1
times is represented by ls l = b(t,n)c. If l is not held by any thread, then ls l = None.
Using a map with a counter ensures that locks are mutually exclusive and re-entrant, i.e.,
at most one thread may hold the lock at one time, but it can acquire it multiple times.
The state of a single lock L of type (′t × nat) option (denoted ′t lock) is manipulated
using the six operations given in Figure 3: (i) has-locks L t denotes the number of times
t has acquired L; (ii) may-lock L t tests whether t may lock L; (iii) lock L t acquires L
for t once; (iv) unlock L release L once; (v) acquire L t n acquires L for t n times; and
(vi) release L t completely releases L if t holds L.2

2. The thread pool tp is a map of type ′t ⇀ (′x× (′l⇒ nat)), denoted by (′l, ′t, ′x) tp. Free
thread IDs are mapped to None. If tp t = b(x, ln)c, then t identifies a thread with local
state x (type variable ′x) and temporarily released locks ln. For example, when a Java
thread suspends itself to a wait set, it temporarily releases the lock on the associated
monitor. Upon removal from the wait set, the thread must reacquire the lock before it
can continue. The multiset ln records how often the thread has held the lock and the
multithreaded semantics ensures that the locks are acquired before the thread executes
again. This way, the single-threaded semantics need neither remember how many times
the lock had been acquired, nor reacquire it explicitly afterwards.

3. The shared heap h :: ′h which is passed from one thread to the other.
4. The wait set status ws :: ′t ⇀ (′w wait-set-status) stores for every thread t its wait set

status, where ′w wait-set-status consists of the values InWS w and WS-Notified and
WS-WokenUp, and ′w represents the type of wait set identifiers. The wait set w :: ′w of
a monitor contains all threads whose wait status is bInWS wc. The predicate waiting wo
tests whether the wait set status wo :: ′w wait-set-status option is of the form bInWS w′c,
i.e., the associated thread is in a wait set.
Figure 4 shows the possible transitions between the wait set status as an automaton. Ini-
tially, after the thread has been spawned, its wait set status is None, i.e., the thread is
not in any wait set. Normal execution takes place in that state (dotted arrow). The thread
can suspend itself to a wait set with ID w (status bInWS wc). When another thread noti-
fies or wakes up (i,e., interrupts) the thread (dashed lines), the latter’s status changes to
bWS-Notifiedc or bWS-WokenUpc, respectively. From either of them, it leaves the wait
set cycle and returns to the normal state None by processing the notification or wake-up,
respectively. If the thread has temporarily released some locks when it suspended it-

2 Some operations on locks should be partial. For example, lock b(t ′,n)c t only makes sense if t ′ = t.
As usual in HOL, I extend lock to a total function and ignore the mismatch. This choice removes some
preconditions from a few lemmata. For example, if has-lock L t, then also has-lock (acquire L t ′ n) t where
has-lock L t is short-hand for has-locks L t > 0. Other implementations of lock would require the precondition
may-lock L t ′.
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None bInWS wc

bWS-Notifiedc

bWS-WokenUpc

Spawn

Suspend w

Notify w

WakeUp t

Notified

WokenUp

Fig. 4 Wait sets, notification, and interruption

thread t1

synchronized (f) {
synchronized (g) {
synchronized (f) {
g.wait();
}}}

thread t2

synchronized (g) {
t1.interrupt();
}

Fig. 5 Example program with two threads

self to the wait set, it must reacquire them in states bWS-Notifiedc and bWS-WokenUpc
(dotted arrow).3 Following the Java language specification [21, §17.8], reacquisition pre-
cedes processing the removal from the wait set, i.e., notification or wake-up, although
the order is semantically irrelevant.

5. The set of pending interrupts is :: ′t set stores the IDs of all interrupted threads.

The projection functions locks, tp, shr, wset, and intrs return the locks, the thread pool, the
shared heap, the wait sets, and the pending interrupts of a state, respectively.

For example, Figure 5 shows a program with two threads t1 and t2. Suppose that t1
executes first until it enters the wait set of monitor g and then t2 executes until is has inter-
rupted t1. Suppose further that f identifies the monitor referenced by f, and similarly for g.
Then, this state is represented by the tuple (ls, tp,h,ws, is) where

ls = [ f 7→(t1,1),g 7→(t2,0)], i.e., threads t1 and t2 hold the locks f and g twice and once,
respectively; all other locks are free;

tp = [t1 7→(. . . ,(λ . 0)(g :=1)),t2 7→(. . . ,λ . 0)], where the thread-local states have been
omitted, thread t1 has temporarily released the lock on g which it had held once
before, and thread t2 has not temporarily released any locks;

h = . . . is some shared heap;
ws = [t1 7→WS-WokenUp], i.e., an interrupt has woken up thread t1; and
is = {t1}, i.e., thread t1 has a pending interrupt.

2.2.2 Thread actions

Thread actions encode the preconditions on and the updates to the multithreaded state of a
single-thread execution step. A thread action is composed of multiple basic thread actions.
My formalisation implements 16 different BTAs, which are split in five groups (Figure 6):

Locking The four lock actions (type lock-act) query and manipulate a single lock. Like
locks in the lock status, lock actions are grouped by lock ID on which they operate (type
′l lock-acts, the list orders the lock BTAs for the same lock).

– Lock acquires a lock once for the current thread t; no other thread may hold the lock.
– Unlock releases it once, provided t is holding it.
– Release temporarily releases the lock if t holds it, and has no effect otherwise. Apart

from the single lock, it also updates the temporarily released locks in the thread pool.
– UnlockFail tests whether t does not hold a lock, i.e., unlocking it would fail.

3 In Java, all suspended threads have temporarily released a lock. So reacquisition always takes place for
JinjaThreads source code and bytecode. This invariant does not hold on the language-independent interleaving
level, though. The reacquisition step is therefore conditional.
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datatype lock-act = Lock | Unlock | UnlockFail | Release
type synonym ′l lock-acts = ′l⇒ lock-act list
datatype (′t, ′x, ′h) nt-act = Spawn ′t ′x ′h | ThreadEx ′t bool
datatype ′t cond-act = Join ′t
datatype (′t, ′w) wait-act = Suspend ′w | Notify ′w | NotifyAll ′w |WakeUp ′t | Notified |WokenUp
datatype ′t intr-act = Intr ′t | ClearIntr ′t | IsIntrd ′t bool
type synonym (′l, ′t, ′x, ′h, ′w, ′o) thread-action =
′l lock-acts× (′t, ′x, ′h) nt-act list× ′t cond-act list× (′t, ′w) wait-act list× ′t intr-act list× ′o list

Fig. 6 Type definitions for thread actions

There is no BTA for testing whether a thread holds a lock. This can be simulated by
using the two lock BTAs Unlock and Lock in this order in one thread action: Unlock
tests that t holds the lock and Lock undoes the effect of Unlock.

Thread creation Spawn t x h spawns a new thread with ID t and initial local state x. There
must not yet be a thread with ID t. Later (Sections 3.2 and 5.2.2), it will be convenient to
remember the shared heap h at spawn time. ThreadEx t b tests whether there is a thread
with ID t in the thread pool, where b :: bool denotes the result.

Thread join Join t joins on thread t, i.e., t must have terminated before.
Wait sets Suspend w inserts the current thread t into the wait set w. Notify w and NotifyAll w

wake up one or all of the threads in the wait set w. Their wait set status becomes
bWS-Notifiedc (see Figure 4). If w is empty, no thread is woken up. WakeUp t changes
t’s wait set status to bWS-WokenUpc, if it has been in a wait set before. Otherwise,
nothing happens. Notified and WokenUp label steps that process the notification and
wake-up for the thread that has been notified or woken up.

Interruption Intr t adds t to the set of interrupted threads; ClearIntr t removes it. IsIntrd t b
tests whether t has a pending interrupt; b :: bool denotes the result.

A thread action consists of a family for the lock BTAs and one list for each of the other
groups. Since thread actions are used as labels for the steps, they include a sixth component
of type ′o list, which will be used by the memory models (Section 4). It maintains the group-
ing of BTAs instead of putting them all into one list because each group affects only one part
of the state, so their semantics can be defined independently of other groups. The projections
〈ta〉l, 〈ta〉t, 〈ta〉c, 〈ta〉w, 〈ta〉i, and 〈ta〉o extract from the thread action ta the BTAs for locks,
thread creation, conditions, wait sets, interrupts, and the memory model part.

All BTAs of a thread action are executed in a single step; if the precondition of at least
one BTA in the thread action of a step is not met, the interleaving semantics does not select
the step. Thus, a single-thread semantics can query and change multiple components of the
multithreaded state in one step by composing BTAs.

For example, in Java, a call to the wait method must test that the thread t has not been
interrupted and that it holds the lock l associated with the receiver object, release the latter,
and suspend t to the associated wait set w. This can be expressed by the following thread
action (where the memory model events have been omitted):

((λ . [])(l :=[Unlock,Lock,Release]) , [], [], [Suspend w], [IsIntrd t False], . . .)

that is, this thread action performs the lock BTAs Unlock, Lock, Release on l in this order
and no lock BTAs on other locks, no thread creation and thread join BTAs, one wait set BTA
Suspend w, and one interruption BTA IsIntrd t False. Instead of this cumbersome notation, I
use a list-like notation for thread actions, with lock identifiers added to lock BTAs. Isabelle’s
parser and pretty printer are set up such that they convert it into the corresponding thread
action. Hence, the above thread action is written as
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upd-L :: ′t lock⇒ ′t⇒ lock-act⇒ ′t lock
upd-L L t Lock = lock L t
upd-L L t Unlock = unlock L
upd-L L t UnlockFail = L
upd-L L t Release = release L t

upd-Ls :: ′t lock⇒ ′t⇒ lock-act list⇒ ′t lock
upd-Ls L t [] = L
upd-Ls L t (la · las) = upd-Ls (upd-L L t la) t las

upd-locks :: (′l, ′t) locks⇒ ′t⇒ ′l lock-acts⇒ (′l, ′t) locks
upd-locks ls t las = (λ l. upd-Ls (ls l) t (las l))

ok-L :: ′t lock⇒ ′t⇒ lock-act⇒bool
ok-L L t Lock = may-lock L t
ok-L L t Unlock = (has-locks L t > 0)
ok-L L t UnlockFail = (has-locks L t = 0)
ok-L L t Release = True

ok-Ls :: ′t lock⇒ ′t⇒ lock-act list⇒bool
ok-Ls L t [] = True
ok-Ls L t (la · las) =

ok-L L t la∧ok-Ls (upd-L L t la) t las

ok-locks :: (′l, ′t) locks⇒ ′t⇒ ′l lock-acts⇒bool
ok-locks ls t las = (∀l. ok-Ls (ls l) t (las l))

Fig. 7 Semantics for lock BTAs: update functions (left) and precondition tests (right)

upd-trl :: nat⇒ ′t lock⇒ ′t⇒ lock-act⇒nat
upd-trl n L t Release = n+has-locks L t
upd-trl n L t = n

upd-trls :: nat⇒ ′t lock⇒ ′t⇒ lock-act list⇒nat
upd-trls n L t [] = n
upd-trls n L t (la · las) =

upd-trls (upd-trl n L t la) (upd-L L t la) t las

upd-TRL :: ′l tr-locks⇒ (′l, ′t) locks⇒ ′t⇒ ′l lock-acts⇒ ′l tr-locks
upd-TRL ln ls t las = (λ l. upd-trls (ln l) (ls l) t (las l))

Fig. 8 Update functions for temporarily released locks

LUnlock→l,Lock→l,Release→l,Suspend w, IsIntrd t False, . . .M

This thread action achieves its goal as follows. First, Unlock→l,Lock→l checks that the
current thread holds l without effectively changing the lock status. Then, Release→l releases
l and Suspend w adds the thread to the wait set. IsIntrd t False tests that the thread t has
no pending interrupt. Note that the order of BTAs of the same group (and lock identifier)
is important. For example, LLock→l,Unlock→lM does not alter the lock state either, but
checks that no other thread holds l. Conversely, BTAs of different groups are unordered,
even though the L. . .M notation might conjure up the illusion of a total ordering.

2.2.3 Semantics of thread actions

The semantics for BTAs follows their division in groups. For each group, there are update
functions for the affected state components and predicates to check the preconditions.

Lock actions The semantics for lock BTAs is shown in Figure 7. The function upd-L maps
lock BTAs to the operations on individual locks given in Figure 3. Note that UnlockFail does
not change the lock because this BTA only queries the lock status. Similarly, ok-L checks
the preconditions of the lock actions. The functions upd-Ls, upd-locks and ok-Ls, ok-locks
lift these function to lists of lock BTAs for a single lock and to functions for all locks. Note
how ok-Ls L t (la · las) updates the lock L such that checking the remaining BTAs las takes
the effect of the first BTA la on L into account. Since the locks that a thread has temporarily
released are stored separately from the lock status, there are update functions for that part,
too (Figure 8). They follow the same pattern. Recall that for a fixed lock ID, the state of the
temporarily released locks is just the number of times the thread had held it.

Thread creation actions For thread creation BTAs, the functions upd-tp and upd-tps update
the thread pool (Figure 9). Spawned threads are stored under their thread ID with the initial
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upd-tp :: (′l, ′t, ′x) tp⇒ (′t, ′x, ′h) nt-act⇒ (′l, ′t, ′x) tp
upd-tp tp (Spawn t x m) = tp(t 7→ (x,λ . 0))
upd-tp tp (ThreadEx t b) = tp

upd-tps ::
(′l, ′t, ′x) tp⇒ (′t, ′x, ′h) nt-act list⇒ (′l, ′t, ′x) tp

upd-tps tp [] = tp
upd-tps tp (nt ·nts) = upd-tps (upd-tp tp nt) nts

ok-tp :: (′l, ′t, ′x) tp⇒ (′t, ′x, ′h) nt-act⇒bool
ok-tp tp (Spawn t x m) = (tp t = None)
ok-tp tp (ThreadEx t b) = (b = (tp t 6= None))

ok-tps :: (′l, ′t, ′x) tp⇒ (′t, ′x, ′h) nt-act list⇒bool
ok-tps tp [] = True
ok-tps tp (nt ·nts) =

ok-tp tp nt ∧ok-tps (upd-tp tp nt) nts

Fig. 9 Semantics for thread creation BTAs: update functions (left) and precondition tests (right)

locale final-thread = fixes final :: ′x⇒bool

ok-cond :: (′l, ′t, ′x, ′h, ′w) state⇒ ′t⇒ ′t cond-act⇒bool
ok-cond s t (Join t ′) = case tp s t ′ of None ⇒ True

| b(x, ln)c ⇒ t 6= t ′ ∧final x∧ ln = (λ . 0)∧wset s t ′ = None

ok-conds :: (′l, ′t, ′x, ′h, ′w) state⇒ ′t⇒ ′t cond-act list⇒bool
ok-conds s t cas = (∀ca ∈ set cas. ok-cond s t ca)

Fig. 10 Semantics for thread join actions

state given in the BTA and no temporarily released locks. The predicates ok-tp and ok-tps
check the preconditions, i.e., t is a free thread ID for Spawn t x m, and b in ThreadEx t b
expresses whether t is not a free thread ID. Thread IDs are free iff they are not in the domain
of the thread pool map.

Thread join actions Thread join actions do not affect the multithreaded state. Hence, there
are no update functions, but only predicates for the preconditions (Figure 10). A thread t
successfully joins on the thread t ′ iff (i) t ′ has not yet been started, i.e., tp s t = None, or
(ii) t ′ is not the executing thread itself, t ′ has been fully evaluated, not temporarily released
any locks, and is not in any wait set. The predicate final on the thread-local state determines
if t ′ has been fully evaluated. For modularity, final is an implicit parameter to ok-cond, which
source code and bytecode will instantiate. In Isabelle, the locale final-thread hides the final
parameter.

Wait set actions For wait set actions, the semantics t `ws �wa⇒ws′ is defined as a relation,
where t denotes the executing thread, ws and ws′ the original and successor wait sets, and
wa the wait set action to be executed. The rules in Figure 11 implement the wait set au-
tomaton from Figure 4. Unlike the other update functions, it is a relation because Notify w
non-deterministically picks one thread t ′ from the wait set w, if there is any. In contrast,
WakeUp t ′ is deterministic as it removes t ′ from any wait set it has been suspended to. The
BTAs Notified and WokenUp reset t’s wait set status to None for normal execution. As be-
fore, I lift ` � ⇒ to lists of BTAs. To that end, I define the reflexive, transitive closure
r∗∗∗ :: ′a⇒ ′b list⇒ ′a⇒bool of a ternary relation r :: ′a⇒ ′b⇒ ′a⇒bool as

r∗∗∗ a [] a
r∗∗∗ a bs a′ r a′ b a′′

r∗∗∗ a (bs @ [b]) a′′

Then, t ` [� ⇒] is the reflexive, transitive closure of t ` � ⇒ , i.e., the former folds the
latter over a list of wait set actions.

The BTAs for wait sets do not have individual preconditions on t’s wait set state. Rather,
Notified and WokenUp characterise reductions of t that are meant to process notifications
and interruptions. The predicate ok-wsets formalises that such reductions require the wait
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t ` ws �Suspend w⇒ ws(t 7→ InWS w)

ws t ′ = bInWS wc
t ` ws �Notify w⇒ ws

(
t ′ 7→WS-Notified

) ∀t ′. ws t ′ 6= bInWS wc
t ` ws �Notify w⇒ ws

t ` ws �NotifyAll w⇒ λ t. if ws t = bInWS wc then bWS-Notifiedc else ws t

ws t ′ = bInWS wc
t ` ws �WakeUp t ′⇒ ws

(
t ′ 7→WS-WokenUp

) ∀w. ws t ′ 6= bInWS wc
t ` ws �WakeUp t ′⇒ ws

t ` ws �Notified⇒ ws(t :=None) t ` ws �WokenUp⇒ ws(t :=None)

Fig. 11 Semantics for wait set actions

upd-int :: ′t intrs⇒ ′t intr-act⇒ ′t intrs
upd-int is (Intr t) = is∪{ t }
upd-int is (ClearIntr t) = is−{ t }
upd-int is (IsIntrd t b) = is

upd-ints :: ′t intrs⇒ ′t intr-act list⇒ ′t intrs
upd-ints is [] = is
upd-ints is (ia · ias) = upd-ints (upd-int is ia) ias

ok-intr :: ′t intrs⇒ ′t intr-act⇒bool
ok-intr is (Intr t) = True
ok-intr is (ClearIntr t) = True
ok-intr is (IsIntrd t b) = (b = (t ∈ is))

ok-intrs :: ′t intrs⇒ ′t intr-act list⇒bool
ok-intrs is [] = True
ok-intrs is (ia · ias) =

ok-intr is ia∧ok-intrs (upd-int is ia) ias

Fig. 12 Semantics for interruption BTAs: update functions (left) and precondition test (right)

set status to be bWS-Notifiedc and bWS-WokenUpc, respectively, and all other reductions
require the wait set status to be None.

ok-wsets ws t was = (if Notified ∈ set was then ws t = bWS-Notifiedc
else if WokenUp ∈ set was then ws t = bWS-WokenUpc
else ws t = None)

Interrupt actions Figure 12 defines the update functions upd-int and upd-ints and predicates
ok-intr and ok-intrs for interrupt actions. The multithreaded semantics merely manages the
set of interrupts, but it attaches no specific behaviour to them. So, Intr and ClearIntr have
no preconditions, i.e., they can change the interrupts of any thread, even non-existing ones.
IsIntrd tests for pending interrupts similar to ThreadEx for thread existence. As all BTAs in a
thread action are checked and executed in one step, it is straightforward to implement a com-
pare-and-swap operation on the interrupt status. For example, LIsIntrd t True,ClearIntr tM
checks that t is interrupted and clears it atomically.

Thread actions Finally, the semantics for thread actions combines these building blocks.
The test ok-ta checks that the preconditions of all five BTA groups hold. The update re-
lation upd-ta combines the update functions and relations, except for upd-TRL, which the
interleaving semantics will apply directly when it updates the thread-local state.

ok-locks (locks s) t 〈ta〉l ok-tps (tp s) 〈ta〉t
ok-conds s t 〈ta〉c ok-wsets (wset s) t 〈ta〉w ok-intrs (intrs s) 〈ta〉i

ok-ta s t ta

ls′ = upd-locks ls t 〈ta〉l tp′ = upd-tps tp 〈ta〉t
t ` ws [�〈ta〉w⇒] ws′ is′ = upd-ints is 〈ta〉i

upd-ta (ls, tp,h,ws, is) t ta (ls′, tp′,h,ws′, is′)
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2.2.4 Interleaving semantics

Now, I put everything together that I have defined so far to obtain the multithreaded seman-
tics (level 5 in Figure 2). It takes the single-threaded semantics r :: (′l, ′t, ′x, ′h, ′w, ′o) semantics
as a parameter that source and bytecode will instantiate accordingly. A single step in r is
written t ` (x,h)−ta→ (x′,h′). It denotes that the thread with ID t can atomically reduce in
the thread-local state x with shared heap h to the thread-local state x′ with the new shared
heap h′ with thread action ta. In Isabelle, the locale multithreaded fixes the parameters final
(inherited from final-thread), r, and acq-events. The parameter acq-events produces the la-
bel (i.e., the sixth component of a thread action) for when a thread reacquires its temporarily
released locks. The locale requires two basic properties: (i) final states are final, i.e., they
cannot execute any further; and (ii) the shared heap in the thread creation BTAs indeed
records the shared heap at spawn time.

type synonym (′l, ′t, ′x, ′h, ′w, ′o) semantics =
′t⇒ ′x× ′h⇒ (′l, ′t, ′x, ′h, ′w, ′o) thread-action⇒ ′x× ′h⇒bool

locale multithreaded = final-thread+
fixes r :: (′l, ′t, ′x, ′h, ′w, ′o) semantics ( ` − → )
and acq-events :: ′l tr-locks⇒ ′o list
assumes final-no-red : Jt ` (x,h)−ta→ (x′,h′); final xK =⇒ False
and Spawn-heap : Jt ` (x,h)−ta→ (x′,h′); Spawn t ′′ x′′ h′′ ∈ set 〈ta〉tK =⇒ h′′ = h′

The atomic steps of the multithreaded semantics redT with syntax s−t:ta→ s′ are given
by two rules:

NORMAL

tp s t = b(x,λ . 0)c t ` (x,shr s)−ta→ (x′,h′)
ok-ta s t ta upd-ta (locks s, tp s,h′,wset s, intrs s) t ta (ls′, tp′,h′′,ws′, is′)

s−t:ta→ (ls′, tp′
(
t 7→ (x′,upd-TRL (λ . 0) ls t 〈ta〉l)

)
,h′′,ws′, is′)

ACQ
tp s t = b(x, ln)c ln 6= (λ . 0) ¬waiting (wset s t) may-acq (locks s) t ln

s−t:(λ . [], [], [], [], [],acq-events ln)→ upd-acq s t x ln

Each step is labelled with the ID t of the executing thread and the executed thread action ta.
The rule NORMAL injects the atomic steps of the threads into the multithreaded semantics.
Given a thread t with local state x and without any temporarily released locks (λ . 0), if t can
reduce with the shared state shr s to x′ and h′ with thread action ta, the interleaving semantics
tests whether ta’s preconditions are met and, if so, applies ta’s effects to the state. In this new
state, it updates t’s local state to x′ and its temporarily released locks, and the shared state to
h′. The other rule ACQ reacquires the locks ln that a thread t has temporarily released. This
step requires that t is not in a wait set and that t may acquire all temporarily released locks.
The predicate may-acq :: (′l, ′t) locks⇒ ′t⇒ ′l tr-locks⇒bool checks the latter condition.

may-acq ls t ln = (∀l. ln l > 0−→may-lock ls t l)

If so, upd-acq s t x ln updates the multithreaded state to

(λ l. acquire (locks s l) t (ln l),(tp s)(t 7→ (x,λ . 0)) ,shr s,wset s, intrs s)

where t’s multiset of temporarily released locks is empty.
Complete runs are obtained by stringing together the atomic transitions of the inter-

leaving semantics. Formally, a complete run consists of a possibly infinite list of transition
labels and—if there are only finitely many labels—the terminal state. Possibly infinite lists
where the constructor for the empty list carries a symbol ′b are defined by the codatatype of
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terminated lazy lists
codatatype (′a, ′b) tllist = []′b | ′a · (′a, ′b) tllist

Complete runs from a state s can be defined for arbitrary labeled transition systems B
coinductively by the two rules below, where s 6→ denotes ∀tl s′. ¬ s tlB s′. (I use double
rules to distinguish coinductive definitions from inductive ones.)

STOP
s 6→

s⇒ []s
===== STEP

s tlB s′ s′⇒ tls

s⇒ tl · tls
==================

For s (t,ta)B s′ = s−t:ta→ s′, this gives the complete runs of the multithreaded semantics.
The reflexive and transitive closure redT ∗∗∗ of the interleaving semantics contains all the
finite prefixes of complete runs and is written as s−ttas→∗ s′.

A thread is final iff its local state satisfies final, its multiset of temporarily released locks
is empty, and its wait set status is None, i.e., neither is it in a wait set, nor has it been
removed from one without having processed the removal. The set final-threads s contains
all final threads in the multithreaded state s. The multithreaded state s itself is final (written
mfinal s) iff all threads are final.

tp s t = b(x,λ . 0)c final x wset s t = None
t ∈ final-threads s

mfinal s = (dom (tp s)⊆ final-threads s)

By the assumptions of the locale multithreaded, final states are indeed final:

Lemma 1 If mfinal s, then there are no t, ta, s′ such that s−t:ta→ s′.

2.3 JinjaThreads source code

I now present the JinjaThreads source code semantics for Java threads in detail, which in
particular instantiates the framework from the previous section. In modelling Java threads, I
closely follow Chapter 17 in the Java Language Specification [21] for Java 8, making minor
abstractions where special cases would have unnecessarily complicated the formalisation.

2.3.1 Abstract syntax and typing

This section briefly presents the abstract syntax for JinjaThreads source code, bottom up. I
focus on the parts relevant for threads; more details on the sequential aspects can be found
in the Jinja paper [32] and my PhD thesis [49].

Abstract syntax falls into a generic part and one specific to source code. This way, byte-
code can reuse the generic parts (Section 2.4). JinjaThreads defines only an abstract syntax,
but no concrete input syntax. There is also a converter Java2Jinja (Section 8) that translates
the concrete syntax of (a fragment of) Java into JinjaThreads abstract syntax [49, §6.5].

There are HOL types cname for class names, mname for method names, and vname for
variable names and field names. In the following, C and D range over class names, M over
method names, V over variable names, and F over field names. There are five kinds of values
(HOL type ′addr val, variable convention v): a dummy value Unit, booleans Bool b where b ::
bool, 32-bit integers Intg i where i :: word32, the null reference Null, and references Addr a
where a :: ′addr. Addresses are a type variable such that the memory models can instantiate
the type as needed (Section 4). JinjaThreads types (HOL type ty, variable convention T ) are
the type Void for Unit, primitive types Boolean and Integer, and three kinds of reference
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expression description expression description
new C object allocation for class C Val v literal value
new T [e] array allocation with element type T e1 �bop� e2 binary operator
Cast T e checked cast of e to type T Var V local variable access
e instanceof T check for assignment compatibility V := e local variable assignment
e.F{D} field access e1[e2] array cell access
e1.F{D} := e2 field assignment e1[e2] := e3 array cell assignment
e.CAS(D.F,e′,e′′) atomic compare-and-set operation e.length array length
e.M(es) method call e1; ; e2 sequential composition
throw e exception throwing if (e1) e2 else e3 conditional
try e1 catch(C V ) e2 exception handling while (e1) e2 while loop
sync (e1) e2 lock monitor e1 for executing block e2
insync (a) e execute e while having locked monitor a (not part of the input syntax)
{V : T = vo; e} local variable declaration with optional initial value vo

Table 1 JinjaThreads expressions

types: NT for the null reference, Class C for classes, and T [] for arrays with element type T .
The predicate is-refT on types ty tests for reference types.

JinjaThreads source code, which I call J, is an imperative language where everything is
an expression (HOL type ′addr expr, variable convention e) with a return value: statements
are modelled as expressions that return Unit. The datatype expr has 23 constructors, one for
each kind of operation (Table 1). The following abbreviations are frequently used:

null = Val Null unit = Val Unit addr a = Val (Addr a)

Throw a = throw (addr a) {V : T ; e}= {V : T = None; e}

An expression is considered to be final iff it is a value Val v or a thrown exception Throw a.
The compare-and-set operation e.CAS(D.F,e′,e′′) is a separate language construct, instead
of Java native method. The reason is that the field F and the declaring class D cannot be
passed as arguments to methods in JinjaThreads as it does not model reflection.

A program declaration (of type ′m prog, variable convention P) is a list of class decla-
rations, each of which consists of the class name and the class itself. The class declares its
direct superclass, its fields and methods. A field declaration is a tuple of field name, type
and a flag whether the field is volatile. A method declaration consists of the method name, a
list of the parameters’ types, the return type, and an optional method body (type ′m option).
If the method body is None (written Native), a native method is declared. The actual body
is left as a type parameter ′m such that all JinjaThreads languages can use this format for
declarations. For the source code language, a method body consists of the list of formal pa-
rameter names and the expression itself (type J-mb). Then, a source code program has type
J-prog, which plugs in J-mb for ′m in ′m prog.

A program declaration P induces a subtype relation P ` T ≤ T ′ on reference types with
Class Object at the top, NT at the bottom, and all classes in between according to the subclass
relation. The array type constructor [] is covariant like in Java.

JinjaThreads requires the system classes Object, Thread, and Throwable, and the system
exceptions NullPointer, ClassCast, OutOfMemory, Arithmetic, ArrayIndexOutOfBounds,
NegativeArraySize, ArrayStore, IllegalThreadState, Interrupted, and IllegalMonitorState.
System classes and exceptions differ from ordinary ones only in that every proper program
must declare them under the specified name.

The type system for J is modelled as type judgements of the form P,E ` e :: T where the
environment E (of type vname⇀ ty) assigns types to local variables. P,E ` es [::] Ts extends
P,E ` :: pointwise to lists of expressions and types. For example,
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WTSYNC
P,E ` e1 :: T1 is-refT T1 T1 6= NT P,E ` e2 :: T

P,E ` sync (e1) e2 :: T

WTCALL

P,E ` e :: T P,E ` es [::] Ts′

class-of T = bCc P`C sees M:Ts→Tr = meth in D P ` Ts′ [≤] Ts
P,E ` e.M(es) :: Tr

WTCAS

P,E ` e :: T P,E ` e′ :: T ′ P,E ` e′′ :: T ′′ class-of T = bCc
P`C sees F :Tf (True) in D P ` T ′ ≤ Tf P ` T ′′ ≤ Tf

P,E ` e.CAS(D.F,e′,e′′) :: Boolean

The typing rule WTSYNC for synchronized statements sync (e1) e2 requires that the mon-
itor expression e1 must have a reference type, but not NT , and the return type of sync (e1) e2
is e2’s type.

Rule WTCALL deals with method calls e.M(es). The partial function class-of T deter-
mines the class C where the method lookup starts. It satisfies (i) class-of (Class C) = bCc,
and (ii) class-of (T []) = bObjectc, and (iii) class-of T = None for all other types T . In par-
ticular, class-of NT = None disallows expressions like null.wait([]) because null cannot
directly be dereferenced in Java [21]. The notation P`C sees M:Ts→Tr = meth in D means
that class C sees a method named M implemented in class D, taking method overriding into
account. Ts is the list of parameter types, T the return type, and meth :: ′m option the optional
method body. As programs must declare native methods, method lookup and typing work
uniformly for native and non-native methods.

In the rule WTCAS for the compare-and-set operation, P`C sees F :Tf (vol) in D ex-
presses that the class C has a field F declared in class D with type Tf and volatility status
vol. So compare-and-set operations can only be used on volatile fields. This ensures that the
Java memory model correctly treats the compare-and-set operation as an atomic synchroni-
sation action. The return type is Boolean as the operation returns whether the comparison
was successful.

JinjaThreads imposes standard well-formedness conditions on programs, which fall into
two groups. First, the language-independent conditions in particular require that the class
hierarchy must be acyclic, method overriding contravariant in the parameters and covari-
ant in the return types, and the signatures of native methods must match the signature that
JinjaThreads expects. Among others, the following native methods are allowed:4

Thread.start([]) :: Void
Thread.join([]) :: Void
Thread.interrupt([]) :: Void
Thread.isInterrupted([]) :: Boolean

Object.interrupted([]) :: Boolean
Object.currentThread([]) :: Class Thread

Object.wait([]) :: Void
Object.notify([]) :: Void
Object.notifyAll([]) :: Void

The first column lists the methods of Thread for spawning (start), joining on (join), interrupt-
ing (interrupt), and testing for interruption (isInterrupted) of a thread. The second column
consists of static methods in class Thread in Java. Since JinjaThreads lacks static methods,
I moved them to class Object such that they can be called from every method via the this
pointer. They both operate on the current thread: interrupted checks and clears the interrupt
status, and currentThread returns the associated Thread object. The last column specifies
Object’s methods for the wait-notify-mechanism.

Second, the language-specific conditions are imposed on the bodies of all declared meth-
ods. For J, the parameter names must be distinct and equally many as the parameter types,

4 JinjaThreads provides further native methods (e.g., printing) that are not related to multithreading and
therefore not covered in this article. The details can be found in [49].
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datatype hty = Class cname | Array ty nat datatype loc = Field cname vname | Cell nat

locale heap =
fixes typeof-addr :: ′heap⇒ ′addr⇀hty
and empty-heap :: ′heap
and alloc :: ′heap⇒hty⇒ (′heap× ′addr) set
and read :: ′heap⇒ ′addr⇒ loc⇒ ′addr val⇒bool
and write :: ′heap⇒ ′addr⇒ loc⇒ ′addr val⇒ ′heap⇒bool
and P :: ′m prog

assumes alloc-type : J(h′,a) ∈ alloc h T ; is-type P TK =⇒ typeof-addr h′ a = bTc
and alloc-hext : (h′,a) ∈ alloc h T =⇒ h�h′

and write-hext : write h a al v h′ =⇒ h�h′

Fig. 13 Interface for the shared heap

and the bodies must be well-typed with a subtype of the declared return type and pass
the definite assignment check. Formally, the well-formedness predicate wf-prog wf -md P
is parametrized by the language-specific well-formedness check for method declarations
wf -md. For J, wf-J-prog P instantiates wf -md with the checks described.

2.3.2 Abstract heap module

The shared heap h is formalised as an abstract datatype (ADT) using a locale (Figure 13).
The ADT offers the advantage that the different memory models can provide different im-
plementations and all definitions and theorems immediately carry over. The type variables
′heap and ′addr represent the abstract types of the heap and of addresses.

The operation typeof-addr returns the dynamic type of addresses (type hty) in a given
heap, which can either be a class name Class C or an array Array T n with n cells of type T .
I overload Class :: cname⇒ ty and Class :: cname⇒hty and similarly for is-type.

The other operations manipulate the heap. The constant empty-heap denotes the heap
which has no objects allocated. The operation alloc allocates a new object of the given class
or an array of the given element type and size. As the JMM requires allocation to be non-
deterministic [50], alloc returns the set of all possible updated heaps h′ with the allocated
address a. The set is empty if the allocation fails, e.g., due to insuffcient memory. If the
allocation succeeds, a’s type information in h′ must be correct—provided that the allocated
type is valid (assumption alloc-type). A type T is valid (notation is-type P T ) iff all classes it
refers to exist in the program and, in case of array types, the element type is valid and not NT.

The relations read and write model access to the heap. The member al :: loc specifies
which field (al = Field D F) or array cell (al = Cell n) of an address to access. An address
a and a member al identify a location (a,al). The predicate read h a al v holds if v can be
read from the location (a,al) in the heap h. Similarly, writing to a location updates the heap
(write h a al v h′). Again, the JMM requires that these operations be non-deterministic. Allo-
cations and writes must be implemented such that they extend the heap (h�h′), i.e., dynamic
type information grows monotonically. Formally, h�h′ iff typeof-addr h⊆m typeof-addr h′.

All heap-dependent definitions and theorems reside in this locale or its descendants.

2.3.3 Semantics of native methods

Most of Java’s concurrency features are implemented in native methods. I now present the
semantics of these native methods (level 2). P, t ` 〈a.M(vs),h〉−ta→native 〈va,h′〉 denotes
that when thread t calls method M on the receiver object at address a with parameters vs in
the heap h, then the thread action ta is issued, va returned and the heap updated to h′. The
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framework type variable source code bytecode
lock ID ′l ′addr ′addr
thread ID ′t ′addr ′addr
thread-local state ′x ′addr expr× (vname⇀ ′addr val) ′addr option× ′addr frame list
shared state ′h ′heap ′heap
wait set ID ′w ′addr ′addr
memory model ′o not needed for this article, see [49, 50] for details

Table 2 Instantiation of type variables of the framework semantics

result va can either be a value (Ret-Val v), the address of a system exception Ret-sys-xcpt C,
or the special value Ret-Again, which is used for non-atomic native calls.

Thanks to the multithreading semantics, the semantics of native methods merely issues
suitable thread actions. Therefore, I first specify how source code and bytecode instantiate
the type variables in the multithreading semantics (Table 2). Addresses identify locks and
wait sets as every object has one monitor and one wait set. Threads are identified by their
associated object. The thread-local states are discussed in Sections 2.3.4 and 2.4.2.

The JLS specifies the native methods only incompletely or not at all. Hence, I relied
on the Java API [26] and, in case the JLS and API are ambiguous, on test runs of the Java
HotSpot VM, version 1.6.0 22. The latter cases are marked as such.

Figure 14 shows the semantics for the native methods. The rules for the methods start,
join, interrupt, and isInterrupted have the premises typeof-addr h a= bClass Cc and P`C�∗
Thread, where ` �∗ denotes the reflexive and transitive closure of the subclass relation.

Fork and join Rule START spawns a new thread which is associated with the receiver object.
The new thread is to execute the run method of the receiver object. Since both source code
and bytecode build on the semantics of native methods, START cannot include the concrete
initial state of the new thread in the Spawn BTA, because their state representations differ. In-
stead, it specifies to execute the parameter-less run method that class C sees with receiver ob-
ject a. Source code and bytecode convert this BTA into the state representation as required.
If the thread has already been started, STARTFAIL raises an IllegalThreadState exception.

The join method waits for the receiver thread a to terminate, so JOIN includes the basic
thread action Join a. However, the API specifies that join first has to test whether the current
thread t has not been interrupted. Otherwise, it raises an Interrupted exception (JOININTR).
Recall that the interleaving semantics picks the reductions JOIN or JOININTR only if their
thread action’s precondition is satisfied. So, if a is not final and t is not interrupted, the call
to join gets stuck until either a terminates or t gets interrupted.

Although the implementation of class Thread in Oracle’s JDK SE 8 declares (and has
always declared in previous versions) the methods start and join as synchronized, neither
the JLS nor the API require this. Hence, none of the rules for start and join includes Lock
and Unlock actions, as such synchronisation would erroneously hide data races.

Interruption When a thread interrupts another thread t ′ via the interrupt method (INTR),
t ′ is removed from any wait set (BTA WakeUp t ′) and its interrupt status is set (BTA
Intr t ′) if t ′ already exists as a thread in the thread pool (BTA ThreadEx t ′ True). But if
t ′ is merely a Thread object which has not yet been started, the call to interrupt has no ef-
fect (INTRINEX). The isInterrupted method returns the interrupt status of the receiver thread
(ISINTRD), whereas the interrupted method returns and clears the interrupt status of the ex-
ecuting thread (INTRDT and INTRDF). A call to currentThread returns the address of the
object associated with the current thread (CURRTH).
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START: P, t ` 〈a.start([]),h〉−LSpawn a (C, run,a) hM→native 〈Ret-Val Unit,h〉
STARTFAIL: P, t ` 〈a.start([]),h〉−LThreadEx a TrueM→native 〈Ret-sys-xcpt IllegalThreadState,h〉
JOIN: P, t ` 〈a.join([]),h〉−LJoin a, IsIntrd t FalseM→native 〈Ret-Val Unit,h〉
JOININTR: P, t ` 〈a.join([]),h〉−LIsIntrd t True,ClearIntr tM→native 〈Ret-sys-xcpt Interrupted,h〉
INTR: P, t ` 〈a.interrupt([]),h〉−LThreadEx a True,WakeUp a, Intr aM→native 〈Ret-Val Unit,h〉
INTRINEX: P, t ` 〈a.interrupt([]),h〉−LThreadEx a FalseM→native 〈Ret-Val Unit,h〉
ISINTRD: P, t ` 〈a.isInterrupted([]),h〉−LIsIntrd a bM→native 〈Ret-Val (Bool b),h〉
CURRTH: P, t ` 〈a.currentThread([]),h〉−LM→native 〈Ret-Val (Addr t),h〉
INTRDT: P, t ` 〈a.interrupted([]),h〉−LIsIntrd t True,ClearIntr tM→native 〈Ret-Val (Bool True),h〉
INTRDF: P, t ` 〈a.interrupted([]),h〉−LIsIntrd t FalseM→native 〈Ret-Val (Bool False),h〉
WAITFAIL: P, t ` 〈a.wait([]),h〉−LUnlockFail→aM→native 〈Ret-sys-xcpt IllegalMonitorState,h〉
WAITINTRD1: P, t ` 〈a.wait([]),h〉−LUnlock→a,Lock→a, IsIntrd t True,ClearIntr tM→native

〈Ret-sys-xcpt Interrupted,h〉
WAIT: P, t ` 〈a.wait([]),h〉−LSuspend a,Unlock→a,Lock→a,Release→a, IsIntrd t FalseM→native

〈Ret-Again,h〉
NTFD: P, t ` 〈a.wait([]),h〉−LNotifiedM→native 〈Ret-Val Unit,h〉
WAITINTRD2: P, t ` 〈a.wait([]),h〉−LWokenUp,ClearIntr tM→native 〈Ret-sys-xcpt Interrupted,h〉
SPURIOUS: P, t ` 〈a.wait([]),h〉−LUnlock a,Lock a,Release a, IsIntrd t FalseM→native 〈Ret-Val Unit,h〉
NTF: P, t ` 〈a.notify([]),h〉−LUnlock→a,Lock→a,Notify aM→native 〈Ret-Val Unit,h〉
NTFFAIL: P, t ` 〈a.notify([]),h〉−LUnlockFail→aM→native 〈Ret-sys-xcpt IllegalMonitorState,h〉
NTFALL: P, t ` 〈a.notifyAll([]),h〉−LUnlock→a,Lock→a,NotifyAll aM→native 〈Ret-Val Unit,h〉
NTFALLFAIL: P, t ` 〈a.notifyAll([]),h〉−LUnlockFail→aM→native 〈Ret-sys-xcpt IllegalMonitorState,h〉

Fig. 14 Semantics of native methods. The rules for methods start, join, interrupt, and isInterrupted addition-
ally have the premises typeof-addr h a = bClass Cc and P`C�∗ Thread.
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Waiting and notification The rules for wait, notify, and notifyAll are more complicated. I
start with notify and notifyAll. A call to either of them first tests via Unlock→a,Lock→a
whether the current thread has locked the receiver object’s monitor a, without changing a’s
lock state. If so, it emits the BTA Notify a or NotifyAll a, respectively (NTF and NTFALL).
Otherwise, UnlockFail→a checks that the thread does not hold the lock; rules NTFFAIL and
NTFALLFAIL then raise an IllegalMonitorState exception.

Figure 15 illustrates as a transition system how the rules for wait implement the wait-
notify mechanism. Every state is defined by four relevant components which are explained
in the box on the right. The transitions are labelled by the rules that generate them – solid
lines denote steps by the thread calling wait, dashed lines denote steps of other threads. From
the three inital states without incoming arrows, the transitions lead to what the call returns,
i.e., Unit or a system exception. Observe that the transitions from the initial state in the top
centre step through the wait set automaton from Figure 4.

If the thread has not locked the receiver object a (top left state), WAITFAIL raises an
IllegalMonitorState exception. If t does hold the lock, wait tests whether t has a pending in-
terrupt.5 If so (second state in the top row), WAITINTRD1 clears it and raises an Interrupted
exception. Otherwise, the thread is in the state in the top centre, i.e., t holds the lock on a, it
has not temporarily released any locks, its wait set status is None, and it is not interrupted.
Then, WAIT suspends t to a’s wait set and temporarily releases all locks on a. Whether t
will be interrupted or notified determines whether wait should return normally or raise an
Interrupted exception. Thus, the return value cannot be determined at this point of time.
Therefore, WAIT returns the special token Ret-Again, which indicates that the thread’s next
step should be to call the same method with the same parameters once more. This effec-
tively splits the call to wait into two steps. Since WAIT suspends t to the wait set a, the
multithreading semantics expects t to process its removal from the wait set in its next step
(NTFD and WAITINTRD2 use the BTAs Notified and WokenUp, respectively). But before
the multithreading semantics picks one of these, t must have been removed from the wait
set and reacquired the locks on a. Hence, when another thread calls notify or notifyAll on a,
or interrupt on t, t is removed from the wait set a. Note that this determines the result of the
call to wait. So, t’s next step is to reacquire the locks on a. There is no need to add a rule for
that to t’s semantics because ACQ of the interleaving semantics takes care of this. Next, the
second call to wait processes t’s removal from the wait set, which NTFD and WAITINTRD2
implement. The latter also clears t’s interrupt status as required by the JLS [21, §17.8.1].
Another thread may interrupt t after t is has been notified, but before NTFD processes t’s
removal. In that case, the call to wait returns normally and t’s interrupt status is still set.

The JLS allows, but does not require, spurious wake-ups [21, §17.8.1], i.e., a call to wait
may return without interruption and notification. Spurious wake-ups are relevant to deter-
mine when programs are correctly synchronized [50]. In JinjaThreads, threads can wake up
spuriously, but they do not have to. Instead of suspending itself upon a call to wait, a thread
can choose to instantaneously wake up spuriously (SPURIOUS), i.e., it only temporarily re-
leases the lock on the monitor a. Since I do not model a specific scheduler, t may postpone to
reacquire a’s lock until other threads make progress. Hence, instantaneous wake-ups cover
all spurious wake-ups because the other threads cannot tell whether another thread has wo-
ken up spontaneously.

A simpler model for spurious wake-ups would be to include a rule without preconditions
that removes any thread from any wait set any time. However, this does not work well with

5 Neither the JLS [21, Ch. 17.8] nor the Java API [26] specify whether wait first tests for interrupts or for
the lock on the monitor. JinjaThreads follows the HotSpot VM, which tests for the lock state first.
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considering complete runs as discussed in Section 2.2.4: If there is at least only one possible
step, one such will be taken. This assumption is also the basis for type safety proofs via
progress and preservation (Section 3). However, this can enforce spurious wake-ups (rather
than discourage them as the JLS does). Consider, e.g.,

m = new Object(); synchronized (m) { m.wait(); } print "X";

When run with Oracles Hotspot and OpenJDK VMs, this program with only one thread
deadlocks, because the thread waits forever for being notified or interrupted, but there is no
thread to do so. Hence, it never prints X. With the simpler model for spurious wake-ups, such
a deadlock could not occur. The semantics would spuriously wake-up the thread and run it
to completion, i.e., the program would always print X and terminate. My semantics produces
both behaviours: If the call to wait chooses to instantaneously wake up, the program prints
X and terminates. Otherwise, it chooses to wait in the wait set and deadlocks.

Interaction of interruption and notification While a thread t is in a wait set, it may be noti-
fied and interrupted simultaneously. The JLS demands that t determines an order over these
causes and behave accordingly. That is, if the notification comes first, t’s interrupt is pend-
ing and the call returns normally. If the interrupt comes first, t’s call throws an Interrupted
exception, but the notification must not be lost, i.e., another thread in the wait set must be
notified, if there is any.

JinjaThreads meets this requirement as follows: Notifications use the BTAs Notify or
NotifyAll whereas interrupts use WakeUp. Therefore, the wait set status bWS-Notifiedc
and bWS-WokenUpc records the cause of the removal. This determines whether NTFD or
WAITINTRD2 will process the removal, i.e., whether wait returns normally or throws an
Interrupted exception. In particular, NTFD and WAITINTRD2 ignore on the interrupt status
when they execute. Otherwise, if they did consider it in the obvious way, notifications could
be lost. Suppose, for example, two threads t1 and t2 are in a wait set w and another thread
calls notify on a, which removes t1. While t1 waits to reacquire the locks on a, another thread
interrupts t1 (the INTR transitions to the left in Figure 15). Hence, when t1 processes its
removal, its interrupt status has been set, i.e., it raises an Interrupted exception. But now, the
notification is lost, because t2 remains in the wait set. This violates the above requirement.

The JLS does not require that the order over the concurrent notification and interruption
be consistent with other orderings. In fact, Oracle’s HotSpot 6 and 7 sometimes choose
an inconsistent order [50]. In JinjaThreads, the interleaving of threads defines an order
on notifications (BTA Notify and NotifyAll) and interrupts (BTA WakeUp) from different
threads which is consistent with all other orderings. Thus, the JinjaThreads cannot produce
behaviours with inconsistent orders.

2.3.4 Semantics of JinjaThreads source code

The core semantics for J on level 3 is a small-step semantics written P, t ` 〈e,s〉−ta→〈e′,s′〉.
I say that the expression e reduces in state s to e′ and state s′ with thread action ta. The states
consists of the shared heap and a store for local variables (type vname⇀ ′addr val). It is
a standard semantics with rules for subexpression reduction and exception propagation. An
expression is final, i.e., fully reduced, when it is a value Val v or a thrown exception Throw a.

Figure 16 shows the rules relevant for multithreading, namely for synchronized blocks
and method calls. These rules illustrate the main ideas; for an extensive discussion, see [32,
49]. The expression sync (e1) e2 models Java’s synchronized statements as specified in
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RSYNC1:
P, t ` 〈e1,s〉−ta→〈e′1,s′〉

P, t ` 〈sync (e1) e2,s〉−ta→〈sync (e′1) e2,s′〉
RSYNCN: P, t ` 〈sync (Val Null) e,s〉−LM→〈THROW NullPointer,s〉
RSYNCX: P, t ` 〈sync (Throw a) e,s〉−LM→〈Throw a,s〉
RLOCK: P, t ` 〈sync (addr a) e,s〉−LLock→aM→〈insync (a) e,s〉

RSYNC2:
P, t ` 〈e,s〉−ta→〈e′,s′〉

P, t ` 〈insync (a) e,s〉−ta→〈insync (a) e′,s′〉
RUNLOCK: P, t ` 〈insync (a) (Val v),s〉−LUnlock→aM→〈Val v,s〉
RUNLOCKX: P, t ` 〈insync (a) (Throw a′),s〉−LUnlock→aM→〈Throw a′,s〉

RCALL:

typeof-addr h a = bTc
P` class-of ′ T sees M:Ts→Tr = b(pns,body)c in D |vs|= |pns| |Ts|= |pns|

P, t ` 〈addr a.M(map Val vs),(h,x)〉
−LM→〈blocks (this ·pns) (Class D ·Ts) (Addr a · vs) body,(h,x)〉

RNATIVE:

typeof-addr h a = bTc P` class-of ′ T sees M:Ts→Tr = Native in D
P, t ` 〈a.M(vs),h〉−ta→native 〈vx,h′〉 e′ = native-Ret2J (addr a.M(map Val vs)) vx

P, t ` 〈addr a.M(map Val vs),(h,x)〉−native-TA2J P ta→〈e′,(h′,x)〉

RCAS:
read h a (Field D F) v write h a (Field D F) v h′

P, t ` 〈addr a.CAS(D.F,Val v,Val v′),(h,x)〉−LM→〈true,(h′,x)〉

RCASF:
read h a (Field D F) v′′ v 6= v′′

P, t ` 〈addr a.CAS(D.F,Val v,Val v′),(h,x)〉−LM→〈false,(h,x)〉

Fig. 16 Semantics of synchronized blocks, method calls, and compare-and-set operations

[21, §14.19]. JinjaThreads does not model synchronized methods explicitly, because they
are syntactic sugar for ordinary methods with their body inside a synchronized statement.

Rule RSYNC1 reduces the monitor subexpression. If the monitor subexpression becomes
Null, a NullPointer exception is raised (RSYNCN), where THROW NullPointer denotes the
address of the pre-allocated NullPointer exception. If an exception is raised while reducing
the monitor subexpression, RSYNCX propagates the same exception. If the monitor subex-
pression reduces to some monitor address a, the thread can only reduce further by acquiring
the lock on a. In that case, RLOCK rewrites the sync (addr a) e expression to insync (a) e to
remember that the lock has been granted (insync (a) e expressions are not part of the input
language as there is no typing rule for them). Then, RSYNC2 executes the body. Once it
has become a value or raised an exception, RUNLOCK and RUNLOCKX unlock the monitor,
and return the value or propagate the exception, respectively. Note that it is not necessary to
explicitly release (and later reacquire) the monitor a when the body e of insync (a) e calls
wait on a. The basic thread action Release in WAIT and temporarily released locks in the
interleaving semantics (cf. ACQ) take care of this.

RCALL and RNATIVE are the main rules for calling a normal and native method, re-
spectively. The rules for evaluating the receiver expression and the parameters are stan-
dard [32] and not shown. So, suppose that the receiver expression has evaluated to an
address a with dynamic type T . If the called method M for the receiver is not native,
RCALL looks up the method definition in P and inlines the method body. (The function
class-of ′ computes the class where the method lookup starts: class-of ′ (Class C) = C and
class-of ′ (Array T n) = Object, and blocks Vs Ts vs e surrounds e with local variable blocks
for variables names Vs with types Ts and initial values vs.) Dynamic inlining avoids the need
for modelling the call stack explicitly; the local variable blocks ensure static binding for the
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this pointer and parameter names. Conversely, RNATIVE dispatches the call to the semantics
for native methods (Section 2.3.3). Then, the thread action ta and result vx are converted
into J using the functions native-TA2J and native-Ret2J. The function native-TA2J replaces
the initial states (C,M,a) of threads spawned in ta with the method body that the method
lookup finds for M starting at C and sets the this pointer to Addr a. Similarly, native-Ret2J
converts the result into J syntax:

native-Ret2J e (Ret-Val v) = Val v
native-Ret2J e (Ret-sys-xcpt C) = THROW C
native-Ret2J e Ret-Again = e

In particular, in the case of WAIT, the expression of the statement does not change, so the
next step will be another call to wait as required.

The semantics is strict in the sense that it gets stuck when values and types are not as
expected, e.g., if the called method does not exist. The progress theorem (Lemma 12) shows
that the type system rules out such cases.

Compare-and-set uses the operations of the abstract heap in the rules RCAS and RCASF.
When the expected value v can be read from the location (a,Field D F) in the heap, then
RCAS immediately writes the other value v′ to the same location and the result true records
the success of the comparison. Conversely, when an other value v′′ can be read, RCASF does
not update the heap and returns false. So, only a successful compare-and-set operations acts
like an atomic read and write on the location; a failing one behaves just like a read.6 The rules
for subexpression reduction, exception propagation, and throwing of a NullPointer exception
are similar to those for synchronized blocks except for unlocking and not shown.

I obtain the interleaving semantics for J by instantiating the locale multithreaded from
Section 2.2.4 with J-red = λ t ((e,x),h) ta ((e′,x′),h′). P, t ` 〈e,(h,x)〉−ta→〈e′,(h′,x′)〉 for
r and J-final = λ (e,x). final e for final.

Lemma 2 J-final and J-red P are well-formed with respect to the interleaving semantics.

Proof I must discharge the assumptions of the locale multithreaded. final-no-red follows by
case analysis of the rules. Spawn-heap holds by induction on the small step semantics and
case analysis on the semantics for native methods. ut

The start state J-start P C M vs for program P has exactly one thread start-tID with
thread-local state (blocks (this ·pns) (Class D ·Ts) (Null ·vs) body,empty) where P`C sees
M:Ts→ = b(pns,body)c in D. Hence, start-tID is about to execute the non-native method
M in class C with parameters vs. Setting the this pointer to Null simulates a static method.
The initial heap start-heap has preallocated a Thread object for start-tID and objects for all
system exceptions. There are no locks held or temporarily released, all wait sets are empty
and there are no pending interrupts. A start state is well-formed (written wf-start P C M vs)
iff C sees a non-native method M and the parameters vs conform to M’s parameter types.

2.4 Bytecode and the virtual machine

This section presents JinjaThreads’s bytecode language (Section 2.4.1) and virtual machine
(VM, Section 2.4.2). They model Java bytecode and the Java VM according to the Java
Virtual Machine Specification (JVMS) [42].

6 This behaviour models the Java 9 specification of the compare-and-set operation. In Java 8 and before,
it was unclear whether a failing compare-and-set operation has also the synchronisation effect of writing the
old value [73].
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2.4.1 Bytecode

The bytecode language JVM reuses many concepts from source code. For program declara-
tions, it suffices to specify the type of method bodies ′addr jvm-method to be plugged in for
′m. Everything else remains unchanged, in particular, the lookup functions, subtyping and
generic well-formedness.

A method body (msl,mxl, ins,xt) consists of an instruction list ins, an exception table
xt, the maximum stack length msl, and the number mxl of required registers, not counting
the this pointer and parameters. The lookup functions instrs-of P C M and ex-table-of P C M
extract the instruction list and exception table for method M in class C from P.

type synonym ′addr jvm-method = nat×nat× ′addr instr list× ex-table
type synonym ′addr jvm-prog = ′addr jvm-method prog

type synonym ex-table = ex-entry list
type synonym ex-entry = pc×pc× cname option×pc×nat

The exception table xt is a list of exception table entries ( f , t,Co, pc,d) where Co is
either some class name bCc or the special constant Any = None. The exception handler
starting at the index pc in ins expects d elements on the stack. It handles exceptions that are
raised by instructions in the interval from f inclusive to t exclusive. If Co is a class name
bCc, it handles only those that are a subclass of C; if Co is Any, it handles all.

Any might seem redundant because all exceptions must be subclasses of Throwable, i.e.,
bThrowablec could replace Any. However, I include Any for two reasons: First, the Java Vir-
tual Machine specification (JVMS) [42, §4.7.3] also specifies such a “catch-all” value, which
is meant for compiling finally blocks. Second, bThrowablec and Any are interchangeable
only if one can prove that all raised exceptions are subclasses of Throwable, which requires
a type safety proof. With Any, the compiler verification can avoid the subject reduction and
preservation proofs for the intermediate language by not relying on such invariants.

JinjaThreads supports 24 different bytecode instructions (Table 3). If not provided ex-
plicitly, operands are taken from the stack and results pushed onto the stack. In comparison
to Java bytecode, JinjaThreads unifies instructions that only differ in their operand types
(e.g., aload and iload) in polymorphic ones (e.g., Load), but the instructions have not
been simplified conceptually. The instruction CAS does not exist in Java bytecode where
compare-and-set operations are native methods taking a variable handle as the field speci-
fication. As JinjaThreads does not model such reflection, I added the compare-and-set in-
struction. Moreover, a few instructions for stack and register manipulation (e.g., dup2, iinc)
have been omitted, but they can be simulated by existing ones or could be added easily. Nei-
ther does JinjaThreads include any instructions for omitted types such as byte and float

nor advanced control flow instructions like tableswitch and jsr for subroutines.

2.4.2 The virtual machine

The state space is taken from the Jinja VM [32]. The state (xcp,h, frs) of type jvm-state
consists of an exception flag xcp (bac corresponds to Throw a in J and None denotes none),
a heap h and a stack of call frames. A state is final iff the call stack is empty.

type synonym (′addr, ′heap) jvm-state = ′addr option× ′heap× ′addr frame list
type synonym ′addr frame = ′addr opstack× ′addr registers× cname×mname×pc
type synonym ′addr opstack = ′addr val list
type synonym ′addr registers = ′addr val list
type synonym pc = nat
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Load i load from register i
Store i store into register i
Push v push literal value v on stack
Pop pop value from stack
Dup duplicate top value on stack
Swap swap top elements on stack
BinOp bop apply binary operator bop
New C create object of class C
NewArray T create array with element type T
ALoad fetch array cell
AStore set array cell
ALength get length of array

Getfield F C fetch field F declared in class C
Putfield F C set field F declared in class C
CAS F C compare-and-set on field F of class C
Checkcast T ensure that value conforms to type T
Instanceof T check for assignment compatibility
Invoke M n invoke method M with n parameters
Return return from method
Goto i relative jump
IfFalse i branch if top of stack is Bool False
ThrowExc raise top of stack as exception
MEnter acquire lock on monitor
MExit release lock on monitor

Table 3 Instructions of the JinjaThreads virtual machine

exec-instr MEnter P t h stk loc C M frs =
(let v · stk′ = stk;Addr a = v
in if v = Null then {(LM,baddr-of-sys-xcpt NullPointerc ,h,(stk, loc,C,M, pc) · frs)}

else {(LLock→aM,None,h,(stk′, loc,C,M, pc+1) · frs)})
exec-instr MExit P t h stk loc C M frs =
(let v · stk′ = stk; Addr a = v
in if v = Null then {(LM,baddr-of-sys-xcpt NullPointerc ,h,(stk, loc,C,M, pc) · frs)}

else {(LUnlock→aM,None,h,(stk′, loc,C,M, pc+1) · frs),
(LUnlockFail→aM,baddr-of-sys-xcpt IllegalMonitorStatec ,h,(stk, loc,C,M, pc) · frs)})

exec-instr (Invoke M′ n) P t h stk loc C M pc frs =
(let ps = rev (take n stk); r = stk[n];Addr a = r; bTc= typeof-addr h a
in if r = Null then {(LM,baddr-of-sys-xcpt NullPointerc ,h,(stk, loc,C,M, pc) · frs)}

else let (D,Ts,Tr,m) = ι(D,Ts,Tr,m). P` class-of ′ T sees M′:Ts→TR = m in D
in case m of Native⇒ {(native-TA2jvm P ta,native-Ret2jvm n h′ stk loc C M pc frs vx) |

P, t ` 〈a.M′(ps),h〉−ta→native 〈vx,h′〉}
| b(msl,mxl, ins,xt)c ⇒ let fr′ = ([],r · ps @ replicate mxl dummy-val,D,M′,0)

in {(LM, None,h, fr′ · (stk, loc,C,M, pc) · frs)})
exec-instr (CAS F D) P t h stk loc C M pc frs =
(let v′′ · v′ · v · stk′ = stk; Addr a = v
in if v = Null then {(LM, baddr-of-sys-xcpt NullPointerc ,h,(stk, loc,C,M, pc) · frs)}

else {(LM,None,h′,(Bool True · stk′, loc,C,M, pc+1) · frs) |
read h a (Field D F) v′ ∧write h a (Field D F) v′′ h′ }∪
{(LM,None,h,(Bool False · stk′, loc,C,M, pc+1) · frs) | read h a (Field D F) v′′′ ∧ v′ 6= v′′′ }

Fig. 17 Semantics of the instructions for monitors, method calls, and the compare-and-set operation

Each method executes in its own call frame (type frame). A call frame (stk, loc,C,M, pc)
contains the operand stack stk, an array loc of registers for the this pointer, the parameters,
and local variables, the class name C, the method name M, and the program counter pc. Al-
though registers are modelled as lists, their length does not change during execution. In con-
trast, the size of the operand stack does change, but the maximum size is statically known.

The JinjaThreads VM is defined in a functional style, like the Jinja VM. The function
exec-instr :: instr⇒ jvm-prog⇒ ′addr⇒ ′heap⇒opstack⇒ registers⇒cname⇒mname⇒
pc⇒ ′addr frame list⇒ ((′addr, ′heap) jvm-TA× (′addr, ′heap) jvm-state) set defines the
semantics of a single instruction, where (′addr, ′heap) jvm-TA is an abbreviation for (′addr,
′addr, ′addr option× ′addr frame list, ′heap, ′addr, ′o) thread-action. Given the instruction,
the program, the thread ID, the heap, and the curried non-empty call stack, it produces a
non-empty set of thread actions and successor states by pattern-matching on the instruction.

Figure 17 presents the semantics of the instructions MEnter, MExit, Invoke, and CAS
for monitors, method calls, and the compare-and-set operation; Both instructions for mon-
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exec P (xcp, h, []) = /0
exec P (None, h, (stk, loc,C,M, pc) · frs) = exec-instr (instrs-of P C M)[pc] P h stk loc C M pc frs
exec P (bac , h, fr · frs) = {xcpt-step P a h fr frs}

Fig. 18 Combining normal execution with exception handling in the VM

itors MEnter and MExit raise a NullPointer exception if the value v on top of the stack is
Null. Here, the function addr-of-sys-xcpt returns the address of pre-allocated system ex-
ceptions. Otherwise, MEnter acquires the lock with the thread action LLock→aM where
a is the address that v denotes. The same thread action is used by the source code se-
mantics (RLOCK). Like RUNLOCK, MExit unlocks the monitor a with the thread action
LUnlock→aM. Unlike sync ( ) expressions in J, locking and unlocking need not be struc-
tured in bytecode, i.e., MEnter and MExit need not come in pairs. Hence, MExit may also
fail with an IllegalMonitorState exception if the current thread does not hold the monitor.

Calls to native methods reuse the semantics from Section 2.3.3 and non-native calls push
the new call frame fr′ on top of the call stack, where the registers contain the receiver object
r, the parameters ps (which are in reverse order on the stack), and replicate mxl dummy-val
fills the remaining registers with the dummy value dummy-val.

Like in source code, compare-and-set CAS uses the abstract heap operations read and
write to access and update the specified field. When several values can be read from memory,
this instruction has several successor states, for comparison success and for comparision
failure. The Java memory model eliminates this non-determinism at a higher level in the
semantics stack, i.e., compare-and-set is always deterministic for volatile fields.

The function exec :: ′addr jvm-prog⇒ (′addr, ′heap) jvm-state⇒ ((′addr, ′heap) jvm-TA
× (′addr, ′heap) jvm-state) set incorporates exception handling in the semantics (Figure 18).
The VM halts if the call stack is empty. If no exception is flagged, exec executes the next
instruction via exec-instr. Otherwise, xcpt-step (not shown) tries to find an exception handler
in the top-most call frame fr that matches the flagged exception at address a. If one is found,
the operand stack is trimmed to the size specified in the exception table entry, a is pushed
on the operand stack, and the program counter is set to the start of the handler. Otherwise, it
pops fr and rethrows a at the Invoke instruction of the previous call frame.

This formalisation yields an aggressive VM: As can be seen in Figure 17, exec-instr
assumes that there are always sufficiently many operands of the right types on the stack,
all methods (and fields) exist, etc. If not, the result is unspecified. The type safety proof
(Section 3) shows that these cases cannot occur for well-formed programs.

JinjaThreads also formalises a defensive VM that introduces additional type and sanity
checks at run time. If they are violated, the defensive VM raises a type error. The function
execd adds these checks on top of the aggressive VM exec.

datatype ′a type-error = TypeError | Normal ′a

execd P s = (if check P s then Normal (exec P s) else TypeError)

The function check checks that the class and method in the top call frame exist and that
the program counter and stack size are valid. Moreover, if an exception is flagged, it must
be the address of an object on the heap and, if an exception handler in the current method
matches, the stack must have at least as many elements as the handler expects. Otherwise, if
no exception is flagged, check calls check-instr (with identical parameters as exec-instr) to
check instruction-specific conditions. For example, MEnter requires a non-empty stack with
a reference value at the top:

check-instr MEnter P t h stk loc C M pc frs = (0 < |stk|∧ is-Ref (hd stk))
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where is-Ref v predicates that v is Null or some Addr a. The checks for MExit are the same.
For CAS F D, at least three values must be on the stack with the third being a reference or
Null; if it is a reference, the associated class (Object in case of an array) must see the field
F declared in class D as volatile and the other two values’ types must be subtypes of the F’s
declared type.

As there are two VMs, bytecode instantiates the multithreading semantics twice, too.
The type variable instantiations are the same as for J – except for the thread-local states.
For both the aggressive and defensive VM, a thread-local state consists of the exception flag
and the call stack. Such a thread-local state is jvm-final iff the call stack is empty. Then,
jvm-exec P and jvm-execd P instantiate parameter r of the locale multithreaded for the
aggressive and defensive VM, respectively. Like for J-red, they require some glue to adjust
the types.

jvm-final (xcp, frs) = (frs = [])

jvm-exec P t ((xcp, frs),h) ta ((xcp′, frs′),h′) = (ta,(xcp′,h′, frs′)) ∈ exec P t (xcp,h, frs)

jvm-execd P t ((xcp, frs),h) ta ((xcp′, frs′),h′) =
(∃S. execd P t (xcp,h, frs) = Normal S∧ (ta,(xcp′,h′, frs′)) ∈ S)

Note that jvm-execd turns the defensive VM into a strict VM as it does not raise TypeErrors
any more, but gets stuck. Nevertheless, I keep referring to it as the defensive VM. Drop-
ping TypeError avoids duplications as the same representation for thread-local states can be
used for both the aggressive and the defensive VM. For example, I can use the same state
invariants for both VMs in the type safety proof (Section 3.5).

To distinguish between the two locale instances for bytecode, I use the name prefixes
jvm. and jvmd. for the aggressive and defensive VM, respectively. Also, P ` s−t:ta→jvm s′

denotes jvm.redT P s (t, ta) s′ and P ` s−t:ta→jvmd s′ denotes jvmd.redT P s (t, ta) s′.
Also, P ` s−ttas→∗jvm s′ and P ` s−ttas→∗jvmd s′ are the reflexive and transitive closures of
jvm.redT P and jvmd.redT P.

Lemma 3 jvm-final with either jvm-exec P or jvm-execd P are well-formed with respect to
the interleaving semantics.

Proof I show the assumptions of the locale multithreaded for the parameter instantiations
jvm-final, jvm-exec P and jvm-final, jvm-execd P. final-no-red follows by unfolding the
definitions and exec P t (xcp,h, []) being the empty set (Figure 18). Spawn-heap holds by
case analysis on emptiness of the call stack, the exception flag, the current instruction and
the native method that is being called. ut

The initial state jvm-start P C M vs of the JVM is the same as for J, except for the
thread-local state of start-tID, which is

(None, [([],Null · vs @ replicate mxl dummy-val,D,M,0)])

where P`C sees M: → = b(mxs,mxl, ins,xt)c in D. That is, no exception is flagged and the
VM is about to execute the first instruction of method M in D. Like in J-start P C M vs, no
lock is held, all wait sets are empty, there are no interrupts, and start-heap has preallocated
objects for start-tID and the system exceptions.
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t1 : t2 :
Lock→l1

Lock→l2
(Lock→l1)

(Lock→l2)

(a)

t3 : t4 :
(Join t4)

Suspend w

(b)

t5 : t6 :

(IsIntrd t6 True)

final

(c)

Fig. 19 Three schedules with two threads each that lead to deadlock

3 Type safety

In this section, I prove type safety for both source code (Section 3.4) and bytecode (Sec-
tion 3.5). Type safety expresses that when a program starts in a good state, then the program
will not run into type problems such as non-existing methods and fields or operands of un-
expected type, and if the program terminates, the result is of the expected type. To that end,
I formalise the notion of good state and prove that the semantics preserves the good-state
property and no type error occurs in good states. As multithreaded programs can end up in
deadlock, the type safety statements also require a formalisation of deadlocks (Section 3.3).

3.1 High-level overview

For languages like J, type safety is usually expressed using two syntactic properties: progress
and preservation [87]. Progress means that every well-formed and well-typed expression
can be reduced unless it has already been fully evaluated. So the semantics is not missing
any rules. Full evaluation is determined by a syntactic predicate final. Preservation requires
that reductions preserve well-typedness and well-formedness. In Section 3.2, I develop the
machinery to transfer preservation proofs from single threads to the interleaving semantics.
Deadlocks, however, can break the progress property.

I therefore formalise the concept of deadlock and prove progress up to deadlock for the
interleaving semantics. Although progress typically identifies allowed stuck states syntacti-
cally, I formalise deadlock (and thus the allowed stuck states) semantically. The reason is
that a deadlock typically involves several threads. A syntactic characterisation would have
to examine all of them together and would therefore break the abstraction of the interleav-
ing semantics. Instead, I define deadlocks by looking at the possible thread actions of all
threads. In principle, one could derive syntactic conditions from this definition by analysing
the single-thread semantics, but I have not done so.

Intuitively, a system is said to be in deadlock iff all threads are waiting for something
that will never occur. In the interleaving semantics, there are four things that a thread can
wait for: acquiring a lock, termination of another thread, being removed from a wait set,
and interruption. Since all of them are implemented as basic thread actions, I can formally
define deadlock solely in terms of the reductions of a thread—independent of the language.

Figure 19 shows three schedules that lead to different kinds of deadlocks. On the left,
in Figure 19a, thread t1 acquires the lock l1, then thread t2 acquires the lock l2. To continue,
t2 needs the lock l1, too, so the transition with Lock→l1 is postponed. However, t1 next
requests the lock l2, which t2 is holding. Hence, both threads are in deadlock. In the centre
(Figure 19b), t3 waits for t4’s termination, but t4 suspends itself to the wait set w and does
not wake up spuriously. Hence, both t3 and t4 are in deadlock because there is no thread left
to notify t4. The right-hand side (Figure 19c) shows a similar example with interruption: t6
waits for being interrupted, but t5 terminates without doing so. Thus, t6 is deadlocked.
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I: LUnlock→l1,Lock→l2M
II: LUnlock→l2,Lock→l1M, LLock→l3M, LLock→l4M

III: LLock→l6M
IV: LM
V: LLock→l2,Lock→l3M

VI: LLock→l3M

I II III

IV V VI

Fig. 20 Example with deadlocked threads

In the interleaving semantics, things are a bit more tricky than in these examples be-
cause threads can atomically request any number of locks and join on other threads. More-
over, they can wait for different events non-deterministically. In Java, for example, the
Thread.join() method either waits for the receiver thread to terminate (JOIN) or for the
executing thread to be interrupted (JOININTR). It therefore makes sense to formalise and
study deadlock in the full generality of the interleaving semantics.

Figure 20 shows an example of different deadlocks with locks. The example is abstract
because such a situation cannot arise in Java as, e.g., threads cannot acquire several locks in
one step or non-deterministically wait for different locks. There are six threads which can
execute with the thread actions shown on the left-hand side (every thread action is written
as a list of basic thread actions enclosed in L and M). If there are multiple thread actions, then
there is one transition for each. Suppose further that no thread is waiting and that the i-th
thread holds the lock li. The graph on the right-hand side shows which thread is waiting to
obtain a lock held by another thread. Threads III and VI are waiting for each other without
other transition options. Clearly, both of them are deadlocked. Although I and II are also
waiting for each other, they are not deadlocked at the moment: II has two more transition
options. Waiting on lock l3 will be in vain because III is deadlocked. However, IV is not
waiting for any resource, so II may still hope to obtain the lock l4 at some later time. Hence,
I is not in deadlock either, as II might release l2 afterwards. Since thread actions must be
executed atomically, we may not interleave the thread actions of I and II, i.e., first unlock
both l1 and l2 and then lock l2 and l1 again. Note that V is waiting simultaneously for II and
III as it needs the locks l2 and l3 to proceed. Since III is already in deadlock, so is V. Clearly,
IV is not deadlocked as it is not in a wait set. Now, suppose thread IV is in a wait set. Then,
all threads are deadlocked because every thread except IV is waiting for some other thread
to release a lock, and the only thread that could proceed (i.e., IV) is waiting for some other
thread waking it up.

To get a hold on this, I first formalise what a thread non-deterministically waits for in a
deadlock, by looking at the thread actions of the reductions in the single-threaded semantics.
I then define the set of threads in deadlock coinductively. Coinductivity naturally captures
that a thread is not deadlocked iff one can deduce in finitely many steps that it is not. That
is, finitely many steps (of other threads) suffice to allow the thread under consideration to
continue. A multithreaded state is in deadlock iff all its non-final threads are deadlocked. So
deadlock subsumes states in which all threads have terminated, as I do not require that there
be a non-final thread. I could have formalised deadlock also as a state property instead of in-
dividual threads in deadlock, but the thread-wise definition makes the type safety statements
more intuitive (Section 3.4).

There are two kinds of reasons for a thread being deadlocked:

– It waits for a condition that is controlled by some other thread which itself is in dead-
locked. Acquiring a lock or joining on a thread fall into this category.
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– It waits for an event that any thread could possibly perform, but all potential threads are
deadlocked. Waiting for an interrupt and for being removed from a wait set are examples
of this kind.

While there are still running threads in a state, only deadlock of the first kind is possible.
When the last running thread has terminated or has ended up in deadlock, also the second
kind can apply. So this case assumes that the set of threads is closed with respect to the out-
side, i.e., one cannot add a spinning thread, which would “undeadlock” all waiting threads.

I prove two sanity theorems for deadlocks. First, threads and states in deadlock can-
not proceed. Second, threads in deadlock remain in deadlock even if other threads keep
running. The latter requires that the single-threaded semantics is well-behaved, i.e., the syn-
chronisation options of one thread are not affected by other threads changing the heap. Well-
behavedness rules out in particular blocking synchronisation primitives other than those pro-
vided by the interleaving semantics. Non-blocking primitives like compare-and-set are fine
as failure is always an option when there is no success.

The main theorem about deadlock is progress up to deadlock (Theorem 10). It expresses
that the multithreaded semantics can make a step in a non-deadlocked state. For this theorem,
I identify and formalise sufficient conditions on the single-threaded semantics, which source
code and bytecode satisfy. Hence, source code and bytecode can apply the progress theorem
(Sections 3.4 and 3.5). The conditions are chosen such that the sequential Jinja invariants
and their preservation proof can be reused. Technically, these conditions are collected in
Isabelle locales. So Isabelle specialises the theorems automatic to the two semantics after
the conditions have been discharged.

The type safety proofs for source code and bytecode themselves require assumptions
about the abstract heap model. Progress needs that read and write relations are total for
locations (fields and array cells indexed by addresses) that exist according to the dynamic
type of addresses. Preservation relies on the following:

– The initial heap is conformant.
– Only type-correct values can be read from an existing location in a conformant heap.
– Allocation and writing type-correct values to existing locations preserves heap confor-

mance.

The restriction to existing locations is crucial for the type-safety proof of the Java memory
model [50, §5.2], as otherwise the type of a location and the set of type-correct values is not
(yet) determined.

3.2 Lifting thread-local invariants

To separate constraints due to multithreading from the language-specific constraints, I first
define some machinery to transfer such thread-local constraints and their preservation lem-
mas to the multithreaded semantics. Suppose that the predicate Q :: ′t⇒ ′x⇒ ′h⇒ bool de-
notes a constraint on the thread local states which may depend on the shared state. The
operator ↑ ↑ lifts Q to a predicate of type (′l, ′t, ′x) tp⇒ ′h⇒ bool on the thread pool and
shared state such that ↑Q↑ imposes Q on all threads in the thread pool.

↑Q↑ tp h = (∀t. case tp t of None⇒ True | b(x, ln)c ⇒ Q t x h)

To transfer preservation lemma for Q to the multithreaded state, I define the locale
lifting-wf (see Figure 21). It fixes the constraint Q and assumes that
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locale lifting-wf = multithreaded+fixes Q :: ′t⇒ ′x⇒ ′h⇒bool
assumes Jt ` (x,h)−ta→ (x′,h′); Q t x hK =⇒ Q t x′ h′

and Jt ` (x,h)−ta→ (x′,h′); Q t x h; Spawn t ′′ x′′ h′ ∈ set 〈ta〉tK =⇒ Q t ′′ x′′ h′

and Jt ` (x,h)−ta→ (x′,h′); Q t x h; Q t ′′ x′′ hK =⇒ Q t ′′ x′′ h′

locale lifting-inv = multithreaded+fixes Q :: ′i⇒ ′t⇒ ′x⇒ ′h⇒bool
assumes Jt ` (x,h)−ta→ (x′,h′); Q i t x hK =⇒ Q i t x′ h′

and Jt ` (x,h)−ta→ (x′,h′); Q i t x h; Spawn t ′′ x′′ h′ ∈ set 〈ta〉tK =⇒∃i′′. Q i′′ t ′′ x′′ h′

and Jt ` (x,h)−ta→ (x′,h′); Q i t x h; Q i′′ t ′′ x′′ hK =⇒ Q i′′ t ′′ x′′ h′

Fig. 21 Definition of locales lifting-wf and lifting-inv

1. single-thread steps preserve Q,
2. Q holds for new threads at the time of creation, and
3. Q is preserved even if another thread, which also satisfies Q, changes the heap.

Under these assumptions, the interleaving semantics preserves ↑Q↑, too.

Lemma 4 (Preservation for ↑ ↑) Let ↑Q↑ (tp s) (shr s). If s−t:ta→ s′ or s−ttas→∗ s′, then
↑Q↑ (tp s′) (shr s′), too.

Some predicates on the thread level also need additional data, which is thread-specific,
but invariant, e.g., a typing environment for the local store. I model such extra invariant data
as maps from thread IDs to some type ′i. Now, let Q :: ′i⇒ ′t⇒ ′x⇒ ′h⇒ bool also include
the invariant data. The operator ⇑Q⇑ lifts Q to thread pools similar to ↑ ↑.

⇑Q⇑ I tp h = (∀t. case tp t of None⇒ True | b(x, ln)c ⇒ ∃i. I t = bic∧Q i t x h)

where I :: ′t ⇀ ′i is a map to invariant data. Such a map I is well-formed with respect to the
thread pool tp (written tp `i I) iff their domains are equal.

Let I(nts Q) denote the extension of I with invariant data for threads spawned in nts.
For all Spawn t x h ∈ set nts, I(nts Q) updates I at t to εi. Q i t x h.

I( [] Q) = I
I( Spawn t x h ·nts Q) = (I(t 7→ εi. Q i t x h))(nts Q)
I(ThreadEx t b ·nts Q) = I(nts Q)

(1)

For labels ttas of the reflexive and transitive closure − →∗ , let I(ttas [ ]Q) denote the
extension I(concat (map (λ (t, ta). 〈ta〉t) ttas) Q), where the term map (λ (t, ta). 〈ta〉t) ttas
extracts all thread creation BTAs from ttas and concat combines them in one list. The ex-
tension preserves well-formedness of maps to invariant data.

Lemma 5 Suppose thr s `i I. If s−t:ta→ s′, then tp s′ `i I(〈ta〉t Q). If s−ttas→∗ s′, then
tp s′ `i I(ttas [ ]Q).

Equation 1 shows why it is necessary to remember the shared heap in Spawn actions.
(  Q) must know the heap at spawn time to choose the right invariant data, because it

may depend on the heap at creation time. Since the transitive, reflexive closure discards the
heaps of intermediate steps, I store it in the thread actions.

Similarly to lifting-wf, the locale lifting-inv collects the assumptions for lifting the
preservation theorems (Figure 21). The main difference is that lifting-inv existentially quan-
tifies over the invariant data for spawned threads. In fact, lifting-wf is just the special case
of lifting-inv with the constraint instantiated to λ . Q.

Analogous to Lemma 4, the next lemma shows that these assumptions are sufficient for
the interleaving semantics preserving ⇑Q⇑.
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MWLOCK:
has-lock (locks s l) t ′ t ′ 6= t t ′ ∈ T

must-wait s t (Inl l) T

MWJOIN:
not-final-thread s t ′ t ′ ∈ T
must-wait s t (Inr (Inl t ′)) T

MWINTR:
all-final-except s T t ′ /∈ intrs s

must-wait s t (Inr (Inr t ′)) T

Fig. 22 Thread t must wait for a resource indefinitely

Lemma 6 (Preservation for ⇑ ⇑) Suppose that ⇑Q⇑ I (tp s) (shr s).

(i) If s−t:ta→ s′, then ⇑Q⇑ I(〈ta〉t Q) (tp s′) (shr s′).
(ii) If s−ttas→∗ s′, then ⇑Q⇑ I(ttas [ ]Q) (tp s′) (shr s′).

3.3 Deadlock

As explained in Section 3.1, I first define what a thread may wait for in a deadlock. The
function waits ta :: (′l + ′t + ′t) set extracts all the resources for which a thread may be
waiting, i.e., the locks it acquires, the threads it joins on, and the threads which must be
interrupted. Formally,

waits ta = { l | Lock ∈ set (〈ta〉lf l)}]{ t | Join t ∈ set 〈ta〉c }] intr-waits 〈ta〉i

where] is disjoint union and intr-waits 〈ta〉i is the set of thread IDs t for which 〈ta〉i contains
an element IsIntrd t True which is not preceeded by Intr t or ClearIntr t. The last constraint
ignores interrupt checks whose result does not depend on the initial interrupt state, but is
determined by the preceeding interrupt actions. For example,

intr-waits LIsIntrd t True,ClearIntr tM = { t } intr-waits LIntr t, IsIntrd t TrueM = /0

The thread action on the left tests whether t has been interrupted and, if so, clears the inter-
rupt status. Hence, it waits for t being interrupted. On the right, the test IsIntrd t True holds
vacuously because Intr t sets the interrupt flag right before the test. Such tests clearly make
no sense and eliminating them removes some assumptions from the theorems.

Note that waits ignores the actions for unlocking, thread creation and thread existence,
wait sets, and not being interrupted for the following reasons:

unlocking Only a thread itself would be able to remedy the missing lock, not others.
thread creation In Java, spawning a thread always succeeds or raises an exception, so it

cannot deadlock.
wait sets A thread in a wait set cannot do anything to be removed. ok-wsets only distin-

guishes normal execution from processing the removal from a wait set. Waiting threads
will be dealt with specifically.

non-interruption For the interleaving semantics, non-interruption is dual to interruption,
i.e., I could treat both uniformly, but in Java, threads can only wait for being interrupted.
The deadlock formalisation is therefore tailored to Java more than the interleaving se-
mantics.

Next, the predicate must-wait s t w T determines that in state s, the thread t will wait
indefinitely for resource w :: ′l+ ′t + ′t under the assumption that all threads in T are already
deadlocked. Figure 22 shows the formal definition. The thread t must wait forever for the
lock l (case w = Inl l) if l is held by another thread t ′ which is deadlocked (MWLOCK). The
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DACTIVE:

tp s t = b(x,λ . 0)c wset s t = None t ` (x,shr s) o
∀W. t ` (x,shr s) W o −→ ∃w ∈W. must-wait s t w (deadlocked s∪final-threads s)

t ∈ deadlocked s
=========================================================================

DACQUIRE:

tp s t = b(x, ln)c
¬waiting (wset s t) ln l > 0 must-wait s t (Inl l) (deadlocked s∪final-threads s)

t ∈ deadlocked s
================================================================================

DWAIT:
tp s t = b(x, ln)c waiting (wset s t) all-final-except s (deadlocked s)

t ∈ deadlocked s
====================================================================

Fig. 23 Coinductive definition of the set of threads in deadlock

join on another thread t ′ fails forever (case w = Inr (Inl t ′)) if the thread t ′ is not final and
already deadlocked (MWJOIN). The predicate not-final-thread s t denotes that t exists, but
is not final, i.e., t ∈ dom (tp s) and t /∈ final-threads s. Note that not-final-thread s t negates
the precondition of Join (Figure 10) except for t 6= t ′, which is irrelevant here. A thread waits
indefinitely for t ′ being interrupted (case w = Inr (Inr t ′), MWINTR) if t ′ is not interrupted,
but all non-deadlocked threads are final, which the predicate all-final-except expresses:

all-final-except s T = { t | not-final-thread s t } ⊆ T

Finally, I define two abstractions: t ` (x,h) o denotes that t can reduce in the local state x
and heap h with a thread action ta that is not contradictory, i.e., there is a multithreaded state
s such that ok-ta s t ta. For example, LLock→l,UnlockFail→lM and LIntr t, IsIntrd t FalseM are
contradictory. The predicate t`(x,h)W o denotes that t can reduce in state (x,h) with a thread
action ta such that W = waits ta. It abstracts t’s reductions to the resources W it waits for.

With these preparations, I can now formalise when a thread is in deadlock. Figure 23
coinductively defines the set deadlocked of threads in deadlock. There are three ways a
thread t can be deadlocked:

DACTIVE: t is ready to execute, say tp s t = b(x,λ . 0)c and wset s t = None, and it can
reduce, but no matter how it might reduce, it must wait for some deadlocked or final
thread.

DACQUIRE: t has temporarily released some lock l and this lock is held by a deadlocked or
final thread.

DWAIT: t is in a wait set and all non-deadlocked threads have already terminated.7

The first case is the default: t`(x,shr s) o ensures that the thread is not just stuck, i.e., univer-
sal quantification on W does not hold vacuously. Quantifying over all W with t`(x,shr s)W o
allows a thread to non-deterministically wait for different “resources”. The second case ac-
counts for acquisition of temporarily released locks. Since it is the interleaving semantics
that performs the acquisition (ACQ) instead of the single threads, a separate case is needed.
The last case assumes that the set of threads is closed with respect to the outside, i.e., one
cannot add a spinning thread, which would “undeadlock” again all waiting threads.

This coinductive definition is acceptable because deadlocked occurs in the rule premises
only in monotone contexts:

Lemma 7 (Monotonicity of all-final-except and must-wait) Let T ⊆ T ′.
If must-wait s t w T , then must-wait s t w T ′. If all-final-except s T , then all-final-except s T ′.

7 Recall that the interleaving semantics does not force threads to wake up spuriously (cf. Section 2.3.3).
Otherwise, a waiting thread would never be deadlocked because it could always be woken up spuriously.
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locale preserve-deadlocked = multithreaded+fixes wf-states :: (′l, ′t, ′x, ′h, ′w) state set
assumes Js ∈ wf-states; s−t:ta→ s′K =⇒ s′ ∈ wf-states
and Js ∈ wf-states; s−t ′:ta→ s′; tp s t = b(x,λ . 0)c ; t ` (x,shr s) oK =⇒ t ` (x,shr s′) o
and Js ∈ wf-states; s−t ′:ta→ s′; tp s t = b(x,λ . 0)c ; t `(x,shr s′)W ′ oK =⇒∃W ⊆W ′. t ` (x,shr s) W o

Fig. 24 The locale preserve-deadlocked collects the requirements for preservation of deadlock

A multithreaded state is in deadlock (deadlock s) iff all non-final threads are deadlocked.
For simplicity, I do not require that there is at least a thread which is not final. Hence, every
mfinal state is also in deadlock.

deadlock s = (∀t. not-final-thread s t −→ t ∈ deadlocked s)

Lemma 8 Every thread in deadlock is stuck, i.e., if s−t:ta→ s′, then t /∈ deadlocked s. States
in deadlock are stuck, i.e., if s−t:ta→ s′, then ¬deadlock s.

Proof By case analysis on s−t:ta→ s′ and t ∈ deadlocked s. ut

Execution may continue even if some threads are deadlocked, but threads in deadlock
should remain deadlocked; otherwise, the deadlock definition would be flawed. Deadlock
preservation requires that the single-threaded semantics is well-behaved:

1. The changes of the shared heap by the executing threads must not deprive a deadlocked
thread of all of its reduction options. Otherwise, it would be stuck and therefore no
longer deadlocked, since deadlock explicitly excludes stuck threads.

2. Such changes must not enable new reduction options which would undeadlock it, either.

The locale preserve-deadlocked collects these assumptions (Figure 24). It fixes a set
wf-states of well-formed states only for which the preservation requirements have to hold.
The first assumption expresses that the interleaving semantics preserves wf-states. The other
two assumptions express exactly the requirements from above. Note the covariance in the
set W in the last assumption: Since t ` W o expresses that one of t’s reduction requires all
resources in W , changes in the heap may only increase W . Under these assumptions, the set
of deadlocked threads can only become larger:

Lemma 9 (Preservation of deadlock) Let s∈wf-states. If s−t:ta→ s′ or s−ttas→∗ s′, then
deadlocked s⊆ deadlocked s′.

Proof If s−t:ta→ s′, suppose that t ′ ∈ deadlocked s. I show t ′ ∈ deadlocked s′ by coinduc-
tion with deadlocked s as coinduction invariant. In the coinductive step, case analysis on
t ′ ∈ deadlocked s yields the interesting cases DACTIVE and DACQUIRE; the case DWAIT

contradicts the assumption s−t:ta→ s′. In both these cases, the reduction from s to s′ pre-
serves must-wait. For DACTIVE, the assumptions of preserve-deadlocked relate t ′ ` (x, ) o
and t ′ ` (x, ) o between shr s and shr s′, respectively.

The case s−ttas→∗ s′ follows from s−t:ta→ s′ by induction; the locale’s first assump-
tion reestablishes the induction invariant s ∈ wf-states in the inductive step. ut

Both source code and bytecode satisfy the assumptions of preserve-deadlocked where
the well-formed states are the same as for the type safety proofs in the following sections.

I now prove the progress theorem for the interleaving semantics. The locale progress
collects the necessary assumptions about the single-threaded semantics (Figure 25).

Theorem 10 (Progress up to deadlock) Given the assumptions of locale progress, let s ∈
wf-states. If ¬deadlock s, then there are t, ta, and s′ such that s−t:ta→ s′.
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locale progress = multithreaded+fixes wf-states :: (′l, ′t, ′x, ′h, ′w) state set
assumes wf-stateD : s ∈ wf-states =⇒ ok-locks-tp s∧ok-wset-final s
and progress : Js ∈ wf-states; tp s t = b(x,λ . 0)c ; ¬final xK =⇒∃ta x′ h′. t ` (x,shr s)−ta→ (x′,h′)
and wf-ta : Js ∈ wf-states; tp s t = b(x,λ . 0)c ; t ` (x,shr s)−ta→ (x′,h′)K =⇒∃s′. ok-ta s′ t ta
and wf-red :

Js ∈ wf-states; tp s t = b(x,λ . 0)c; ¬waiting (wset s t); t ` (x,shr s)−ta→ (x′,h′)K
=⇒∃ta′ x′′ h′′. t ` (x,shr s)−ta′→ (x′′,h′′)∧ (ok-ta s t ta′ ∨ok-ta′ s t ta′ ∧waits ta′ ⊆ waits ta)

and Suspend-not-final :
Js ∈ wf-states; tp s t = b(x,λ . 0)c; ¬waiting (wset s t);
t ` (x,shr s)−ta→ (x′,h′); Suspend w ∈ set 〈ta〉wK =⇒¬final x′

and Wakeup-waits :
Js ∈ wf-states; tp s t = b(x,λ . 0)c; t ` (x,shr s)−ta→ (x′,h′);
Notified ∈ set 〈ta〉w ∨WokenUp ∈ set 〈ta〉wK =⇒ waits ta = /0

Fig. 25 Definition of locale progress

The locale progress fixes a set wf-states of well-formed states. wf-stateD ensures that
well-formed states satisfy two invariants: Only existing threads hold the locks (ok-locks-tp s)
and all threads in dom (wset s) exist in tp s and their local state is not final (ok-wset-final s).
Together with the other constraints, the latter invariant ensures that threads that have been
removed from a wait set can process the removal. The assumption progress expresses the
usual progress condition for single threads: Every thread in any well-formed state whose
local state is not final can execute a step. The remaining assumptions restrict the single-
thread semantics such that stuck multithreaded states are final or in deadlock. wf-ta ensures
that the thread action of any reduction is not contradictory in itself. Similar to progress ex-
pressing that no reduction rule is missing for well-typed terms, wf-red formalises that the
transitions cover sufficiently many thread actions. ok-ta′ formalises that ta’s conditions are
met except for BTAs which are allowed to cause deadlock. It is like ok-ta with the following
modifications:

– ok-Ls stops checking the lock preconditions when it encounters the first Lock BTA for
l that t cannot acquire, but it does enforce the preconditions of Unlock and UnlockFail
prior to this Lock BTA. For example, if ta = LLock→l,Unlock→l,Unlock→lM, then
ok-ta′ requires that t already holds the lock l once, or that it cannot acquire the lock l.

– ok-intr ignores conditions of BTAs of the form IsIntrd True.
– ok-cond s t (Join t ′) is always True.

Thus, wf-red requires that every thread which is ready to execute, say with thread action
ta, can reduce with thread action ta′ such that either the current state s already meets ta′’s
preconditions, or s meets them except for BTAs that are allowed to deadlock, but in the latter
case, it must not add anything it is waiting for in ta′ compared to ta.

Assumption Suspend-not-final demands that a thread be not final after it has suspended
itself to a wait set, i.e., it can later process its removal.

Wakeup-waits requires that when a thread processes the removal from a wait set, it does
not execute BTAs which may cause deadlock. Although the interleaving semantics could
deal with such BTAs, I disallow them to simplify the deadlock formalisation and proofs as
neither source code nor bytecode semantics uses this.

Proof (Theorem 10) I first show that there is a thread, say tp s t = b(x, ln)c, such that

(a) t is not waiting, ln = (λ . 0), not final x, and either not t ` (x,shr s) o or there is a set W
such that t ` (x,shr s) W o and t need not wait for any w ∈W , or

(b) t is not waiting, ln 6= (λ . 0), and it need not wait for any of the locks in ln, or
(c) ln = (λ . 0) and t’s wait set status is bWS-Notifiedc or bWS-WokenUpc.
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Suppose there was none. Then it is easy to show by coinduction that t ∈ deadlock s holds
for all t such that not-final-thread s t. But this contradicts that s is not in deadlock. So let t
be a thread with the above properties. I show for each case that t can take a step next.

In case (a), progress postulates a step t ` (x,shr s)−ta→ ( , ). wf-ta ensures that the
thread action of any step is not contradictory in itself, in particular ta is not. Hence, t `
(x,shr s) o by definition. With (a), let W be such that t ` (x,shr s) W o and t need not wait for
any w ∈W . Again by definition, there is a step t ` (x,shr s)−ta′→ ( , ) with W = waits ta′.
By wf-red, there is another step t ` (x,shr s)−ta′′→ (x′,h′) such that either (i) ok-ta s t ta′′,
or (ii) ok-ta′ s t ta′′ and waits ta′′ ⊆ waits ta′. In case (i), I am done by NORMAL because
upd-ta is a right-total relation. In case (ii), by choice of ta′, all w∈waits ta′′ ⊆waits ta′ meet
their precondition. Hence, ok-ta′ s t ta′′ implies ok-ta s t ta′′, and I am back at case (i).

In case (b), the step directly follows with ACQ.
In case (c), t must process its removal from a wait set. By wf-stateD, ok-wset-final s, in

particular not final x. By the same argument as in case (a), there is a step t ` (x,shr s)−ta′′→
(x′,h′) such that ok-ta s t ta′′ or ok-ta′ s t ta′′. If ok-ta′ s t ta′′, 〈ta′′〉w contains Notified or
WokenUp due to t’s wait set status. By Wakeup-waits, waits ta′′ = /0, i.e., ok-ta′ s t ta′′ and
ok-ta s t ta′′ coincide. Thus, NORMAL yields the desired step. ut

3.4 Type safety for source code

With the above preparations in place, I now prove type safety for J (Theorem 11). Thereby,
I reuse the (adapted) lemmas from the type safety proof for Jinja [32].

Theorem 11 (Type safety for J) Let wf-J-prog P and wf-start P C M vs and suppose that
P ` J-start P C M vs−ttas→∗ s such that ¬P ` s−t ′:ta′→s′ for any t ′, ta′, s′. Then, for every
thread t in s, say tp s t = b((e, ), ln)c,

(i) if e = Val v, then ln = (λ . 0) and P,shr s ` v :≤ T where

(start-ETs P C M)(ttas [ ]P, , ` ,
√
) t = b(E,T )c,

start-ETs P C M is the initial map [start-tID 7→ (empty,Tr)], and Tr is M’s return type.
(ii) if e = Throw a, then ln = (λ . 0) and typeof-addr (shr s) a = bClass Cc for some C

such that P`C�∗ Throwable,
(iii) otherwise, t ∈ J.deadlocked P s.

In any case, t has an associated Thread object at address t in shr s.

Let me first review the type safety statement. Suppose we run the non-native method M
of class C with the correct number of parameters vs of the correct types, and this halts in
state s. Then, all threads of s either (i) have terminated normally with a return value v which
conforms to the return type of the thread’s initial method, which is M for t = start-tID and
run otherwise, (the notation P,h ` v :≤ T is defined below) or (ii) have terminated abnor-
mally with an exception a which refers to an object of a subclass of Throwable, or (iii) are
deadlocked. In particular, this also shows that synchronized blocks cannot get stuck be-
cause the thread does not hold the lock on the monitor. Note that type safety does not state
anything about non-terminating program runs. These are uninteresting because they are ob-
viously not stuck, but do not return anything either.

Thanks to the thread-wise notion for deadlocks, the type safety theorem exhaustively
lists all possible cases. With deadlock only, I would have to omit case (iii) because the
assumptions of the theorem already imply that J.deadlock s.
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locale typesafe = heap+fixes hconf :: ′heap⇒bool
assumes hconf empty-heap
and J(h′,a) ∈ alloc h T ; hconf h; is-type P TK =⇒ hconf h′

and Jwrite h a al v h′; hconf h; P,h ` a·al : T ; P,h ` v :≤ TK =⇒ hconf h′

and Jtypeof-addr h a = bTc ; hconf hK =⇒ is-type P T

and Jhconf h; P,h ` a·al : TK =⇒∃v. read h a al v
and Jhconf h; P,h ` a·al : T ; P,h ` v :≤ TK =⇒∃h′. write h a al v h′

and Jread h a al v; hconf h; P,h ` a·al : TK =⇒ P,h ` v :≤ T

Fig. 26 Type safety assumptions on the shared state ADT

In the remainder of this section, I develop the invariant necessary to prove Theorem 11
via progress and preservation. I always assume that P is well-formed, i.e., wf-J-prog P.

Recall that progress requires more than showing that every non-final thread can reduce
in the single-threaded semantics—the interleaving semantics may not be able to execute
the reduction because the current state violates the thread action’s precondition. The locale
progress (Figure 25) collects sufficient conditions for a single-threaded progress property
being extended to the interleaving semantics (Theorem 10). Now, I show that J-red P satisfies
these conditions. First, I expand on the set of well-formed states wf-states for J.

3.4.1 Thread-local well-formedness constraints

The type safety lemmas in Jinja require the following invariants:

Conformance Conformance expresses that semantic objects conform to their syntactic de-
scription. A value v conforms to a type T (written P,h ` v :≤ T ) iff v’s dynamic type is a
subtype of T :

P,h ` v :≤ T = (∃T ′. typeofh v =
⌊
T ′
⌋
∧P ` T ′ ≤ T )

where typeofh v returns the type of a value v using typeof-addr h for addresses. This confor-
mance notion naturally extends to list of values and types (written P,h ` vs [:≤] Ts), stores
and environments (written P,h ` x (:≤) E), objects, and arrays. Conformance of the heap
is also required, but as the heap is abstract (Section 2.3.2), I also leave heap conformance
hconf abstract for now (the memory models in Section 4 define hconf). Then, a heap and a
store are conformant P,E ` (h,x)

√
iff hconf h and P,h ` x (:≤) E. Conformance satisfies

two essential properties: First, values read from a conformant state always conform to their
declared type. Second, state updates preserve state conformance if the new values conform
to the locations’ types.

As hconf is abstract, the locale typesafe collects the assumptions needed for type safety
(Figure 26). This requires the notion of the type of a location. Let P,h ` a·al : T denote that
the location (a,al) is supposed to store values that conform to type T . Formally:

typeof-addr h a = bTc P` class-of ′ T has F :T ′ (fm) in D
P,h ` a·Field D F : T ′

typeof-addr h a =
⌊
Array T n′

⌋
n < n′

P,h ` a·Cell n : T

where P`C has F :T (fm) in D denotes that in program P, the class C has a field F of type T
declared in class D with field modifiers fm.
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Now, consider the locale typesafe in detail. Clearly, the empty heap must conform and
the heap-manipulating operations alloc and write preserve heap conformance when valid
types are allocated and type-conforming values written. Moreover, heap conformance must
ensure that the dynamic types of all addresses are valid, too. The second group of assumption
demands that typeable locations can be read from and written to (progress) and that values
read conform to the location types (subject reduction).

Run-time type system The typing rules from Section 2.3.1 are too strong to be invariant un-
der reductions. For example, they rule out literal addresses in expressions, which arise natu-
rally during reduction. To make them well-typed, the run-time type system [16] P,E,h` e : T
takes the heap into account and relaxes various preconditions that are not invariant. For ex-
ample, the constraint T1 6=NT in WTSYNC may be violated because e1 may become null; the
semantics throws a NullPointer exception in that case (RSYNCN). Thus, rule WTRTSYNC

replaces WTSYNC. Moreover, the new rule WTRTINSYNC for insync (a) e statements re-
quires the monitor address to be allocated and the body to be run-time typable.

WTRTSYNC:
P,E,h ` e1 : T1 is-refT T1 P,E,h ` e2 : T

P,E,h ` sync (e1) e2 : T

WTRTINSYNC:
typeof-addr h a 6= None P,E,h ` e : T

P,E,h ` insync (a) e : T

The details for the other language constructs have been discussed at length elsewhere [16,
32], so I do not repeat them here.

Thread conformance The ID of the executing thread must have an associated thread object
as currentThread returns its address (CURRTH). Thread conformance P,h ` t

√
t demands

that typeof-addr h t = bClass Cc for some C such that P`C�∗ Thread.
Now, progress and various preservation lemmas hold for the single-threaded semantics.

I only present progress and subject reduction. They differ from JinjaThreads’s predecessor
Jinja [32, Lemma 2.8] only in the highlighted parts. This shows that I only minor modifica-
tions were necessary to reuse the theorems (and their proofs).

Lemma 12 (Single-threaded progress) If wf-J-prog P and hconf h and P,E,h ` e : T and

D e bdom xc and ¬ final e, then P, t ` 〈e,(h,x)〉− ta→〈e′,s′〉 for some ta and e′ and s′.

Theorem 13 (Subject reduction) If wf-J-prog P, and P, t ` 〈e,s〉− ta→〈e′,s′〉, and P,E `
s
√

, and P,E,hp s ` e : T , and P,hp s ` t
√

t , then there is a T ′ such that P,E,hp s′ ` e′ : T ′

and P ` T ′ ≤ T .

Lifting to the multithreaded semantics Clearly, wf-states imposes all these thread-local con-
straints. In Section 3.2, I have presented how to lift such predicates and preservation theo-
rems to the interleaving semantics. For definite assignment, the lifted predicate (notation
↑D↑) is ↑λ t (e,x) h. D e bdom xc↑. Conformance and typability depend on a typing envi-
ronment E and the initial type T of the expression, which do not change during reduction.
Thus, I model them as invariant data in a combined predicate. Let P,(E,T ), t ` (e,x),h

√

denote
∃T ′. P,E,h ` e : T ′∧P ` T ′ ≤ T ∧P,E ` (h,x)

√
∧P,h ` t

√
t (2)

Then, P, ` , ⇑
√
⇑ lifts P, , ` ,

√
to thread pools:

P,ET ` tp,h ⇑
√
⇑= ⇑P, , ` ,

√
⇑ ET tp h
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Lemma 14 (Preservation of definite assignment, typability, and conformance) Suppose
P ` s−t:ta→ s′. Let ET ′ = ET (〈ta〉t P, , ` ,

√
).

(i) If ↑D↑ (tp s) (shr s), then ↑D↑ (tp s′) (shr s′).
(ii) If P,ET ` tp s,shr s ⇑

√
⇑, then P,ET ′ ` tp s′,shr s′ ⇑

√
⇑.

3.4.2 Inter-thread well-formedness constraints

The thread-local constraints do not suffice to discharge the assumption wf-red of progress.
It demands that if there is a reduction, then there is always a feasible one—except for dead-
locking reductions due to Lock, Join, and IsIntrd True. For most reductions with BTAs,
there are other reductions such that one of them is always feasible. For example, START and
STARTFAIL complement each other, and so do INTRDT and INTRDF. But if a thread-local
state is inconsistent with the multithreaded state, wf-red may be violated in two cases:

1. The lock status assigns less locks to a thread than its insync ( ) blocks remember. In
that case, RUNLOCK and RUNLOCKX try to unlock a monitor that is not held, but there
is no reduction with UnlockFail.

2. The wait set status is bWS-Notifiedc or bWS-WokenUpc, but the next reduction is not a
call to wait. Then, the semantics cannot issue a thread action with Notified or WokenUp.

For both cases, I introduce additional constraints that the reductions in J preserve.
For case 1, I define a function I :: expr⇒ addr⇒ nat such that I e a counts the

insync (a) subexpressions in e for any monitor address a. I write has-I e if I e is
not 0 everywhere, i.e., e contains at least one insync ( ) subexpression. Then, the lock
consistency invariant lock-ok ls tp expresses that for all thread IDs t,

(i) if t does not exist, it holds no locks, i.e., if tp t = None, then ¬has-lock (ls a) t for all
monitor addresses a, and

(ii) if t exists, its insync ( ) subexpressions remember its locks, i.e., if tp t = b((e, ), ln)c,
then I e a = has-locks (ls a) t + ln a for all a. Note that lock-ok must add t’s tem-
porarily released locks (ln a) to the locks t actually holds (has-locks (ls a) t) as the
insync (a) blocks remain when a call to wait on a temporarily releases the lock on a.

Preservation of lock-ok requires another invariant. Consider, for example, RSYNCN and
suppose that e has an insync (a) subexpression. Then, I (sync (null) e) a > 0 and
I (THROW NullPointer) a = 0, but a’s lock state does not change. Hence, if the origi-
nal state satisfies lock-ok, the successor state will not. The problem here is that e contains
an insync ( ) block although execution has not yet reached it.

To disallow such cases, I define the predicate ok-I e which ensures that insync ( )
subexpressions occur only in subexpressions in which the next reduction will take place.
Figure 27 shows representative cases of the definition. For expressions with subexpressions,
the definition follows a common pattern; all subexpressions must satisfy ok-I , too, and
if has-I holds for any subexpression, then all subexpressions which are evaluated before
must be a value, i.e., of the form Val , which the predicate is-Val checks. For example, if
has-I e2 in e1 �bop� e2, then e1 must be a value because e1 is evaluated before e2. Control
expressions allow insync ( ) blocks only for the currently evaluated subexpression; for
example, in e1; ; e2, only for e1. The loop while (e1) e2 does not allow them in either e1
or e2 because the semantics immediately rewrites it to if (e1) e2; ; while (e1) e2 else unit,
which would duplicate any insync ( ) subexpression. Clearly, if ¬has-I e, then ok-I e.

Like with the other thread-local well-formedness conditions, I lift ok-I to multithreaded
states, written ↑ok-I ↑, and show preservation with the locale lifting-wf.
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ok-I (e1 �bop� e2) = ok-I e1∧ok-I e2∧ (has-I e2 −→ is-Val e1)
ok-I (V := e) = ok-I e
ok-I (e1; ; e2) = ok-I e1 ∧¬has-I e2
ok-I (if (e) e1 else e2) = ok-I e∧¬has-I e1 ∧¬has-I e2
ok-I (while (e1) e2) = ¬has-I e1 ∧¬has-I e2
ok-I (sync (e1) e2) = ok-I e1 ∧¬has-I e2
ok-I (insync (a) e) = ok-I e

Fig. 27 Definition excerpt of ok-I

Lemma 15 (Preservation of ok-I and ↑ok-I ↑)
(i) If P, t ` 〈e,s〉−ta→〈e′,s′〉 and ok-I e, then ok-I e′.

(ii) If P ` s−t:ta→ s′ and ↑ok-I ↑ (tp s) (shr s), then ↑ok-I ↑ (tp s′) (shr s′).

Proof Case (i) is proven by induction on the semantics.
Case (ii) holds by Lemma 4 and instantiating the locale lifting-wf (Figure 21). The first

assumption is discharged by case (i). The second assumption holds because the body body
of the run method of the spawned thread is well-typed as P is well-formed. Well-typed
expressions have no insync ( ) subexpressions because there is no typing rule for them.
So, ok-I body. The third assumption is vacuous as ok-I does not depend on the heap. ut

Lemma 16 (Preservation of lock-ok) If lock-ok (locks s)(tp s) and ↑ok-I ↑ (tp s) (shr s)
and P ` s−t:ta→ s′, then lock-ok (locks s′) (tp s′).

Next, I turn to the second way in which J-red may violate wf-red. In principle, I could
pursue the same path as for lock consistency and require that whenever a thread’s wait set
status is not None, its next reduction will be a call to the native method wait, and show
preservation. However, formalising the native-call-to-wait invariant is tedius and preserva-
tion proofs are no easier. Instead, I define an invariant that is independent of the local state
and that I can reuse for the bytecode type safety proof in Section 3.5.

Given a set I of well-formed multithreaded states, ok-Susp I restricts I to states in which
the local states of all threads with wait set status other than None have resulted from a former
reduction whose thread action contains a Suspend BTA. Formally (in locale multithreaded):

ok-Susp I = {s. s ∈ I∧ (∀t ∈ dom (wset s). ∃s0 ∈ I. ∃s1 ∈ I. ∃ttas x0 ta x w ln ln′.
s0−t:ta→ s1∧ s1−ttas→∗ s∧ tp s0 t = b(x0,λ . 0)c∧ t ` (x0,shr s0)−ta→ (x,shr s1)∧
Suspend w ∈ set 〈ta〉w∧ok-ta s0 t ta∧ tp s1 t = b(x, ln)c∧ tp s t =

⌊
(x, ln′)

⌋
)}

Clearly, ok-Susp preserves preservation of invariants by definition.

Lemma 17 (Preservation of ok-Susp) If redT preserves the invariant I, then redT pre-
serves ok-Susp I.

3.4.3 Type safety

Now, the set J-wf-states P of well-formed states for the type safety proof is defined as

J.ok-Susp P {s. ∃ET. P,ET ` tp s,shr s⇑
√
⇑∧↑D↑ (tp s) (shr s)∧

↑ok-I ↑ (tp s) (shr s)∧ lock-ok (locks s) (tp s)}

Lemma 18 J satisfies the assumptions of progress for well-formed states J-wf-states P.

Proof I proof the assumptions of locale progress (Figure 25) as follows. The well-formed-
ness condition ok-locks-tp directly follows from lock-ok because this is just case (i) in
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lock-ok’s definition. ok-wset-final follows from J.ok-Susp and the assumption Suspend-not-
final, which I discharge below. progress is just the progress lemma 12. Inductions on the
small-step semantics show the assumptions wf-ta, Suspend-not-final, and Wakeup-waits.

Now, only wf-red remains to be shown. By s ∈ J-wf-states P, if t’s wait set status is not
None, t’s last reduction must have issued a Suspend BTA in a state with a heap which the
current heap shr s extends. Induction on this reduction shows that t can now reduce with
basic thread actions LNotifiedM and LWokenUpM as necessary. So suppose wset s t = None.
Without loss of generality, assume ¬ok-ta′ s t ta. The proof proceeds by induction over the
small-step semantics. The interesting cases are RUNLOCK, RUNLOCKX and RNATIVE.

In case RUNLOCK, I (insync (a) ) a > 0, i.e., by lock consistency, t holds the lock a.
Thus, unlocking a is possible, i.e., ok-ta′ s t ta holds. The case RUNLOCKX is analogous.
In case RNATIVE, the proof proceeds by case analysis of the semantics for native methods.
For each case with a non-trivial thread action, one must manually provide the alternative
reduction. I present JOIN as a representative example: From ¬ok-ta′ s t ta, I obtain t ∈
intrs s because ok-ta′ does not check the precondition of Join to allow for deadlocks. Hence,
JOININTR is possible. ut

Corollary 19 If s∈ J-wf-states P is not in deadlock, then P` s−t:ta→s′ for some t, ta and s′.

Proof This is Theorem 10 with Lemma 18 discharging the locale assumptions. ut

Lemma 20 The initial state J-start P C M vs is well-formed.
If wf-J-prog P and wf-start P C M vs, then J-start P C M vs ∈ J-wf-states P.

Finally, I am able to prove type safety for J.

Proof (Proof of Theorem 11) By Lemma 20, J-start P C M vs ∈ J-wf-states P. Since re-
ductions preserve J-wf-states P, I have s ∈ J-wf-states P, too. Hence, s ∈ J.deadlock P by
Corollary 19, which subsumes all mfinal states. If e is f inal, cases (i) and (ii) follow from
s being well-formed. Case (iii) follows by definition of deadlock s. The associated thread
object exists because s ∈ J-wf-states P implies thread conformance. ut

3.5 Type safety for bytecode

In this section, I show type safety for well-typed bytecode. The approach is the same as
for source code (Section 3.4), namely (i) identify necessary invariants, and (ii) prove the
assumptions of locale progress. Instead of presenting the steps in detail once more, I focus
on the similarities with and differences from source code.

3.5.1 Well-typings

When executing bytecode, the JinjaThreads VM relies on the following assumptions: The
stack contains as many operands as needed and of the right types; registers are initialised
before being read; the operand stack stays within the declared limit; the declared register
number is correct; and the program counter always points to a valid instruction.

To prevent that these assumptions are violated during execution, the bytecode must sat-
isfy certain type constraints, similar to the typing rules for source code. As bytecode does
not declare the types of the registers and the stack elements, JinjaThreads models type in-
formation separately, Since the formalisation does not differ from Jinja in any essential way,
I only sketch the main ideas and introduce the relevant notation. For details, see [32].
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A state type τ characterises a set of run-time states for one instruction by giving type
information for the operand stack and registers. τ = None denotes that control flow cannot
reach the instruction. Otherwise, say τ = b(ST,LT )c, ST :: ty list gives the types for the ele-
ments on the operand stack and LT the types for the register contents. The elements of LT are
either Err or OK T for some type T :: ty. Err denotes that a register is unusable and its type
is unknown, e.g., if it has not been initialised yet. For example, b([], [OK (Class C), Err])c
denotes that the stack is empty and there are two registers, register 0 holds a reference to
an object of a subclass of C (or the Null pointer), the second is unusable. A method type τs
is a list of state types, one for each instruction of the method. A program typing for P is a
function Φ such that Φ C M is the method type for every method M in every class C of P.

A state type τ for an instruction i is a state well-typing iff i can execute safely in any
state that τ characterises and τ is consistent with the successor instruction’s state type. Con-
sistency is formalised using an abstract interpretation framework [32] that is not needed to
understand this article. A method type τs is a method well-typing iff each of its state types
is a state well-typing for its instruction.

A bytecode method declaration (M,Ts,T,b(msl,mxl, ins,xt)c) in class D is well-typed
with respect to τs iff

(i) τs is a well-typing for the method,
(ii) all state types in τs contain only valid types and respect the maximum stack length msl

and the fixed number mxl of registers, and
(iii) τs satisfies the start condition, i.e., it is non-empty and the first state type τs[0] is at

least as general as b([],OK (Class D) ·map OK Ts @ replicate mxl Err)c in the abstract
interpretation order, i.e., the stack is empty and the registers contain the this pointer
and the parameters and all local variables are inaccessible.

A program typing Φ is a well-typing for P iff every method M in every class C of P is
well-typed with respect to Φ C M. A program P is well-formed (written wf-jvm-prog P) iff
it satisfies the generic well-formedness constraints and there is a well-typing Φ for it.

This definition of well-formedness is not constructive because it does not specify how
to obtain the well-typing from the bytecode program. To that end, JinjaThreads models a
bytecode verifier in the style of Jinja that rephrases the abstract interpretation as a data flow
analysis problem and computes a well-typing with Kildall’s algorithm [27].

3.5.2 Type safety

Throughout this section, I assume that Φ is a well-typing for P. The type safety proof re-
quires a thread-local invariant called conformance, written P,Φ ` t:s

√
. Conformance re-

quires that the state type correctly abstracts the run-time state (xcp,h, frs) of a thread t, i.e.,

(i) if xcp = bac flags the exception at address a, then a’s dynamic type is a subclass of
Throwable and conforms to the exception specification in the abstract interpretation for
the current instruction in the top-most call frame,

(ii) the heap conforms, i.e., hconf h,
(iii) the thread ID conforms, i.e., P,h ` t

√
t ,

(iv) for all call frames (stk, loc,C,M, pc) in frs, C declares M, pc points to a reachable
instruction and the contents of the operand stack stk and registers loc conform to the
type that the well-typing (Φ C M)[pc] specifies, and

(v) all call frames except for the top-most one are halted at an Invoke instruction that calls
a method whose static summary information, i.e., parameter types and return type, is
compatible with the call frame above.
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In comparison to Jinja’s notion of conformance, condition (iii) is new and condition (i)
strengthens a’s type to be a subclass of Throwable instead of Object. The latter disallows
arrays to be thrown, which Jinja does not model. All other conditions are unchanged.

For a well-typed program, I can now show type safety:

Theorem 21 (Type safety) Let P be well-formed with well-typing Φ and the start state
jvm-start P C M vs be well-formed. Then, the following hold:
(a) The aggressive VM runs until all threads have terminated or are deadlocked. Formally:

If P ` jvm-start P C M vs−ttas→∗jvm s such that ¬P ` s−t:ta→jvm s′ for any t, ta, s′,
then for every thread t in s, say tp s t = b((xcp, frs), ln)c,
(i) P,Φ ` t:(xcp,shr s, frs)

√
, and

(ii) if frs 6= [] or ln 6= (λ . 0), then t ∈ jvm.deadlocked P s.
(b) Aggressive and defensive VM have the same behaviours. Formally:

(i) P ` jvm-start P C M vs−ttas→∗jvm s iff P ` jvm-start P C M vs−ttas→∗jvmd s.
(ii) P ` jvm-start P C M vs⇒ jvm ttass iff P ` jvm-start P C M vs⇒ jvmd ttass.

Part (a) corresponds to the type safety statement for J (Theorem 11). Part (b) shows
that it is safe to run the aggressive VM instead of the defensive VM. The two statements
(b)(i) and (b)(ii) are not necessarily equivalent because (b)(i) refers to finite prefixes of
executions whereas (b)(ii) talks about complete runs in the respective interleaving semantics
(P ` ⇒ jvm are the complete runs for the aggressive VM as defined by STOP and STEP

and P ` ⇒ jvmd similarly for the defensive VM).8

The proof is similar to the type safety proof for source code and therefore not shown.
Instead, I compare it to the one for the sequential VM in Jinja [32, Theorem 4.10]. Klein and
Nipkow showed that the defensive VM cannot reach a TypeError from a well-formed start
state in a well-formed program. Recall from Section 2.4.2 that the defensive JinjaThreads
VM cannot raise TypeErrors, but gets stuck. This design choice is motivated by two con-
siderations. First, without TypeErrors, the defensive and the aggressive VM operate on the
same state space, so the same proof invariants can be used. Second, when a single thread
raises a TypeError, the whole VM should immediately halt. But this does not fit the structure
of the interleaving semantics where one thread cannot abort the execution of other threads.
Hence, I cannot express the absence of type errors directly. Instead, I show progress, which
is equivalent to the absence of type errors for individual steps because type errors and nor-
mal reductions exclude each other in the defensive VM by construction. Still, Theorem 21
is slightly weaker with respect to type errors as it does not exclude the situation in which
one thread is stuck at a type error and another thread runs for ever.

4 Memory models

The heap has been left abstract in the semantics and type safety proofs in Sections 2 and 3. I
now sketch the two implementations in JinjaThreads, sequential consistency and the JMM.

4.1 Sequential consistency

The first implementation is a standard heap, i.e., a map from addresses to objects and arrays.
Addresses are modelled as natural numbers. Objects store the class name and a field table

8 For example, abstractly, finite prefixes of executions do not distinguish between the two transition sys-
tems 3 B0 B 1 B 2 and 2 B3 B0 B 1 B 2 with initial state 0, but complete runs do. Conversely, com-
plete runs identify . . . B−2 B−1 B0 B 1 B 2 . . . with 0 B 1 B 2 B . . ., but finite prefixes do not.
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which maps pairs (F,D) to values. It is essential that the table’s keys include the class D that
declares the field F because an object may have multiple fields of the same name. Arrays
have an element type T , a list of cells each of which contains a value, and a field table for
the fields inherited from Object. The length of the cell list determines the array length.

The heap operations are all deterministic. Allocation picks the least unallocated address
and assigns it to an object or array with the specified fields and cells initialised to the appro-
priate default value (Intg 0, Bool False, Unit, or Null). Reading v from a location (a,al) is
possible iff the current heap stores the value v in member al of the object or array at address
a. Similarly, writing v to location (a,al) succeeds if a is allocated and updates a’s member
al to v. Heap conformance requires that for all allocated objects and arrays, their type T is
valid, the field map stores type-conforming values for all fields that P declares for T , and all
array cells store type-conforming values.

Since the heap is passed as a shared state between the threads, this implementation leads
to sequential consistency [38] as the memory model of the multithreaded semantics. This
implementation satisfies the assumptions of locale typesafe. Therefore, JinjaThreads source
code and bytecode are type safe under sequential consistency.

4.2 The Java Memory Model

The formalisation of the Java memory model has been described in another article [50].
Here, I only summarize the results relevant for this article.

In this implementation, it is the address and not the heap that stores the dynamic type
information. So, an address Address T n consist of the dynamic type T :: hty and a sequence
number n to distinguish objects of the same type. The shared state h stores only which
addresses have been allocated. Allocation returns the set of all possible free unallocated
addresses of the specified type. The function typeof-addr now depends on the program P, as
it returns None for addresses with invalid types such as undeclared classes.

typeof-addr P h (Address T n) = (if is-type P T then bTc else None)

This restriction is necessary to meet the third assumption of locale typesafe. Reading is
completely unrestricted, i.e., any value can be read from any member of any address at any
time. Writing does not change the heap. Every heap is conformant.

On top of complete runs, at layer 7 in Figure 2, the JMM imposes constraints for well-
formed and legal executions. In particular, every read of a value from a location must be
matched by a visible write of that value to the same location. To that end, the semantics
records in the last component ′o of thread actions all reads from and writes to the locations in
memory (not shown in this article). It is not possible to decide whether an execution is legal
by looking at this execution in isolation [6]. Thus, legality is a hyperproperty of executions.

Including the dynamic type information into the address makes sure that the seman-
tics meets the JLS requirement that type information behave sequentially consistent [21,
§17.4.5]. I have also experimented with storing type information in the heap instead of the
addresses, but then type safety is violated [50].

Unfortunately, the above heap implementation does not satisfy the last assumption of
typesafe. Therefore, JinjaThreads defines another version of the JMM implementation in
which only type-conforming values can be read from memory. In [50], I have shown that
both versions lead to the same set of legal executions, i.e., the JMM is type safe. In par-
ticular, the restricted implementation does satisfy the assumptions of typesafe. Therefore,
JinjaThreads source code and bytecode are also type safe under the JMM.
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In addition to type safety, I have shown that correctly synchronized JinjaThreads pro-
grams behave sequentially consistent under the JMM (the so-called data-race freedom guar-
antee) and that every sequentially consistent behaviour is allowed, i.e., the JMM indeed
relaxes sequential consistency [50].

5 Compiler

JinjaThreads’s compiler from source code to bytecode bridges the gap between the two
languages; its correctness proof shows that both fit together. In this section, I extend Jinja’s
non-optimising compiler [32, §5] to JinjaThreads and prove that it preserves

well-formedness: It compiles well-formed source code into well-formed bytecode (Theo-
rem 54).

the semantics: If the source program terminates or diverges or deadlocks, then so does the
compiled program and vice versa (Theorem 57). In any case, all terminated threads have
terminated in the same way (normally or by throwing a certain exception). In particular,
source code and compiled code have the same set of legal executions under the JMM
(Theorem 58).

correct synchronisation: The compiled program is correctly synchronised iff the source
code is (Corollary 59).

5.1 High-level overview

Semantic preservation ensures that semantic properties established on the source code also
hold for the compiled code. Such properties or specifications, e.g., a safety property like
no null pointer exceptions, are typically modelled as predicates on the traces of observable
behaviour, i.e., the sequence of observable steps of a program execution, or on the sets
of possible traces (for non-deterministic programs). Thus, a correct compiler Comp must
ensure that every behaviour of the compiled program Comp P is an acceptable behaviour of
the source program P.

To make this formal, one must first identify what behaviour means. The JLS [21, §17.4.9]
defines the behaviours of a Java program roughly as the observable external actions (e.g.,
reading external data or printing) in the finite prefixes of any execution; program termination
and divergence are also observable. Here, divergence means that the program runs forever
without producing any observable action. Since the JinjaThreads compiler does not opti-
mize, I use a more fine-grained notion: a behaviour consists of a possibly infinite trace of
thread actions of observable program transitions and—if the trace is finite—the final state
or the fact that the program diverges. Formally, traces are modelled by the codatatype of
possibly infinite lists where the constructor for the empty list is labelled by the final state
or divergence. The JLS behaviours are projections of these behaviours because the thread
actions include all external actions.

A compiler Comp therefore preserves the semantics of P iff the following holds: Let s1
and s2 be the initial states for P and Comp P, respectively. For every execution of Comp P
that starts in s2 and terminates in s′2, there must be an execution of P from s1 to s′1 such that
both the executions’ traces and the observable data in s′1 and s′2 (such as the result values or
exceptional termination) are the same. Moreover, for every infinite execution (diverging or
not) of Comp P that starts in s2, P has an infinite execution with the same trace that starts in
s1; either both executions diverge or none.
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It makes sense to consider complete traces rather than (finite) partial traces. The reason
is that under the JMM, some Java programs generate legal infinite traces none of whose
finite prefixes is legal [50]. Completeness can be defined abstractly for transition systems as
a coinductive predicate: A trace is complete iff it is infinite, diverging, or the final state is
stuck.

As is standard, I prove the trace inclusion using a simulation approach. The latter implies
the former and can be shown by inspecting individual execution steps instead of whole
program executions. Unfortunately, the standard simulation notions do not preserve trace
completeness. Weak simulation, for example, demands that every observable transition can
be simulated by a corresponding observable transition with arbitrary many unobservable
transitions before and after and that every unobservable transition is simulated by finitely
many unobservable transitions. So a finite complete trace, which ends in some stuck state
s′2, has a finite simulating trace that ends in some state s′1. However, as s′2 is stuck, the weak
simulation condition does not impose any constraint on s′1, i.e., s′1 need not be stuck and
the simulating trace therefore not complete. For example, it might be that s′2 is in deadlock
whereas s′1 is not. In conclusion, such simulation notions allow the compiler to introduce
deadlocks into a program that was deadlock-free. This is not acceptable.

I therefore use a bisimulation notion, i.e., I prove that every source code step can be
simulated by bytecode steps and vice versa. This preserves completeness (if the bisimula-
tion notion preserves divergence) because if s′2 is stuck and s′1 is not, then s′2 must be able
to simulate s′1’s steps, but it cannot, so s′1 must get stuck after finitely many unobservable
steps, as s′1 cannot diverge. This approach ensures preservation of deadlocks as deadlocks
are formalised semantically. So, the compiler does not introduce deadlocks.9 As a side ef-
fect, bisimulations establish trace equivalence instead of trace inclusion, i.e., the bytecode
exhibits every behaviour of the source code. As the traces of source code and bytecode are
the same, hyperproperties on traces such as possibilistic security properties [52] and JMM
legality can also be transferred from source code to bytecode and back.

Regarding schedulers, semantic preservation is possibilistic: The source and compiled
program may have different behaviour under a fixed scheduler whose strategy depends on
unobservable steps. Under a round-robin scheduler, e.g., the number of unobservable steps
between two observable ones influences the interleaving. Since a compiler changes this
number, source code and bytecode may have different behaviours under this scheduler. In
this sense, semantic preservation means: If there is a scheduler for P such that s1 produces
trace t and either terminates in s′1 or runs infinitely, then there is also a scheduler for Comp P
such that s2 produces trace t and either ends in s′2 or runs infinitely, respectively.

As bisimulation notion, I have chosen delay bisimilarity [1,53] augmented with explicit
divergence [9] because multithreaded states are delay bisimilar with explicit divergence if
each of their threads is. Delay bisimulations differ from weak bisimulations in that an ob-
servable step must be simulated by a corresponding observable step and arbitrarily many
unobservable steps before, but not after. This is crucial when a thread suspends itself to
a wait set, which is an observable step. When such a suspension step is simulated, delay
bisimilarity ensures that the suspension is the last simulating step. With weak bisimilarity,
the simulation could include additional unobservable steps after the suspension, but as the

9 It would probably have been possible to obtain preservation of deadlocks from a simulation proof in
only one direction by deriving a syntactic characterisation of deadlock and analysing the simulation relation.
This would break the abstraction layer of the interleaving semantics and destroy the modularity of the proofs,
both for lifting single-threaded simulations and for showing semantic preservation under the JMM. For these
reasons, I decided to go for a bisimulation approach, although showing both directions required considerable
additional effort.
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thread is already in the wait set, it cannot execute these steps in the interleaving semantics
any more. Explicit divergence requires that for any two bisimilar states, either both can di-
verge (i.e., perform an infinite sequence of unobservable steps) or none can. This avoid the
infinite stuttering problem where an infinite sequence of unobservable moves is simulated
by no move at all. In other words, the compiler cannot introduce non-termination.

Explicit divergence violates the approach of inspecting individual steps of execution
because divergence consists of infinitely many steps. Hence, it is difficult to prove delay
bisimilarity with explicit divergence directly. Instead, I adapt Leroy’s notion of star simu-
lation [39] as follows: A delay bisimulation (without explicit divergence) is well-founded
iff whenever an unobservable step is simulated by no move at all, then the simulated step
decreases in some fixed well-founded order on states. This ensures that such stuttering sim-
ulations can be applied only finitely many times in a row. Every well-founded delay bisi-
mulation is a delay bisimulation with explicit divergence. The other direction does not hold.
Conversely, delay bisimulations with explicit divergence compose better as they are tran-
sitive: If ≈1 and ≈2 are delay bisimulations with explicit divergence, so is their relational
composition ≈1 #≈2. Well-founded delay bisimulation do not have this property.

The two notions are used as follows: I decompose the compiler into smaller transfor-
mations and verify each on its own, i.e., prove delay bisimilarity with explicit divergence.
Transitivity ensures that the overall compiler is correct, too. Each transformation itself is
proven correct using a well-founded delay bisimulation, which implies delay bisimilarity
with explicit divergence subject to a few technical side conditions (e.g., the bisimulation
relation must preserve final states as otherwise thread joins cannot be simulated). Thus, it
suffices to prove that the compiler preserves the behaviour of single threads that is observ-
able to other threads. This separates the sequential challenges from the interleaving and
deadlock issues, with which I deal on the abstract level of the interleaving semantics.

Compiling synchronized blocks is non-trivial in three respects: First, the source code
semantics stores in a synchronized block the monitor address whereas bytecode caches
it in a local register. Second, unlike the bytecode instructions for monitors, synchronized
blocks enforce structured locking of monitors, i.e., unlocking never fails in source code.
Hence, the compiler verification must show that unlocking a monitor never fails in compiled
programs, either. Third, the monitor must also be unlocked when an exception abruptly
terminates the block. The compiler adds an exception handler to ensure this.

The compiler J2JVM operates in two stages: The first stage compP1 allocates local vari-
ables to registers (Section 5.4) and the second compP2 generates bytecode (Section 5.5).
Figure 28 shows its structure and the various semantics the verification involves. There is
just one intermediate language J1, but the verification spans five different semantics: For
source code, I first develop a small-step semantics J0 that makes call stacks explicit like in
bytecode (Section 5.3) and prove it bisimilar to the source code semantics from Section 2.3.
Two semantics for the intermediate language address the difficulty that unlocking a moni-
tor in bytecode can fail: J′1 allows synchronized blocks to fail upon unlocking, whereas
J#

1 does not. For bytecode, I choose the defensive VM because it gets stuck in ill-formed
states. The aggressive VM would carry on with undefined behaviour, which the source code
semantics cannot simulate.10

The main verification effort is on the level of expressions and statements (last row in Fig-
ure 28), which contains all execution steps of a single thread except for calls to and returns

10 Sometimes, the defensive VM gets stuck earlier than the source code semantics. To avoid problems in
the simulation proof, I take a detour via a semi-aggressive VM exec-meth and exploit that the defensive and
aggressive VM have the same behaviours (Theorem 21). See Section 5.5.3 for details.

50



J.redT J0.redT J#
1.redT J′1.redT jvmd.redT

bytecodeintermediate
language J1

source code J compP1 compP2

m
≈0 0

m
≈1 1

m
≈1 1

m≈jvm

J-red J0-red J#
1-red J′1-red jvm-execdt

≈0 0
t
≈1 1

t≈jvm

red0 red#
1 red′1

exec-meth

exec-methd

e≈0 1
e
≈jvm

Fig. 28 Structure of the compiler (top row) and its verification. Each column corresponds to a semantics or bi-
simulations (≈), the rows represent different levels (m = multithreaded, t = single-threaded, e = expressions).
The grey areas group the semantics by the language that they belong to.

from non-native methods. The bisimulation relations on this level are marked with “e”. The
next group of semantics lifts the expression level semantics to call stacks and adds method
calls and returns. This level (marked with “t”) corresponds to the single-threaded semantics
J-red and jvm-execd for source code and bytecode, respectively. Finally, the multithreaded
semantics models the full behaviour for multithreaded programs. In all languages, this is
the interleaving semantics instantiated with the appropriate single-threaded semantics. The
JMM plays only a minor role in the verification because the compiler does not optimise.
The JMM legality constraints, which reside even higher in the stack of semantics, are there-
fore not affected and preservation of correct synchronisation follows easily from semantic
preservation because the compiler preserves the set of complete runs (Section 5.2.3).

In comparison to Jinja, preservation of well-formedness follows the same lines because
the languages are structured similarly. In contrast, multithreading changes the semantics
drastically and, therefore, pervades the proofs, too. In particular, the verification is carried
out against a small-step semantics rather than the big-step semantics as in Jinja. This com-
plicates the proofs as the verification must deal with intermediate states and incomparable
granularity of atomic steps. Nevertheless, I was able to reuse many proof invariants (al-
though not their preservation proofs).

My simulation proofs at the expression level crunch through all the cases, in both direc-
tions. In CompCert [40], Leroy proves only that the compiled program simulates the source
program, i.e., the downward direction. He then proves that CompCert’s target language is
deterministic and derives the diagrams for the upward direction from the downward ones.
He claims that upward simulations are harder to show than downward ones and gives two
reasons. First, source code typically gets stuck more often than the compiled code. In such
a case, the upward simulation proof fails. Second, the compiled code typically has more
intermediate states, so the upward simulation relation must relate more states, which leads
to into more cases in the proof.

In JinjaThreads, this is not the case. For the second compiler stage, in particular, the
upward direction is shorter than the downward direction (20 % less lines of proof script).
Leroy’s first reason also applies to the aggressive VM. I therefore use the defensive VM
for the upward simulation proof and an almost aggressive VM for the downward direc-
tion, which are equivalent by the type-safety proof. Leroy’s second argument does not hold
for JinjaThreads. While the granularity of atomic steps differs between source code and
bytecode, there is no clear direction that would favour an upward or downward simulation
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Fig. 29 Simulation diagrams for delay bisimulations with explicit divergence. Solid lines denote assump-
tions, dashed lines conclusions.

approach. Like in Java, most JinjaThreads language constructs in source code are compiled
into one or (rarely) two bytecode instructions. synchronized blocks are the only excep-
tion. So, bytecode and source code granularity differ not too much for normal execution.
Exception handling, in contrast, is much more fine grained in source code than in bytecode.
The reason is that the VM directly jumps to the exception handler or pops the current call
frame whereas exception propagation rules in source code slowly move the raised exception
towards the handler. Consequently, there are much more intermediate states in source code
than in byte code when it comes to exception handling.

5.2 Semantic preservation via bisimulations

In this section, I introduce delay bisimulations with explicit divergence as proof tool (Sec-
tion 5.2.1) and show how preservation for single threads extends to the interleaving seman-
tics (Section 5.2.2) and the JMM (Section 5.2.3).

5.2.1 Simulation properties

For semantic preservation, I show bisimilarity of the source code and the compiled code.
I have chosen delay bisimilarity [1, 53] augmented with explicit divergence [9] because
multithreaded states are delay bisimilar with explicit divergence if each of their threads is.

In this setting, programs define labelled transition systems (LTS) whose states are the
program states and whose labels constitute the observable behaviour. I write s tlB s′ for a
single transition (move), i.e., an execution step in the small-step semantics, from state s to
state s′ with transition label tl. Both the semantics t ` − → of an individual thread t and
the interleaving semantics − : → fit into this format. A predicate τ-move s tl s′ determines
whether the transition s tlB s′ is unobservable to the outside world, i.e., other threads for the
single-threaded semantics, and other processes and the user for the multithreaded semantics.
Such transitions are called silent or τ-moves. Since their labels are irrelevant, I don’t keep
track of them and write s τB s′ for ∃tl. s tlB s′∧ τ-move s tl s′. Moreover, τB+ denotes
the transitive closure of τB , and τB∗ the reflexive and transitive closure. A state s
can diverge (denoted s τB∞) iff an infinite sequence of τ-moves starts in s. A visible move
s tlI s′ consists of a finite sequence of τ-moves followed by an observable transition, i.e.,
s tlI s′ abbreviates ∃s′′. s τB∗ s′′∧ s′′ tlB s′∧¬τ-move s′′ tl s′.

In this section, I often have states, labels, reductions, and the like for two or more pro-
grams and semantics. To keep the notation simple and clear, I usually index variables, ar-
rows, etc. with numbers to assign them to one of them, i.e., ′x1, s1, t ` − →1 , etc. for the
first, ′x2, s2, t ` − →2 , etc. for the second and so on.
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type synonym (′s, ′t) lts = ′s⇒ ′tl⇒ ′s⇒bool
type synonym (′s1,

′s2) bisim = ′s1⇒ ′s2⇒bool

locale dbisim-base =
fixes B1 :: (′s1,

′tl1) lts and B2 :: (′s2,
′tl2) lts

and ≈ :: (′s1,
′s2) bisim and ∼ :: (′tl1, ′tl2) bisim

and τ-move1 :: (′s1,
′tl1) lts and τ-move2 :: (′s2,

′tl2) lts

locale dbisim-div = dbisim-base+
assumes sim1 : Js1 ≈ s2; s1

tl1B1 s′1; ¬τ-move1 s1 tl1 s′1K =⇒∃tl2 s′2. s2
tl2I2 s′2 ∧ s′1 ≈ s′2 ∧ tl1 ∼ tl2

and sim2 : Js1 ≈ s2; s2
tl2B2 s′2; ¬τ-move2 s2 tl2 s′2K =⇒∃tl1 s′1. s1

tl1I1 s′1 ∧ s′1 ≈ s′2 ∧ tl1 ∼ tl2
and sim-τ1 : Js1 ≈ s2; s1

τB1 s′1K =⇒∃s′2. s2
τB∗2 s′2 ∧ s′1 ≈ s′2

and sim-τ2 : Js1 ≈ s2; s2
τB2 s′2K =⇒∃s′1. s1

τB∗1 s′1 ∧ s′1 ≈ s′2
and bisim-diverge : s1 ≈ s2 =⇒ s1

τB1 ∞←→ s2
τB2 ∞

locale dbisim-final = dbisim-base+fixes final1 :: ′s1⇒bool and final2 :: ′s2⇒bool
assumes final1-sim : Js1 ≈ s2; final1 s1K =⇒∃s′2. s2

τB∗2 s′2 ∧ s1 ≈ s′2 ∧final2 s′2
and final2-sim : Js1 ≈ s2; final2 s2K =⇒∃s′1. s1

τB∗1 s′1 ∧ s′1 ≈ s2 ∧final1 s′1

Fig. 30 Locale dbisim-div formalises the notion of delay bisimulations with explicit divergence; locale
dbisim-final defines preservation of final states

A delay bisimulation (with explicit divergence) consists of two binary relations≈ and∼
on states and transition labels, respectively, that satisfy the simulation diagrams in Figure 29,
which the locale dbisim-div in Figure 30 formalises:

(a) An observable move is simulated by a visible move such that ≈ relates the resulting
states and ∼ relates the transition labels.

(b) A τ-move is simulated by a finite (possibly empty) sequence of τ-moves such that ≈
relates the resulting states.

(c) ≈ relates only states of which either both or none can diverge.

Two programs, i.e., transition systems, are (delay) bisimilar (with explicit divergence)
iff there exists a delay bisimulation with explicit divergence for them that relates their start
states. A special case of delay bisimulation is strong bisimulation [54] where every move is
simulated by exactly one move. When ∼ is obvious from the context, I sometimes omit it
and refer to≈ as a delay bisimulation. Condition (b) does not imply (c) because of the classic
infinite stuttering problem. Infinitely many τ-moves may be simulated by no move at all.

s1 s′1s′′1

s2 s′2s′′2

τ

tl1

τtl2

τ

τ

τ

≈ ≈≈ ∼

Fig. 31 Example of a delay
bisimulation with explicit di-
vergence that is not a well-
founded delay bisimulation

Figure 31 on the right shows two LTSs with states
{s1,s′1,s

′′
1 } and {s2,s′2,s

′′
2 } and a delay bisimulation with ex-

plicit divergence (≈,∼) between them. The upper LTS with
start state s1 can delay arbitrarily long the decision whether
to diverge or to produce the observable transition with label
tl1, whereas the lower LTS with start state s2 must decide im-
mediately. Nevertheless, they are delay bisimilar with explicit
divergence because divergence (Figure 29c) is a trace property
and thus independent of the visited states.

A delay bisimulation (≈,∼) preserves final states iff
whenever one of the related states is final, then the other can
silently reach a final state. The locale dbisim-final in Figure 30 formalises this notion and
Figure 32 shows the simulation diagrams. A delay bisimulation with explicit divergence pre-
serves final states if finality coincides with being stuck. However, in general, not all stuck
states are final. For example, deadlocked states in the multithreaded semantics are stuck, but
not final—and so may type-incorrect states. Preservation of final states ensures if the source
code terminates in a final state, so does the compiled code, and vice versa.
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Fig. 33 Simulation diagrams for well-founded delay bisimulations

Lemma 22 (Transitivity of delay bisimulations) Let (≈1,∼1) and (≈2,∼2) be delay bi-
simulations with explicit divergence. Then, their composition (≈1 #≈2,∼1 #∼2) (denoted
(≈1,∼1)#B (≈2,∼2)) is also a delay bisimulation, where# denotes relational composition,
i.e., x (R#S) z for binary relations R and S iff there is a y such that x R y and y S z.

If both (≈1,∼1) and (≈2,∼2) preserve final states, so does their composition.

Proof Aceto et al. [1] showed transitivity for delay bisimulations without explicit diver-
gence, i.e., the diagrams (a) and (b) of Figure 29. The diagrams in (c) are straightforward to
prove. For preservation of final states, suppose s1 ≈1 #≈2 s3 and final1 s1. Hence, s1 ≈1 s2
and s2 ≈2 s3 for some s2. By assumption, there is a s′2 with s2

τB∗2 s′2 and s1 ≈1 s′2 and
final2 s′2. By induction on s2

τB∗2 s′2 with invariant s2 ≈2 s3, obtain s′3 such that s′2 ≈ s′3 and
s3

τB∗3 s′3, using sim-τ1 in the inductive step. Since s′2 is final2, there is an s′′3 with s′3
τB∗3 s′′3

and s′2 ≈ s′′3 and final3 s′′3 . Then, s3
τB∗3 s′′3 and s1 ≈1 #≈2 s′′3 by transitivity and definition.

This concludes this direction. The other direction follows by symmetry. ut

Proofs by symmetry in this section are not only a matter of presentation. I appeal to
symmetry also in the Isabelle formalisation. This way, only one direction needs a detailed
proof. The usual trick of requiring that the bisimulation relation be symmetric cannot be used
here because the state types of two transition systems differ. Instead, note that if (≈,∼) is
a delay bisimulation relation for B1 and B2, then (flip ≈,flip ∼) is a delay bisimulation
relation for B2 and B1, where flip R x y = R y x. Formally,

dbisim-div B1 B2 ≈ ∼ τ-move1 τ-move2

dbisim-div B2 B1 (flip ≈) (flip ∼) τ-move2 τ-move1

Similar relations hold for the other bisimulation locales in this section. Thus, it suffices to
prove one of the diagrams in each of Figure 29a–c as a separate lemma. The other diagram
then follows by instantiating the locale with the flipped transition systems using the rule.

Explicit divergence violates the approach of inspecting individual steps of execution
because divergence consists of infinitely many steps. Hence, it is difficult to prove delay
bisimilarity with explicit divergence directly. Instead, I adapt Leroy’s notion of star simula-
tion [39] as follows: Let ≺1 and ≺2 be two well-founded binary relations on states. (≈,∼)
is a well-founded delay bisimulation iff it satisfies the simulation diagrams in Figure 33:

(a) Observable moves are simulated as in delay bisimulations with explicit divergence.
(b) A τ-move si

τBi s′i (i ∈ {1,2}) is either simulated by a finite non-empty sequence of τ-
moves, or by no move at all. In the latter case, the τ-move being simulated must descend
in ≺i, i.e., s′i ≺i si.
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Fig. 34 Three transition systems (solid, dashed, and dotted arrows) and two well-founded delay bisimulations
(dashed and dotted lines) whose composition is no well-founded delay bisimulation for the solid and dotted
transition systems. All transitions are τ-moves.

Since ≺1 and ≺2 are well-founded, there are no infinitely decreasing chains and the infinite
stuttering problem cannot occur. Proving well-founded delay bisimulation is easier than de-
lay bisimulation with explicit divergence as all assumptions involve only a single transition.

The next lemma shows that well-founded delay bisimulation is at least as strong as delay
bisimulation with explicit divergence, i.e., I can use the former whenever I need the latter.

Lemma 23 Let (≈,∼) be a well-founded delay bisimulation for ≺1 and ≺2. Then, (≈,∼)
is a delay bisimulation with explicit divergence.

Proof Since Figure 29a and Figure 33a are identical and Figure 33b trivially implies Fig-
ure 29b, only the simulation diagrams for divergence (Figure 29c) are interesting. The latter
are shown by coinduction on si

τBi ∞ (i ∈ {1,2}) with s1 ≈ s2 and s3−i
τB3−i ∞ as coin-

duction invariant with a nested induction on the well-founded order ≺3−i. ut

The converse does not hold, as Figure 31 shows.11 The relations≈ and∼ as shown form
a delay bisimulation with explicit divergence and relate the start states s1 and s2. However,
there is no well-founded delay bisimulation (≈′,∼′) that relates states s1 and s2 because s2
cannot simulate the τ-move s1

τB1 s1 according to Figure 33b. Clearly, ≈′ cannot relate s1
and s′2 because s1 can do the observable move with label tl1 and s′2 cannot. This excludes
the possibility on the left of Figure 33b. However, the right one is not feasible, either, as
s1 ≺1 s1 would violate well-foundedness of ≺1.

The advantage of delay bisimulation with explicit divergence over well-founded delay
bisimulation is that only the former is closed under composition (Lemma 22), but not the
latter. Figure 34 shows three LTSs (solid, dashed, and dotted arrows) and two well-founded
delay bisimulations (dashed and dotted lines) whose composition is no well-founded de-
lay bisimulation because there is no suitable well-founded relation ≺′1 for the solid LTS.
Suppose ≺′1 were such. Then, for all i > 0, ui can simulate the τ-move s2i−1

τB s2i only
by staying at ui, hence s2i ≺′1 s2i−1 by Figure 33b. But for all j > 0, u′j+1 is related to s2 j

whose τ-move to s2 j+1 it can simulate only by staying at u′j+1. Hence, s2 j+1 ≺′1 s2 j by Fig-
ure 33b. Therefore, si+1 ≺′1 si for all i, i.e., ≺′1 contains an infinite descending chain, which
contradicts well-foundedness.

This example demonstrates only that well-founded delay bisimulations do not compose.
It does not rule out that well-founded delay bisimilarity is transitive as there may be de-
lay bisimilarity relations other than the composition #B for which a well-founded relation

11 This example was found by Nitpick [10], a counter example generator for Isabelle/HOL, after several
failed attempts of mine to prove equivalence).
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exists. I have not attempted to prove this because directly composing bisimulation relations
helps in breaking down the ultimate correctness result.

Semantic preservation needs a formal notion of execution. Here, an execution ξ from
a state s consists of the labels of a possibly infinite sequence of observable moves and—if
these are only finitely many—the terminal state bsc or the special symbol None (written
∞→) for divergence. That is, an execution is like a complete run (Section 2.2.4) in which
all unobservable transitions have been removed. Formally, an execution is modelled by a
terminated lazy list:

type synonym (′s, ′tl) execution = (′tl, ′s option) tllist

An execution ξ terminates in the state s iff ξ is finite and the empty list constructor in ξ

carries the symbol bsc.
The predicate s � ξ characterises all executions ξ that start in s. If s can reach via τ-

moves a stuck state s′, then an execution terminates in s′ (�STOP). If an infinite sequence
of τ-moves starts in s, then an execution diverges (�DIV). If s can do a visible move with
transition label tl to some state s′, then s’s executions include s′’s prepended with tl (�STEP).

�STOP:
s τB∗ s′ ∀tl s′′. ¬s′ tlB s′′

s� []bs′c
=========================== �DIV:

s τB∞

s� [] ∞→

====== �STEP:
s tlI s′ s′ � ξ

s� tl ·ξ
=================

Let [≈,∼] denote the point-wise extension of (≈,∼) to executions, i.e, ∼ holds point-
wise for all list elements and ≈ for the terminal states, if any. In delay bisimilar transition
systems with explicit divergence, related states have bisimilar executions, i.e., delay bisimu-
lations imply semantic preservation.

Theorem 24 (Semantic preservation) Let (≈,∼) be a delay bisimulation with explicit
divergence for ( B1,τ-move1) and ( B2,τ-move2) and s1 ≈ s2. Then, the following holds:

(i) Whenever s1 �1 ξ1, then s2 �2 ξ2 for some ξ2 such that ξ1 [≈,∼] ξ2.
(ii) Whenever s2 �2 ξ2, then s1 �1 ξ1 for some ξ1 such that ξ1 [≈,∼] ξ2.

Proof It suffices to prove (i) because (ii) follows from (i) by symmetry. Since ξ2 is exis-
tentially quantified in (i), I must first construct it explicitly by corecursion from s1 and ξ1
before showing s2 �2 ξ2 and ξ1 [≈,∼] ξ2 by coinduction. However, ξ1 is only a trace of
transition labels without the intermediate states. Since trace properties are strictly weaker
than bisimulation properties, it is too weak to be used as a coinduction invariant. Therefore,
I define a variant �′ of � where �STEP not only prepends the transition label, but also
remembers the intermediate state, i.e.,

�′STEP:
s tlI s′ s′ �′ ξ

s�′ (tl,s′) ·ξ
=================

Coinduction with invariant s � ξ1 shows that there is a ξ ′1 such that s �′1 ξ ′1 and ξ is the
projection of ξ ′1 on the transition labels. I construct ξ ′2 = simulate s2 ξ ′1 by corecursion:

simulate s2 [] ∞→ = [] ∞→
simulate s2 []bs′1c = (let s′2 = εs′2. s2

τB∗2 s′2∧ (∀tl2 s′′2 . ¬s′2
tl2B2 s′′2)∧ s′1 ≈ s′2 in []bs′2c)

simulate s2 ((tl1,s′1) ·ξ1) =

(let (tl2,s′2) = ε(tl2,s′2). s2
tl2I2 s′2∧ s′1 ≈ s′2∧ tl1 ∼ tl2 in (tl2,s′2) · simulate s′2 ξ1)

Coinduction with invariant s1 ≈ s2 and s1 �
′
ξ ′1 proves that s�′2 ξ ′2 and that ξ ′1 and ξ ′2 are

related point-wise by ≈ and ∼. Then, the projection of ξ ′2 to transition labels yields ξ2. ut
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The characterisation of stuck states in �STOP explains the need for bisimulations. In-
deed, each direction of semantic preservation needs both directions of the simulation dia-
grams. For example, let s1 be a stuck state in B1 and s2

tlB2 s′2 be an observable move and
assume that s1 ≈ s2. As there is nothing to simulate, ≈ trivially satisfies all the diagrams for
B2 simulating B1 in Figure 29. Yet, s1 �1 []s1 , but not s2 �2 []s′′2

for any s′′2 . So, semantic
preservation is violated. The reason is that the definition of semantic preservation makes
termination observable, but simulations do not talk about termination.

Theorem 25 (Preservation of final states) Let (≈,∼) preserve final states. Suppose s1 �1
ξ1 and s2 �2 ξ2 such that ξ1 [≈,∼] ξ2. Then, ξ1 terminates in a final1-state iff ξ2 terminates
in a final2-state.

5.2.2 Lifting simulations in the interleaving framework

The delay bisimulations for showing semantic preservation always relate multithreaded
states. As I use the language-independent interleaving semantics at all compilation stages, I
uniformly lift delay bisimulations for single threads to multithreaded states. Thus, to show
delay bisimilarity on the multithreaded level, it suffices to show delay bisimilarity for sin-
gle threads plus some constraints that the lifting imposes, which I list below. Before that, I
define the silent moves and the bisimulation relation for the multithreaded semantics.

A transition in the multithreaded semantics is a τ-move (predicated by mτ-move) iff
it originates from a τ-move of the single-threaded semantics via NORMAL. In particular,
reacquisition of temporarily released locks (rule ACQ) is no τ-move because another thread
can observe the lock acquisition by no longer being able to acquire the lock.

Let t ` (x1,h1) ≈ (x2,h2) denote a bisimulation relation for thread t and x1 ∼∼∼ x2 be a
relation of thread-local states for threads in wait sets. The relation s1 ≈m s2 on multithreaded
states imposes the following conditions:

(i) Locks, wait setsm and interrupts are equal in s1 and s2, i.e., locks s1 = locks s2, and
wset s1 = wset s2, and intrs s1 = intrs s2.

(ii) All threads in s1 also exist in s2 and vice versa, i.e., dom (tp s1) = dom (tp s2).
(iii) For every thread in s1 and s2, say tp s1 t = b(x1, ln1)c and tp s2 t = b(x2, ln2)c, the

temporarily released locks are the same (ln1 = ln2), the thread-local states related (t `
(x1,shr s1)≈ (x2,shr s2)), and if t’s wait set status is not None then x1 ∼∼∼ x2.

(iv) All waiting threads exist, i.e., dom (wset s1)⊆ dom (tp s1).
(v) There are only finitely many threads, i.e., finite (dom (tp s1)).

Since threads can observe the status of locks, wait sets, interrupts, and the existence of
threads, conditions (i) and (ii) ensure that ≈m-related states are indistinguishable in these
respects to the threads. Constraint (iii) imposes the thread-wise bisimulation on all thread
states. The last condition x1 ∼∼∼ x2 imposes stronger simulation properties on threads in wait
sets because the interleaving semantics does not allow a thread to execute τ-moves between
its removal from the wait set and the (observable) reduction of processing the removal.
Constraint (iv) ensures that spawned threads are not in a wait set, i.e., their thread-local
states need not be related in∼∼∼. The last constraint (v) ensures that≈m preserves divergence.

To see that (v) is necessary, consider two pools with infinitely many threads. In one of
them, each thread only does a single τ-move x1

τB1 x′1 before it terminates. In the other,
all threads have terminated in state x2. For the (well-founded) delay bisimulation between
single threads that relates both x1 and x′1 with x2, constraints (i) to (iv) are satisfied, but the
first thread pool can diverge by executing one thread at a time, whereas the second is stuck.
Hence, ≈m without (v) would not be a delay bisimulation with explicit divergence.
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type synonym (′l, ′t, ′x, ′h, ′w, ′o) τ-move = ′x× ′h⇒ (′l, ′t, ′x, ′h, ′w, ′o) thread-action⇒ ′x× ′h⇒bool

locale τ-multithreaded = multithreaded+fixes τ-move :: (′l, ′t, ′x, ′h, ′w, ′o) τ-move
assumes τ-ta : τ-move (x,h) ta (x′,h′) =⇒ ta = LM
and τ-heap : Jt `(x,h)−ta→(x′,h′); τ-move (x,h) ta (x′,h′)K =⇒ h′= h

locale m-dbisim-div =
r1 : τ-multithreaded final1 r1 acq-events τ-move1 +
r2 : τ-multithreaded final2 r2 acq-events τ-move2 +
fixes ` ≈ :: ′t⇒ (′x1× ′h1,

′x2× ′h2) bisim and ∼∼∼ :: (′x1,
′x2) bisim

assumes ∀t. dbisim-div (r1 t) (r2 t) (t ` ≈ ) ∼ τ-move1 τ-move2
and ∀t. dbisim-final (r1 t) (r2 t) (t ` ≈ ) ∼ τ-move1 τ-move2 (λ (x1,h1). final1 x1) (λ (x2,h2). final2 x2)
and heap-change :

Jt ` (x1,h1)≈ (x2,h2); t ` (x′1,h′1)≈ (x′2,h
′
2); ta1 ∼ ta2;

t ` (x1,h1)
ta1I1 (x′1,h

′
1); t ` (x2,h2)

ta2I2 (x′2,h
′
2);

t ′ ` (x∗1,h1)≈ (x∗2,h2)K =⇒ t ′ ` (x∗1,h′1)≈ (x∗2,h
′
2)

and ∼∼∼I :
Jt ` (x1,h1)≈ (x2,h2); t ` (x′1,h′1)≈ (x′2,h

′
2); ta1 ∼ ta2;

t ` (x1,h1)
ta1I1 (x′1,h

′
1); t ` (x2,h2)

ta2I2 (x′2,h
′
2);

Suspend w ∈ set〈ta1〉w; Suspend w ∈ set〈ta2〉wK =⇒ (x′1,h
′
1)
∼∼∼(x′2,h′2)

and sim-∼∼∼1 :
Jt ` (x1,h1)≈ (x2,h2); x1∼∼∼x2; t ` (x1,h1)−ta1→1 (x′1,h

′
1);

Notified ∈ set 〈ta1〉w ∨WokenUp ∈ set 〈ta1〉wK
=⇒∃ta2 x′2 h′2. t ` (x2,h2)−ta2→2 (x′2,h

′
2)∧ t ` (x′1,h′1)≈ (x′2,h

′
2)∧ ta1 ∼ ta2

and sim-∼∼∼2 :
Jt ` (x1,h1)≈ (x2,h2); x1∼∼∼x2; t ` (x2,h2)−ta2→2 (x′2,h

′
2);

Notified ∈ set 〈ta2〉w ∨WokenUp ∈ set 〈ta2〉wK
=⇒∃ta1 x′1 h′1. t ` (x1,h1)−ta1→1 (x′1,h

′
1)∧ t ` (x′1,h′1)≈ (x′2,h

′
2)∧ ta1 ∼ ta2

and Ex-final-inv : (∃x1. final1 x1)←→ (∃x2. final2 x2)

Fig. 35 Locale τ-multithreaded enforces that τ-moves are unobservable and locale m-dbisim-div collects the
necessary assumptions for ≈m being a delay bisimulation with explicit divergence.

The bisimulation ` ≈ for single threads also yields the relation on the thread actions
as transition labels: ta1 ∼ ta2 denotes that ta1 and ta2 are equal except for the parameters
x1, h1 and x2, h2 to Spawn t BTAs which must satisfy t ` (x1,h1)≈ (x2,h2), i.e, ta1 and ta2
may only differ in the initial states of spawned threads, which must be bisimilar. Note that
storing the heap in the BTA Spawn again simplifies the definition because t ` ≈ relates
pairs of thread-local states and the current heaps.

The above definition for ≈m is sensible. If (t ` ≈ ,∼) is a delay bisimulation with
explicit divergence, then so is≈m (Theorem 26), if threads communicate only through thread
actions and the shared heap. Figure 35 formalises the communication restrictions as follows:

1. Most importantly, a thread must not be able to observe the τ-moves of other threads. To
that end, I demand that τ-moves neither execute any BTAs, nor change the shared heap
as expressed by the locale τ-multithreaded.

2. t ` ≈ must preserve final states for all t. This ensures that if a thread t in state s1
successfully joins on another thread t ′ in one state, i.e., t ′’s local state is final, then any
≈m-bisimilar state s2 can reach via τ-moves a bisimilar state s′2 in which t ′’s local state
is also final, i.e., t’s join suceeds in s′2, too.

3. Since bisimilarity of threads involves the shared heap, I require that the heap changes
by one thread preserve bisimilarity of other threads. Assumption heap-change of locale
m-dbisim-div captures this formally: Let t ` (x1,h1) ≈ (x2,h2) be two bisimilar states
with visible moves to (x′1,h

′
1) and (x′2,h

′
2) such that t ` (x′1,h′1)≈ (x′2,h

′
2), i.e., the visible

moves simulate each other. Then, for any thread t ′, whenever t ′ ` (x∗1,h1)≈ (x∗2,h2) holds
for the old heaps h1 and h2, t ′ ` (x∗1,h′1)≈ (x∗2,h

′
2) holds for the new heaps h′1 and h′2, too.
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4. The wait-notify mechanism requires that when a thread has been removed from its wait
set, its next step processes the removal. To that end,≈m enforces that threads in wait sets
are related in ∼∼∼. The next three assumptions link ∼∼∼ with the semantics. Assumption ∼∼∼I
expresses that whenever a thread suspends itself to a wait set,∼∼∼must relate the resulting
states. Moreover (sim-∼∼∼1 and sim-∼∼∼2), ∼∼∼ is a “one-step” strong bisimulation for pro-
cessing the removal from the wait set, i.e., whenever one of the states can process a re-
moval, so can the other without any intervening τ-moves and t ` ≈ relates new states.

5. Last, for technical reasons, m-dbisim-div requires that final states exist for either both
single-threaded semantics or none. I discuss this assumption in more detail in Foot-
note 12 when I prove preservation for deadlocks (Theorem 27).

Then, ≈m is a delay bisimulation with explicit divergence that preserves final states.

Theorem 26 Under the assumptions of locale m-dbisim-div, (≈m,∼m) is a delay bisimu-
lation for r1.redT and r2.redT that preserves final states. Formally:
(i) dbisim-div r1.redT r2.redT ≈m ∼m r1.mτ-move r2.mτ-move
(ii) dbisim-final r1.redT r2.redT ≈m ∼m r1.mτ-move r2.mτ-move r1.mfinal r2.mfinal

Proof I show the simulation diagrams from Figures 29 and 32 for (i) and (ii), respectively.
As before, I show just one direction of each diagram as the other follows by symmetry.

For an observable move s1−t:ta1→1 s′1 and ≈m-bisimilar state s2 (Figure 29a), if the
move originates from ACQ, s2 can directly simulate it because ≈m ensures that the lock
states of and t’s temporarily released locks and wait set status are the same in s1 and s2.
Otherwise (NORMAL), the move originates from some observable move of t’s semantics,
say t ` (x1,shr s1)−ta1→1 (x′1,shr s′1). Since s1 ≈m s2, t exists in s2 with local state x2 such
that t ` (x1,shr s1)≈ (x2,shr s2) and—if t’s wait set status is not None—x1 ∼∼∼ x2. If t’s wait
set status is None, bisimilarity of single threads yields a visible move t ` (x2,shr s2)

ta2I2
(x′2,h

′
2) such that t ` (x′1,shr s′1)≈ (x′2,h

′
2) and ta1 ∼ ta2. This does not directly translate into

a visible move of the interleaving semantics because ta2’s preconditions need not be met in
s2. In detail, if ta2 joins on a thread t ′, i.e., Join t ′ ∈ 〈ta2〉c, t ′ may be final in s1, but need
not be final in s2. As t ′ ` ≈ preserves final states, t ′ can silently reduce to a final state.
Hence, the simulating visible move consists of (i) t’s τ-moves, (ii) the silent reductions to
final states of all threads ta2 joins on, and (iii) t’s observable move.

Proving that ≈m relates the resulting states s′1 and s′2 falls in five parts. First, the locks,
wait sets, interrupts and domains of the thread pool are equal because τ-moves do not change
them and the observable moves have identical thread actions except for the initial states of
spawned threads. Second, t’s thread-local states x′1 and x′2 are related as required where as-
sumption∼∼∼I establishes x′1∼∼∼ x′2 if wset s′1 t 6=None, i.e., when ta1 and ta2 contain a Suspend
BTA. Third, ta1 ∼ ta2 guarantees that the local states of spawned threads are related; and
dom (wset s1) ⊆ dom (tp s1) ensures that their wait set status is None, so ∼∼∼ need not re-
late their local states. Forth, by assumption heap-change, all other threads remain bisimilar.
Fifth, the thread pool remains finite as a single step can spwan only finitely many threads.

The case for wset s1 t 6= None is analogous except that assumption sim-∼∼∼1 yields the
simulating move and t does no τ-moves before the observable move.

Simulating a τ-move (Figure 29b) is easy. It must originate from a τ-move in the single-
threaded semantics, so there is a simulating sequence of τ-moves. Since none of them gen-
erates any thread action, NORMAL simply injects them into the interleaving semantics.

To prove preservation of divergence, note that ≈m ensures that there are only finitely
many threads. Induction on this finite set yields that the interleaving semantics can only
diverge if one of its threads can diverge. Conversely, it obviously can diverge if one of the
threads can (by coinduction). Putting these arguments together, ≈m preserves divergence.
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For preservation of final states, recall that all threads in an mfinal state are final. So
suppose r1.mfinal s1 and s1 ≈m s2. By induction on the finite set of threads in s1, the state
s2 can silently reach a state s′2 with s1 ≈m s′2 and r2.mfinal s′2. In the inductive step, the next
thread t can silently reduce to an appropriate final state as t ` ≈ preserves final states.
These τ-moves together with the induction hypothesis yield the desired moves. ut

Theorem 27 (Preservation of deadlocks) Under the assumptions of locale m-dbisim-div,
≈m preserves deadlocks. Let s1 ≈m s2. If t ∈ r1.deadlocked s1, then s2 can reduce via τ-
moves to some s′2 such that s1 ≈m s′2 and t ∈ r2.deadlocked s′2. If t ∈ r2.deadlocked s2, then
s1 can reduce via τ-moves to some s′1 such that s′1 ≈m s2 and t ∈ r1.deadlocked s′1.

Proof By symmetry, it suffices to prove only one direction. So suppose t ∈ r1.deadlocked s1.
Since ` ≈ preserves final states, there is an s∗2 which is reachable via τ-moves from s2
such that s1 ≈m s∗2 and all final1 threads in s1 are final2 in s∗2, too (by induction on the finite
set of threads). Since ` ≈ preserves divergence, a similar induction shows that there is
an s′2 which is reachable via τ-moves from s∗2 such that s1 ≈m s′2 and all threads in s1 that
cannot do any τ-move cannot do any in s′2 either.

Then, I prove t ∈ r2.deadlocked s′2 by coinduction with invariant t ∈ r1.deadlocked s1. In
the coinductive step, I show by case analysis of t ∈ r1.deadlocked s1 that each case suffices to
prove the corresponding case for t ∈ r2.deadlocked s′2. For DACTIVE, this follows from the
simulation for observable moves. Since t is deadlocked in s′1, it cannot do any τ-moves and,
therefore, neither can it in s′2. Hence, the visible move that simulates a move of t can only
consist of the observable move, but no τ-moves. Therefore, ≈m preserves t ` ( ,shr s) o and
t`( ,shr s) o.12 Since final threads in s1 are final in s2, too, and locks and wait sets are equal,
must-wait is preserved, too. This concludes this case. For the cases DACQUIRE and DWAIT,
preservation of must-wait and all-final-except is straightforward by the choice of s′2. ut

5.2.3 Semantic preservation for the Java memory model

Bisimulations ensure that both the source program and the compiled code have the same set
of traces (Theorem 24). Since τ-moves produce no memory model events by assumption τ-
ta, the JMM cannot distinguish the sets of complete runs, either. Thus, semantic preservation
extends to the JMM:

Corollary 28 Two programs that are delay bisimilar with explicit divergence have the same
set of legal executions.

5.3 Explicit call stacks for source code

The small-step semantics for source code dynamically inlines method calls (RCALL) where-
as the VM models a call stack. To ease the compiler verification, I first define an alternative
state representation and small-step semantics J0 with explicit call stacks for the source code
language. This change only affects the semantics, not the language. Then, after having de-
fined the observable moves, I prove that both semantics are delay bisimilar.

12 Recall that t ` (x,h) o expresses that t with local state x can reduce with a thread action ta which is not
contradictory in itself. This is where the technical assumption Ex-final-inv from Figure 35 becomes relevant
for preservation. It excludes the case in which some x1 satisfies final1, but final2 is unsatisfiable. Hence,
` o1 allows Join BTAs in the underlying execution, but ` o2 does not, which breaks semantic preservation.

The other assumptions do not exclude this case: Only preservation of final states involves final, but if x1 is
unreachable, ` ≈ need not relate x1 to any x2, i.e., preservation of final states would be trivially satisfied.
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RED0:
P, t ` 〈e,(h,empty)〉−ta→〈e′,(h′,x′)〉 no-call P h e

P, t ` 〈e,h〉−ta→e
0 〈e′,h′〉

R0RED:
P, t ` 〈e,h〉−ta→e

0 〈e′,h′〉
P, t ` 〈(e,es),h〉−ta→t

0 〈(e′,es),h′〉

R0CALL:

call e = b(a,M,vs)c typeof-addr h a = bTc
P` class-of ′ T sees M:Ts→Tr = b(pns,body)c in D |vs|= |pns| |Ts|= |pns|

P, t ` 〈e · es,h〉−LM→t
0 〈blocks (this·pns) (Class D·Ts) (Addr a·vs) body · e·es,h〉

R0RET:
final e

P, t ` 〈e · e′ · es,h〉−LM→t
0 〈inline e e′ · es,h〉

Fig. 36 Single-threaded source code semantics with explicit call stacks

5.3.1 State and semantics

On the call-stack level, local stores are irrelevant for the semantics as free variables can
be bound by additional blocks. The rule for method calls RCALL and the start state J-start
already do so for the this pointer and the parameters. Hence, the thread-local state in J0
consists only of a (non-empty) list of expressions, one for each method on the call stack.

Accordingly, there are now three levels for the semantics. The expression level deals
with the execution of expressions, i.e. method bodies. The call-stack level lifts the semantics
for expressions to call stacks and handles calls and returns. This is also the semantics for a
single thread. The interleaving semantics lifts this to multithreaded programs as before.

To separate method calls and returns from the rest of the semantics, I introduce two
auxiliary functions. First, the partial function call e returns b(a,M,vs)c whenever e is about
to call the method M on address a with parameter values vs, and it is None in all other cases.
I say that e pauses at the call (a,M,vs) iff call e = b(a,M,vs)c. This function call e traverses
the expression e following the evaluation order of the small-step semantics. When it finds
a call of the form addr a.M(map Val vs), it returns b(a,M,vs)c; otherwise, it descends into
the subexpression that the small-step semantics evaluates next; if there is none, it returns
None. The other function inline e0 e mimicks the small-step semantics’ dynamic inlining of
method calls. If e pauses at a call, inline e0 e replaces this call with e0. If not, it returns e.

The expression level semantics red0 (notation P, t ` 〈e,h〉−ta→e
0 〈e′,h′〉) is the same as

in J except for calling (rule RED0 in Figure 36).13 To avoid redundancies, I do not define
a new small-step semantics, but use the predicate no-call P h e to filter out all reductions
due to RCALL from P, t ` 〈e,(h,x)〉−ta→〈e′,(h′,x′)〉. The predicate no-call P h e holds iff
whenever e pauses at a call then the called method must be native. Note that red0 discards
the new local store x′; well-formedness ensures that x′ is always empty (Corollary 32).

Figure 36 also shows the small-step semantics J0-red for the call-stack level (notation
P, t ` 〈e ·es,h〉−ta→t

0 〈e′ ·es′,h′〉). It consists of all reductions of the expression level seman-
tics red0 for the top of the call stack (R0RED). Additionally, it reintroduces the reductions
for method calls that red0 has filtered out (R0CALL). Rather than dynamically inlining the
method body, R0CALL pushes the called method’s body on top of the call stack and leaves
the caller’s expression unchanged. When a method returns, i.e., its expression is final, R0RET

replaces the call in the caller’s expression with the return value or exception using inline.
This assumes that every expression on the stack except the top one pauses at a call. R0RET

has no counterpart in , ` 〈 , 〉− →〈 , 〉 as dynamic inlining turns returns into no-ops.

13 The thread-local state in Spawn actions in ta must be adapted, too, but I omit this technical detail.
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A state e · es in J0 is final, written final0 (e · es), iff final e and es = []. The start state
J0-start P C M vs has one thread start-tID with local state

blocks (this ·pns) (Class D ·Ts) (Null · vs) body · []

where P`C sees M:Ts→ = b(pns,body)c in D.
Analogous to J, the multithreaded semantics J0.redT for J0 is the interleaving semantics

for the parameter instantiations final0 and J0-red.
The following operations are observable: memory allocation, calls to native methods

other than currentThread, access and assignment to fields and array cells, reading array
lengths, and synchronisation. In particular, thread spawns, joining, interruption and the wait-
notify mechanism are observable. Conversely, all control flow constructs, including excep-
tion throwing and handling, and local variable manipulations are only relevant to the thread
that executes them, so these generate only τ-moves.

For simplicity of the formalisation, I define observability in terms of the state being re-
duced rather than the reduction itself. Hence, either all reductions of a thread in one thread-
local state and heap are observable or none of them. As a consequence, the set of observable
reductions is larger than necessary. For example, the array cell access addr a[Val (Intg i)] re-
turns either the i-th array cell’s content or fails with an ArrayIndexOutOfBounds exception.
Thus, J and J0 also treat throwing the ArrayIndexOutOfBounds exception as an observable
move. Fortunately, a larger set of observable moves only strengthens the correctness result.
Formally, I define a predicate τ-move :: ′m prog⇒ ′heap⇒ ′addr expr⇒bool that identifies
states in which τ-moves originate. Then, J-τ-move and J0-τ-move determine the τ-moves
for J and J0, respectively, where

J-τ-move P ((e,x),h) ta ←→ τ-move P h e∧ ta = LM
J0-τ-move P (e0 · es0,h0) ta ←→ (τ-move P h0 e0∨final e0)∧ ta = LM

Lemma 29 J and J0 satisfy the assumptions of locale τ-multithreaded.

5.3.2 Semantic equivalence

Now, I show that J0 is equivalent to J in the sense that a program is delay bisimilar to itself
under the two semantics. Thus, I can verify the compiler against J0 instead of J.

A variable V is free in the expression e (written V ∈ fv e) iff e contains a subexpression
Var V that is not contained in a local-variable or catch block that declares V . An expression
e is closed iff it contains no free variables, i.e., fv e = /0. A call stack of expressions e0 · es0
is well-formed (notation wf0 (e0 · es0)) iff e0 is closed, and all expressions in es0 are closed
and pause at a call. Formally:

wf0 (e0 · es0)←→ fv e0 = /0∧ (∀e ∈ set es0. fv e = /0∧ call e 6= None)

Closedness rules out references to global variables.14 Hence, it is irrelevant that J0 executes
method bodies in an empty local store (R0CALL) while inlining method calls executes the
body in the local store of the caller (RCALL).

14 Already in Jinja, closedness was crucial for the small-step semantics and its equivalence to the big-step
semantics [32, §2.3.2, §2.4.1, §2.5]. Klein and Nipkow write: “we can only get away with this simple rule
for method calls [for the small-step semantics] because there are no global variables in Java. Otherwise one
could unfold a method body that refers to some global variable into a context that declares a local variable of
the same name, which would essentially amount to dynamic variable binding.” [32, §2.3.2].
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Let collapse (e0 ·es0) abbreviate the expression to which inlining collapses the call stack,

i.e., collapse (e0 · es0) = foldl inline e0 es0. Then, the delay bisimulation relation
t≈0 for

single threads relates the J state ((e,x),h) with (e0 · es0,h0) iff x is empty, the heaps are the
same, e0 · es0 is well-formed, and e0 · es0 collapses to e. Formally:

wf0 (e0 · es0)

((collapse (e0 · es0),empty),h)
t≈0 (e0 · es0,h)

Since both J.redT and J0.redT are instances of the interleaving semantics, I lift
t≈0 to

multithreaded states as described in Section 5.2.2. Let
m≈0 and ∼0 denote the corresponding

instance of ≈m and ∼ where (e,x)∼∼∼ e0 · es0 iff ¬final e0.

Theorem 30 If wf-J-prog P, then (
t≈0,∼0) is a delay bisimulation with explicit divergence

for J-red P t and J0-red P t which preserves final states.

The proof requires a number of lemmas first.

Lemma 31 If wf-J-prog P and P, t ` 〈e,(h,x)〉 −ta→〈e′,(h′,x′)〉, then fv e′ ⊆ fv e and
dom x′ ⊆ dom x∪ fv e

Corollary 32 If wf-J-prog P and P, t ` 〈e,(h,empty)〉 −ta→〈e′,(h′,x′)〉 and e is closed,
then x′ = empty.

Lemma 33 If wf-J-prog P, then J0-red P t preserves well-formedness.

A call stack e0 ·es0 is normalised iff ¬final e0 or es0 = [], i.e., R0RET does not apply. The
next lemma shows that J0 can silently normalise call stacks; it is proven by induction on es0.

Lemma 34 For every call stack e0 · es0, there is a normalised call stack e′0 · es′0 such that
collapse (e0 · es0) = collapse (e′0 · es′0) and e0 · es0 silently reduces to e′0 · es′0.

A normalised call stack e0 · es0 simulates the collapsed call stack collapse (e0 · es0)
directly, i.e., without any additional τ-moves.

Lemma 35 Let (e0,es0) be well-formed and normalised.

(i) If P, t ` 〈e0,(h,empty)〉−ta→〈e′0,(h′,empty)〉, then
P, t ` 〈collapse (e0 · es0),(h,empty)〉−ta→〈collapse (e′0 · es0),(h′,empty)〉

(ii) If P, t ` 〈collapse (e0,es0),(h,empty)〉 −ta→〈e′,(h′,empty)〉, then e′ is of the form
collapse (e′0,es0) and P, t ` 〈e0,(h,empty)〉−ta→〈e′0,(h′,empty)〉.

Proof Note that inlining the top of the call stack preserves well-formedness. If final e0,
then es0 = [] by normalisation and the lemma holds trivially. So suppose ¬final e0. Then,
each direction follows by induction on es0 from the following generalised one-step versions
where e is arbitrary with call e 6= None:

(i) If P, t ` 〈e0,(h,empty)〉−ta→〈e′0,(h′,empty)〉, then
P, t ` 〈inline e0 e,(h,x)〉−ta→〈inline e′0 e,(h′,x)〉.

(ii) If P, t ` 〈inline e0 e,(h,x)〉−ta→〈e′,(h′,x′)〉, then x = x′ and e′ = inline e′0 e for some
e′0 such that P, t ` 〈e0,(h,empty)〉−ta→〈e′0,(h′,empty)〉.
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Both of them are proved by induction on e. The only interesting case is when e is the call
that inline replaces with e0. Then, the local store in e0’s reduction must change from x to
empty or vice versa. This follows from the next two easy lemmas (provable by induction)
that Jinja uses to prove the big-step and small-step semantics equivalent [32, §2.5]:
(i) If P, t ` 〈e,(h,x)〉−ta→〈e′,(h′,x′)〉, then P, t ` 〈e,(h,x0++x)〉−ta→〈e′,(h′,x0++x′)〉.
(ii) If P, t ` 〈e,(h,x)〉−ta→〈e′,(h′,x′)〉 and fv e⊆W ,

then P, t ` 〈e,(h,x�W )〉−ta→〈e′,(h′,x′�W )〉,
where f �A restricts the map f to A, i.e., f �A = (λx. if x ∈ A then f x else None), and f ++g
combines two maps: f ++g = (λx. case g x of None⇒ f x | byc ⇒ byc). ut

The next lemma shows that when e pauses at a call, J’s next reduction is to replace the
call by the method body.

Lemma 36 Let call e = b(a,M,vs)c and typeof-addr h a = bTc and P` class-of ′ T sees
M:Ts→Tr = b(pns,body)c in D and blks= blocks (this·pns) (Class D ·Ts) (Addr a ·vs) body.

(i) If P, t ` 〈e,(h,x)〉−ta→〈e′,(h′,x′)〉, then e′ = inline blks e.
(ii) If |vs|= |pns| and |Ts|= |pns|, then P, t ` 〈e,(h,x)〉−ta→〈inline blks e,(h′,x′)〉.

Now, I am ready to prove Theorem 30.

Proof (Theorem 30) By Lemma 23, it suffices to find two measures ≺1 and ≺2 for which

(
t≈0,∼0) is a well-founded delay bisimulation. Choose 6≺1 , and (e0 · es0,h0) ≺2 (e′0 ·

es′0,h
′
0) iff |es0| < |es′0|, i.e., only returns R0RET from method calls (when the call stack

shrinks) need not have a counterpart in J.
For the simulation diagrams from Figure 33, I distinguish three cases:

1. Calls of non-native methods. For J0 simulating J, it first normalises the call stack (Lem-
ma 34). Then, Lemma 35 shows that the top call frame of the normalised call stack can
reduce using the call, and Lemma 36 decomposes the resulting expression as necessary
for the simulation with R0CALL. For the other direction, Lemma 36 shows that the
expression in the top call frame could also inline the call and so can the collapsed call
stack by Lemma 35.

2. Returns from a method call (R0RET) are a no-op in J, but the call stack length decreases.
3. Otherwise, it is an expression-level reduction, for which J and J0 use the same semantics;

Lemma 35 shows that collapsing the call stack does not change the semantics. As for
calls to non-native methods, J0 first normalises the call stack.

In all cases, the new call stack is well-formed by Lemma 33. Preservation of final states is
straightforward. ut

Theorem 37 (
m≈0,∼0) is a delay bisimulation with explicit divergence for J.redT P and

J0.redT P that preserves final states.

Proof By Theorem 26, it suffices to discharge the assumptions of locale m-dbisim-div. The-

orem 30 discharges the inherited locales. As
t≈0 does not depend on the heap, heap-change

holds trivially. For ∼∼∼I, case analysis and induction show that whenever J0-red generates a
Suspend BTA, the top call frame is not final. Since ∼∼∼ guarantees that the J0 call stack is
normalised, sim-∼∼∼1 follows easily because normalised call stacks simulate J’s reductions
without any additional τ-moves. Similarly, sim-∼∼∼2 holds because J simulates observable
moves of J0 without τ-moves. Finally, Ex-final-inv holds trivially. ut

Finally, the bisimulation relation
m
≈0 contains the well-formed start state.

Lemma 38 If wf-J-prog P and wf-start P C M vs, then J-start P C M vs
m≈0 J0-start P C M vs.
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5.4 Register allocation

The first stage of the compiler replaces variable names in expressions by indices into an
array of registers. In this section, I present the intermediate language J1 with syntax, well-
formedness, and semantics (Section 5.4.1), the first compilation stage (Section 5.4.3), and
the proof of its correctness (Sections 5.4.4 and 5.4.5).

5.4.1 Syntax of the intermediate language J1

The intermediate language J1 retains the expressions from source code, but stores local
variable values in an array of registers similar to bytecode. Hence, local variables in J1 are no
longer identified by their name, but by an index in the array. J1 extends Jinja’s intermediate
language [32, §5.1] analogous to what J does in source code.

To avoid duplication, JinjaThreads parametrises the type of expressions (′a, ′b, ′addr) exp
not only over the type of addresses ′addr, but also over the variable names ′a and an annota-
tion ′b for sync ( ) and insync ( ) blocks. ′addr expr abbreviates (vname,unit, ′addr) exp
where unit is the singleton type with value (). Expressions in J1 are of type ′addr expr1 =
(nat,nat, ′addr) exp, i.e., variable names are natural numbers and synci ( ) and insynci ( )
blocks are now annotated with i :: nat.15 Following the JVMS [42, §7.14], the variable i will
be used in bytecode to store the monitor address between the MEnter and MExit instructions
that implement the monitor locking and unlocking. The type of J1 programs ′addr J1-prog
is ′addr expr1 prog. Methods no longer declare parameter names because they have been
replaced by indices.

J1 requires a very specific layout of the registers, which compP1 ensures. Register 0
holds the this pointer, the parameters occupy the registers 1 to n where n is the number
of parameters. Then, the local variables follow according to the nesting depth: If a block
{i : T = vo; e} is nested in k local variable or catch blocks or bodies of sync ( ) , then
i = 1+n+ k; and similarly for try e catch(C i) e′ and synci (e) e′. For example,

try e1 catch(C 3) (sync4 ({4: T1 = vo1; e2}) {5: T2 = vo2; e3})

is fine for a method with two parameters, but {3: T1 = vo1; {5: T2 = vo2; e}}, {4: T =
vo; e}, and {3: T1 = vo1; {2: T2 = vo2; e}} are not. Klein and Nipkow call this layout “an
inverse de Bruijn numbering scheme” [32, §5.1.1]. The predicate B e i enforces this scheme,
where i denotes the starting number for the outermost blocks. For example,

B (sync j (e1) e2) i←→B e1 i∧ i = j∧B e2 (i+1)

The typing rules for J1 are almost identical to J. In P,E `1 e :: T , the program P has
type ′addr J1-prog and the typing environment E for local variables now is a list of types
where the i-th element corresponds to variable i. The rule WT1SYNC for sync ( ) blocks
demonstrates all relevant changes:

WT1SYNC:
P,E `1 e1 :: T1 is-refT T1 T1 6= NT P,E @ [Class Object] `1 e2 :: T

P,E `1 sync j (e1) e2 :: T

15 Technically, they are annotated with () in J. Hence, sync (e) e′ actually abbreviates sync() (e) e′ and sim-
ilarly for insync (a) e. Moreover, functions like fv, final, D , inline, and ok-I are defined on (′a, ′b, ′addr) exp
instead of ′addr expr. So, they work on ′addr expr1, too.
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R1SYNC1:
fail,P, t `〈e1,s〉−ta→e

1 〈e′1,s′〉
fail,P, t `〈synci (e1) e2,s〉−ta→e

1 〈synci (e′1) e2,s′〉

R1SYNCN:
i < |xs|

fail,P, t `〈synci (null) e,(h,xs)〉−LM→e
1 〈THROW NullPointer,(h,xs[i :=null])〉

R1SYNCX: fail,P, t `〈synci (Throw a) e,s〉−LM→e
1 〈Throw a,s〉

R1LOCK:
i < |xs|

fail,P, t `〈synci (addr a) e,(h,xs)〉−LLock→aM→e
1 〈insynci (a) e,(h,xs[i :=Addr a])〉

R1SYNC2:
fail,P, t `〈e,s〉−ta→e

1 〈e′,s′〉
fail,P, t `〈insynci (a) e,s〉−ta→e

1 〈insynci (a) e′,s′〉

R1UNLCKN:
xs[i] = Null i < |xs|

fail,P, t `〈insynci (a) (Val v),(h,xs)〉−LM→e
1 〈THROW NullPointer,(h,xs)〉

R1UNLCK:
xs[i] = Addr a i < |xs|

fail,P, t `〈insynci (a′) (Val v),(h,xs)〉−LUnlock→aM→e
1 〈Val v,(h,xs)〉

R1UNLCKF:
fail xs[i] = Addr a i < |xs|

fail,P, t `〈insynci (a′) (Val v),(h,xs)〉
−LUnlockFail→aM→e

1 〈THROW IllegalMonitorState,(h,xs)〉

R1UNLCKXN:
xs[i] = Null i < |xs|

fail,P, t `〈insynci (a′) (Throw a′),(h,xs)〉−LM→e
1 〈THROW NullPointer,(h,xs)〉

R1UNLCKX:
xs[i] = Addr a i < |xs|

fail,P, t `〈insynci (a′) (Throw a′),(h,xs)〉−LUnlock→aM→e
1 〈Throw a′,(h,xs)〉

R1UNLCKXF:
fail xs[i] = Addr a i < |xs|

fail,P, t `〈insynci (a′) (Throw a′),(h,xs)〉
−LUnlockFail→aM→e

1 〈THROW IllegalMonitorState,(h,xs)〉

Fig. 37 Semantics of synchronized blocks in J1

P,E `1 :: implicitly relies on the numbering scheme with |E| as start index, as WT1SYNC

ignores the annotation variable j. Instead, it extends the environment for the monitor variable
with the type Class Object, to which all monitor references conform.

Since the compiler introduces these monitor variables, no expression should access
them. The predicate S e ensures this by checking that i /∈ fv e′ for all subexpressions of
e of the form synci ( ) e′ or insynci ( ) e′.

The well-formedness conditions wf-J1-mdecl specific to J1 are similar to J’s: the body
must be well-typed, pass the definite assignment check and satisfy the predicates B and S .
The constraints on parameter names have been dropped and the numbering scheme and no
access to monitor variables are required. The predicate wf-J1-prog = wf-prog wf-J1-mdecl
checks the general and J1-specific well-formedness conditions.

5.4.2 Semantics

The state space of J1 is close to bytecode. The thread-local state is a list of call frames each
of which consists of an expression and a fixed-size array of registers for the local variables.

On the expression level, the small-step semantics red1 is now of the form fail,P, t `
〈e,(h,xs)〉−ta→e

1 〈e′,(h′,xs′)〉 where P :: ′addr J1-prog and xs, xs′ :: ′addr val list. The new
parameter fail :: bool determines whether unlocking a monitor may fail.

The main difference between J0 and J1 is that J1 handles local variables and synchro-
nisation like bytecode does. In particular, synci (addr a) e stores the monitor address a in
the local variable i upon locking the monitor. Accordingly, when unlocking the monitor,
insynci (a) e ignores a, but retrieves the monitor address from register i. Figure 37 shows
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R1RED:
fail,P, t `〈e,(h,xs)〉−ta→e

1 〈e′,(h′,xs′)〉
fail,P, t ` 〈(e,xs) · exs,h〉−ta→t

1 〈(e′,xs′) · exs,h′〉

R1CALL:

call1 e = b(a,M,vs)c
typeof-addr h a = bTc P` class-of ′ T sees M:Ts→T = bbodyc in D |vs|= |Ts|

e′ = blocks1 0 (Class D ·Ts) body xs′ = Addr a · vs @ replicate (max-vars body) dummy-val
fail,P, t ` 〈(e,xs) · exs,h〉−LM→t

1 〈(e′,xs′) · (e,xs) · exs,h〉

R1RET:
final e

fail,P, t ` 〈(e,xs) · (e′,xs′) · exs,h〉−LM→t
1 〈(inline e e′,xs′) · exs,h〉

Fig. 38 Semantics for call stacks in J1

the rules for synchronisation. They explicitly check for the bounds of the register array. In
comparison to Figure 16, there are two new pairs of rules for unlocking: First, R1UNLCKN
and R1UNLCKXN raise a NullPointer exception if the register xs[i] for the monitor stores the
Null pointer instead of an address. Second, R1UNLCKF and R1UNLCKXF allow unlocking
to fail with an IllegalMonitorState exception like MExit (Figure 17) if the switch fail is set.

fail,P, t `〈e,(h,x)〉−ta→e
1 〈e′,(h′,x′)〉 differs from P, t ` 〈 , 〉− →〈 , 〉 in two further

respects. First, the small-step semantics treats local variable blocks with initialisation, say
{i : T = bvc ; e}, like {i : T = None; i := Val v; ; e} and completely ignores uninitialised
blocks. This ensures that J1 and bytecode treat local variables identically. Second, there is
no rule for calling non-native methods.

The single-thread semantics J1-red (notation fail,P, t ` 〈(e,xs) ·exs),h〉−ta→t
1 〈(e′,xs′) ·

exs′,h′〉) takes care of method calls and returns similar to J0-red (Figure 38). call1 differs
from call only for blocks. Initialised blocks never pause at a call because J1 first “unini-
tialises” them. Rule R1CALL initialises the registers of the new call frame just like exec-instr
does in Figure 17. The function max-vars computes the maximum depth of nested local vari-
ables including the variables for sync ( ) blocks. Analogous to blocks, blocks1 n Ts body
wraps body in uninitialised blocks for local variables n to n+ |ts|−1 with types Ts.

Setting fail to False or True yields two different semantics of J1, to which I refer as J#
1

and J′1, respectively; J1 refers to both. Similarly, I sometimes omit the fail parameter from
the semantics and instead decorate them with ′ or #, e.g, J#

1-red and , ` 〈 , 〉− →t
1
′ 〈 , 〉.

Like for source code, the multithreaded semantics J#
1.redT and J′1.redT are the interleav-

ing semantics instantiated with J#
1-red and J′1-red, respectively. A J1 thread is final, written

J1-final ((e,xs) · exs), iff final e and exs = []. The start state J1-start P C M vs has one thread
start-tID with local state

[(blocks1 0 (Class D ·Ts) body,Null · vs @ replicate (max-vars body) dummy-val)]

where P`C sees M:Ts→ = bbodyc in D.
On the single-thread level, J#

1 and J′1 are not bisimilar as unlocking a monitor can non-
deterministically fail in J′1, but not in J#

1. Below, I will use J#
1 for proving the first compiler

stage correct and J′1 for the second. Then, I will show that under suitable conditions, J#
1 and

J′1 coincide on the multithreaded level.
To identify τ-moves, J1 defines a predicate τ-move1 similar to τ-move and J1-τ-move lifts

it to call stacks: J1-τ-move P (((e,xs),exs),h) ta ←→ (τ-move1 P h e∨final e)∧ ta = LM.

Lemma 39 J#
1 and J′1 satisfy the assumptions of locale τ-multithreaded.
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compE1 Vs (Var V ) = Var (index Vs V )

compE1 Vs {V : T = vo; e} = {|Vs| : T = vo; compE1 (Vs @ [V ]) e}
compE1 Vs (sync (e1) e2) = sync|Vs| (compE1 Vs e1) (compE1 (Vs @ [fresh-vname Vs]) e2)

compE1 Vs (insync (a) e) = insync|Vs| (a) (compE1 (Vs @ [fresh-vname Vs]) e)

Fig. 39 Register allocation compE1 for local variables, blocks, and synchronisation

5.4.3 Compilation stage 1

Jinja formalises a compiler compE1 from ′addr expr to ′addr expr1, i.e., for method bodies.
It assigns registers to variables [32, §5.2] in the order required by J1: first the this pointer,
then the method parameters, and finally local variables ordered by block nesting level. While
traversing the expression, compE1 keeps track of the list of variables Vs declared on the path
from the root of the expression to the current subexpression and replaces variables V by their
index in Vs (written index Vs V ), i.e., the position of the last occurrence of V in Vs. Fig-
ure 39 shows an excerpt of compE1’s definition, the full definition can be found in [49]. For
sync (e1) e2 blocks, compE1 reserves the register |Vs| to hold the monitor address. To shift
the registers in e2 by 1, it appends a fresh variable name fresh-vname Vs to Vs. Freshness
(fresh-vname Vs /∈ set Vs) ensures that it does not hide any variables in surrounding blocks.

Jinja defines an operator compP to lift compilation at the level of expressions to whole
programs [32, §5.4]. I have straightforwardly adapted it to JinjaThreads programs. The com-
piler compP1 from J to J1 applies compE1 to all method bodies.

compP1 = compP (λC M Ts T (pns,body). compE1 (this ·pns) body)

For example, consider the following method declaration in Java

int foo(Object f) { synchronized(f) { return this.m(); } }
In J’s abstract syntax, the body is ([f],sync (Var f) (Var this.m([]))). The compiler compP1
compiles this declaration to sync2 (Var 1) (Var 0.m([])).

5.4.4 Preservation of well-formedness

Jinja’s proof of compP1 generating well-formed programs sets the ground for JinjaThreads’.
Extending it is straightforward except for two aspects:

First, JinjaThreads additionally requires that registers for monitors be not accessed (con-
dition S body). The next lemma (provable by induction) shows that compE1 ensures this.
The interesting cases sync (e1) e2 and insync (a) e rely on fresh-vname Vs being fresh.

Lemma 40 If fv e⊆ set Vs, then S (compE1 Vs e).

Second, preservation of well-typedness requires the stronger induction on the structure
of expressions instead of the usual induction on the derivation of the typing judgement:

Lemma 41 ([32, Lem. 5.5.]) If wf-prog wf -md P and P, [Vs [7→]Ts] ` e :: T and |Ts|= |Vs|,
then compP1 P,Ts `1 compE1 Vs e :: T .

Proof By induction on e. The interesting new case is sync (e1) e2. From P, [Vs [7→]Ts] `
sync (e1) e2 :: T , there is a T1 6= NT such that is-refT T1, P, [Vs [7→]Ts] ` e1 :: T1, and
P, [Vs [7→]Ts] ` e2 :: T by rule inversion. By the induction hypothesis, compP1 P,Ts `1
compE1 Vs e1 :: T1. For e2, it does not suffice to apply the induction hypothesis directly
because this would give compP1 P,Ts `1 compE1 Vs e2 :: T instead of

compP1 P,Ts @ [Class Object] `1 compE1 (Vs @ [fresh-vname Vs]) e2 ::T
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as required by WT1SYNC. This is the reason why the induction rule for P, [Vs [7→]Ts]` e :: T ,
which Jinja uses, is too weak for this proof. Instead, since fresh-vname Vs is fresh,

P, [Vs @ [fresh-vname Vs] [7→]Ts @ [Class Object]] ` e2 :: T

follows from JP,E ` e :: T ; E ⊆m E ′K =⇒ P,E ′ ` e :: T (provable by rule induction). Thus,
the induction hypothesis applies. ut

The remaining language-specific well-formedness constraints hold like in Jinja. Hence,
preservation of well-formedness follows.

Theorem 42 If wf-J-prog P, then wf-J1-prog (compP1 P).

5.4.5 Semantic preservation for compE1

J0 and J#
1 only differ in the treatment of local variables. Hence, the thread features and

arrays that JinjaThreads adds to Jinja do not introduce anything essentially new for the
verification. Still, extending the old correctness proof (which uses a big-step semantics)
requires substantial changes:

(i) The delay bisimulation between J0 and J#
1 must now relate not only initial and final

states, but also all intermediate states.
(ii) Since J0 and J#

1 consist of a stack of semantics, the delay bisimulation at one layer com-
poses language-specific constraints and bisimilulation relations from the level below
(Figure 28), and so do I compose the proofs.

(iii) I must now also show that the small-step reductions preserve the language-specific
constraints that the bisimulation proof relies on.

Although the simulations are now much finer and cover both directions, the key ideas for
the correctness proof [32, §5.5] are still sufficient.

In detail, the bisimulation relation 0
e≈1 at the level of expressions is naturally the heart

of the correctness proof because the translation’s core is at this level. 0
t≈1 extends 0

e≈1 to

call stacks; 0
m≈1 lifts 0

t≈1 to the interleaving semantics as described in Section 5.2.2. Hence,

I want to prove that 0
t≈1 satisfies the assumptions of locale m-dbisim-div.

Most of these assumptions are simulation properties of the following form: Given two
related states, if either can reduce in a given way, then the other can also reduce correspond-
ingly such that the resulting states are related again. These properties can be derived from
Theorem 43 (forward direction) and Theorem 44 (backward direction).

Theorem 43 Let wf-J-prog P and Vs` (e0,x0) ≈ (e1,xs1). Let fv e0 ⊆ set Vs and |Vs|+
max-vars e1 ≤ |xs1|. Suppose that P, t ` 〈e0,(h,x0)〉−ta0→e

0 〈e′0,(h′,x′0)〉. Then, there are
ta1, e′1, and xs′1 such that Vs` (e′0,x′0)≈ (e′1,xs′1) and the following hold:

(i) If τ-move0 P h e0, then h′ = h and ta1 = LM and 〈e1,(h,xs1)〉 reduces in J#
1 with at least

one τ-move to 〈e′1,(h′,xs′1)〉.
(ii) If ¬τ-move0 P h e0 and call e0 6= None and call1 e1 6= None, then
¬τ-move1 (compP1 P) h e1 and compP1 P, t ` 〈e1,(h,xs1)〉−ta1→e#

1 〈e′1,(h′,xs′1)〉 and

ta0 is 0
t
≈1-bisimilar to ta1.

(iii) Otherwise, there are e′′1 and xs′′1 such that 〈e1,(h,xs1)〉 reduces in J#
1 with (possi-

bly no) τ-moves to 〈e′′1 ,(h,xs′′1)〉 and ¬τ-move1 (compP1 P) h e′′1 and compP1 P, t `
〈e′′1 ,(h,xs′′1)〉−ta1→e#

1 〈e′1,(h′,xs′1)〉 and ta0 is 0
t≈1-bisimilar to ta1.
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Theorem 44 Let wf-J-prog P and Vs` (e0,x0) ≈ (e1,xs1). Let fv e0 ⊆ set Vs and |Vs|+
max-vars e1 ≤ |xs1| and D e0 bdom x0c. Suppose that compP1 P, t `〈e1,(h,xs1)〉−ta1→e#

1
〈e′1,(h′,xs′1)〉. Then, there are ta0, e′0, and x′0 such that Vs` (e′0,x′0) ≈ (e′1,xs′1) and the fol-
lowing hold:

(i) If τ-move1 (compP1 P) h e1, then h′ = h and ta0 = LM and 〈e0,(h,x0)〉 reduces in J0 with
τ-moves to 〈e′0,(h′,x′0)〉. If this involves no τ-moves, then cnt-IB e′1 < cnt-IB e1.

(ii) If ¬τ-move1 (compP1 P) h e1 and call e0 6= None and call1 e1 6= None, then

¬τ-move0 P h e0 and P, t ` 〈e0,(h,x0)〉−ta0→e
0 〈e′0,(h′,x′0)〉 and ta0 is 0

t≈1-bisimilar to
ta1.

(iii) Otherwise, there are e′′0 and x′′0 such that 〈e0,(h,x0)〉 reduces in J0 with (possibly no) τ-
moves to 〈e′′0 ,(h,x′′0)〉 and ¬τ-move0 P h e′′0 and P, t ` 〈e′′0 ,(h,x′′0)〉−ta0→e

0 〈e′0,(h′,x′0)〉
and ta0 is 0

t≈1-bisimilar to ta1.

Consider the assumptions of the theorems first. The central relation Vs ` (e0,x0) ≈
(e1,xs1) fully encapsulates the relation between (e0,x0) and (e1,xs1). The others, fv e0 ⊆
set Vs and |Vs|+max-vars e1 ≤ |xs1| and D e0 bdom x0c, are only language-specific con-
straints that involve either of them. To improve proof automation, there are separate preser-
vation lemmas for the latter. Consequently, only Vs` (e′0,x′0)≈ (e′1,xs′1) appears in the con-
clusion. In detail, Vs` (e0,x0)≈ (e1,xs1) predicates that

(a) the initialised local variables are the same, i.e., x0 ⊆m [Vs [7→] xs1],
(b) e1 adheres to the numbering scheme for variables, i.e., B e1 |Vs|,
(c) for all insynci (a) subexpressions of e1, xs1 stores Addr a in register i, and
(d) e0 and e1 are identical except for (i) variable names which are resolved according to

the compilation scheme and (ii) local variable blocks where xs1 may store the initialisa-
tion’s value of e0 and the block is uninitialised in e1. Such differences in initialisations
may only occur in subexpressions that the semantics reduces next. Moreover, the other
subexpressions must not contain insync ( ) blocks, i.e., ¬has-I .

Condition (c) is not required for sync ( ) blocks because they have not yet stored the
monitor address in the registers.

The language-specific constraints are similar to Jinja’s correctness proof. First, to ensure
that register allocation succeeds, fv e0 ⊆ set Vs expresses that Vs captures all free variables
in e. Second, |Vs|+max-vars e1 ≤ |xs1| guarantees that xs1 is large enough to hold all local
variables during execution. The third constraint D e0 bdom x0c only appears in Theorem 44
and is new compared to Jinja. It ensures that J0 does not get stuck when looking up a local
variable in x0. This could happen as J#

1 does not check that variables are initialised.
In the conclusions, case (i) corresponds to the τ-move simulation diagrams for well-

founded delay bisimulations in Figure 33b. Theorem 43 always proves the left column, i.e.,
J#

1 simulates every τ-move in J0 by at least one τ-move. In contrast, J1 uninitialises local
variable blocks before it executes the block’s body (Section 5.4.1), which has no counter-
part in J0. Hence, Theorem 44(i) allows J0 to stall when the number of initialised blocks
decreases. The measure cnt-IB e1 counts the initialised blocks in e1.

Case (iii) corresponds to the visible moves simulating observable moves (Figure 33a).
Case (ii) is the special case when both e0 and e1 pause at a call. In that case, no τ-moves may
precede the simulating move. Remember that sim-∼∼∼1 and sim-∼∼∼2 of locale m-dbisim-div
require this for processing the removal from a wait set. Both cases require the thread ac-
tions to be bisimilar, i.e., identical except for thread-local states of spawned threads, which

must be 0
t≈1-related. This is what well-formedness (premise wf-J-prog P) is necessary for.

Bisimilarity (defined below) involves definite assignment and no free variables.
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Both theorems are proven by induction on the small-step semantics. The interesting
cases are for local variables and synchronisation blocks, but Jinja’s notions of hidden and
unmodified variables [32, §5.5] suffice. Again, freshness of fresh-vname Vs is essential.

Now, it is clear what the bisimulation relations for expressions and threads should be.
Recall that the expressions in J0 call frames are closed, i.e., Vs = [] and x0 = empty. Hence,

e0 0
e
≈1 (e1,xs1)←→ []` (e0,empty)≈ (e1,xs1)∧ fv e0 = /0∧D e0 b /0c∧max-vars e1≤ |xs1|

Lifting to single threads is straightforward. The heaps must be the same, the call stacks must
be 0

e
≈1-related pointwise, and all call frames except the top pause at a call.

(e0 · es0,h0) 0
t
≈1 ((e1,xs1) · exs1,h1)←→ h0 = h1∧ e0 0

e
≈1 (e1,xs1)∧|es0|= |exs1|∧

(∀(e′0,(e′1,xs′1)) ∈ set (zip es0 exs1). e′0 0
e≈1 (e′1,xs′1)∧ call e′0 6= None∧ call1 e′1 6= None)

For 0
m≈1, I take ≈m from Section 5.2.2 instantiated with 0

t≈1 and 0
w≈1, where threads in wait

sets must pause at a call:

e0 · es0 0
w≈1 (e1,xs1) · exs1←→ call e0 6= None∧ call1 e1 6= None,

Lemma 45 Let wf-J-prog P. Then, 0
t≈1 is a delay bisimulation with explicit divergence for

J0-red P t and J#
1-red (compP1 P) t.

Proof By Lemma 23, it suffices to show that 0
t≈1 is a well-founded delay bisimulation.

This follows easily with Theorems 43 and 44 as J0 and J1 have similar call-stack semantics
(Figures 36 and 38). The well-founded relations ≺0 and ≺1 are

e′0 · es′0 ≺0 e0 · es0 ←→ False
(e′1,xs′1) · exs′1 ≺1 (e1,xs1) · exs1←→ cnt-IB e′1 < cnt-IB e1 ut

Theorem 46 Let wf-J-prog P. Then, 0
m≈1 is a delay bisimulation with explicit divergence

for J0.redT P and J#
1.redT (compP1 P) that preserves final states.

Proof It suffices to show that the assumptions of locale m-dbisim-div are met. Lemma 45
discharges the first. Preservation of final states and heap changes is trivial because (i) fi-

nality is invariant under 0
t≈1 and (ii) 0

t≈1 only imposes equality on the heaps, but does not
otherwise depend on it. ∼∼∼I is provable by induction and case analysis, whereas sim-∼∼∼1 and
sim-∼∼∼2 follow from case (ii) of Theorems 43 and 44.

Lemma 47 If wf-J-prog P and wf-start P C M vs, then

J-start P C M vs 0
m≈1 J1-start (compP1 P) C M vs.

5.4.6 Equivalence of J#
1 and J′1

The verification must show that unlocking a monitor in compiled code never fails. The
intermediate language is the right place as its semantics already stores the monitor address
in the registers like bytecode, but the syntax still enforces the structured locking discipline.

I prove that J#
1.redT P and J′1.redT P are the same for a multithreaded state s1 in which

the lock state agrees with the insync ( ) subexpressions of the threads. Agreement (nota-
tion lock-ok1) is defined analogously to lock-ok in Section 3.4.2. In such a state, J′1.redT P
never picks R1UNLCKF nor R1UNLCKXF because the precondition of the thread action
LUnlockFail→aM is violated. J#

1.redT P preserves lock-ok1 under the following condition
(notation

√
) that for every call frame (e1,xs1) of every thread,
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(i) for all subexpressions insynci (a) e′1 of e1, xs1 stores Addr a in register i and e′1 does
not modify register i and

(ii) ok-I e1, i.e., all insync ( ) subexpressions of e1 lie on one path from the root in
e1’s abstract syntax tree (Figure 27).

Hence, I define 1
m≈1 by s1 1

m≈1 s′1←→ s1 = s′1∧ lock-ok1 (locks s1) (tp s1)∧ s1
√

Theorem 48 If wf-J1-prog P, then 1
m
≈1 is a strong bisimulation for J#

1.redT P and J′1.redT P.

Corollary 49 If wf-J1-prog P, then 1
m≈1 is a delay bisimulation with explicit divergence for

J#
1.redT P and J′1.redT P that preserves final states.

Lemma 50 If wf-J1-prog P and wf-start P C M vs, then

J1-start P C M vs 1
m
≈1 J1-start P C M vs.

5.5 Bytecode generation

The first compiler stage has already replaced variable names by register numbers. The sec-
ond stage compP2 now completes the translation in that it generates the bytecode instruc-
tions and exception tables for the expressions (Section 5.5.1). In this section, I show preser-
vation of well-typedness (Section 5.5.2) and semantics (Section 5.5.3) for compP2.

5.5.1 Compilation stage 2

The second compiler stage translates expressions into instruction lists (function compE2 ::
′addr expr1⇒ ′addr instr list) and exception tables (function compxE2 :: ′addr expr1⇒pc⇒
nat⇒ ex-table). compP2 = compP compMb2 lifts compE2 and compxE2 to programs using
compP and computes the maximum stack size max-stack and register size using max-vars.

compMb2 C M Ts T body =
(let ins = compE2 body @ [Return]; xt = compxE2 body 0 0
in (max-stack body,max-vars body, ins,xt))

JinjaThreads extends Jinja’s compE2 and compxE2 to synci (e1) e2 expressions, on
which I focus in this section. The other expressions are similar to Jinja [32, §5.3]. The
translation of a synci (e1) e2 expression to bytecode must ensure that the monitor is un-
locked even if an unhandled exception occurs in e2. An exception handler, which applies to
all exceptions, needs to do this. Thus, the instructions for synci (e1) e2 are

compE2 e1 @ [Dup,Store i,MEnter]@ compE2 e2 @ [Load i,MExit,Goto 4]@
[Load i,MExit,ThrowExc]

First, the monitor expression e1 is evaluated, its result on the stack duplicated and stored
in register i; MEnter locks the monitor. Then, the block e2 is executed, the monitor address
loaded back from register i and the monitor unlocked. Goto 4 jumps to the instruction after
the exception handler that follows. The handler also loads the monitor address, unlocks the
monitor and rethrows the caught exception whose address is still on top of the stack.

Since the exception tables contain absolute program counters and stack depth, compxE2
takes the current program counter pc and stack depth d as parameters. For synci (e1) e2,
compxE2 appends to the exception tables for e1 and e2 the entry (pc1, pc2,Any, pc2 +3,d)
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where pc1 = pc+ |compE2 e1|+3 and pc2 = pc1 + |compE2 e2|. Hence, the entry matches
all exceptions that e2’s instructions raise. Since it is placed at the end, it does not take prece-
dence over exception handlers in e2.

Continuing the compilation example from Section 5.4.3, compE2 compiles the method
body sync2 (Var 1) (Var 0.m([])) to

[Load 1,Dup,Store 2,MEnter,Load 0, Invoke m 0,Load 2,MExit,Goto 4,
Load 2,MExit,ThrowExc,Return]

with exception table [(4,6,Any,9,0)].
As I have already discussed in Section 2.4.1, Any is important for the verification, al-

though bThrowablec would also do in theory. Since the latter only applies to subclasses of
Throwable, the bisimulation relation would have to ensure that only such exceptions are ever
raised. This would pull in the complete type safety proof of the JVM and therefore severly
complicate the proof.

5.5.2 Preservation of well-formedness

To show that compP2 preserves well-formedness, Jinja defines a type compiler that com-
putes a well-typing for the generated bytecode [32, §5.9]. Since JinjaThreads’ extensions
naturally fit in the compilation scheme, I only present the final theorem. The full details can
be found in the formalisation [45].

Theorem 51 If wf-J1-prog P, then wf-jvm-prog (compP2 P).

5.5.3 Semantic preservation

The translation from the intermediate language to bytecode is the most complicated one. It
flattens the tree structure of expressions to a linear list of instructions. Exception handlers
are registered in exception tables. synchronized blocks are implemented by MEnter and
MExit instructions and an exception handler.

To show delay bisimilarity, I first must define which VM transitions are unobserv-
able, i.e., τ-moves. Exception handling and the following instructions generate only τ-
moves: Load, Store, Push, Pop, Dup, Swap, BinOp, Checkcast, Instanceof, Goto, IfFalse,
ThrowExc, and Return. Additionally, Invoke generates a τ-move only if the called method
is non-native or the native method currentThread.

Like between J0 and J#
1, the key to correctness is delay bisimilarity on the call-frame

level, on which I focus in this section. Calling and returning from methods works similarly
in J′1 and the JVM, the laborious, but uninteresting proof lifts delay bisimilarity. The multi-
threaded level is the interleaving semantics in both semantics. Hence, I leverage Theorem 26
once more to show delay bisimilarity for J′1 and the JVM.

For the expression level, I take a detour via two new bytecode semantics exec-meth and
exec-methd that differ from the VM in when they get stuck (Figure 28). A single step of ex-
ecution is written chk,P, ins,xt, t ` 〈(stk, loc, pc,xcp),h〉−ta→e

jvm 〈(stk′, loc′, pc′,xcp′),h′〉:
If the exception flag xcp is None, it denotes that the check chk succeeds (see below), pc
points to an instruction in ins and (stk′, loc′, pc′,xcp′) describes a possible successor state of
executing the instruction ins[pc] with stack stk and registers loc according to exec-instr; ta is
the thread action. If the exception flag is set, it denotes that xt contains a suitable exception
handler at pc′ and no stack underflow occurs. At the expression level, a step must preserve
the call stack’s length, i.e., neither return from a method nor call a non-native method.
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B1: P,e,h` (Val v,xs)≈ ([v],xs, |compE2 e|,None)

B2:
P,e1,h` (Throw a,xs)≈ (stk, loc, pc,bac)

P,synci (e1) e2,h` (Throw a,xs)≈ (stk, loc, pc,bac)

B3:
P,e2,h` (e,xs)≈ (stk, loc, pc,xcp)

P,synci (e1) e2,h` (insynci (a) e,xs)≈ (stk, loc, |compE2 e1|+3+ pc,xcp)

B4: P,synci (e1) e2,h` (synci (Val v) e2,xs)≈ ([v],xs[i := v], |compE2 e1|+2,None)

Fig. 40 Example introduction rules for the relation ≈

The parameter chk controls when the semantics gets stuck. For exec-meth, chk ensures
that the stack does not underflow and that jumps only go to program counters between 0 and
|pc| inclusive. Since it is stricter than the aggressive VM, steps in exec-meth are preserved
when the instruction list is enlarged at either end and the stack extended at the bottom. The
inductive cases in the simulation proof rely on this. But it is not as strict as exec-methd,
where chk performs all checks of check-instr. Since exec-meth gets stuck only when red′1 is
also stuck, I use exec-meth for simulating red′1’s reductions.

The other direction uses exec-methd because it gets stuck at least as often as red′1. For
ThrowExc, e.g., check-instr demands that the exception is a subclass of Throwable, but red′1
does not. So, exec-methd cannot simulate red′1 unless the bisimulation excludes such cases,
e.g., by requiring bytecode conformance. This would further complicate the proofs, which
are already tedious. Conversely, red′1 cannot simulate exec-meth as red′1 gets stuck when
trying to access a field of an integer, but exec-meth carries on with unspecified behaviour.

As the generated bytecode is well-formed (Theorem 51), the defensive exec-methd sim-
ulates the almost aggressive exec-meth for conformant states and preserves bytecode con-
formance. Conformance does not complicate proofs any more at this level of abstraction
because I do not have to unfold its definition for individual instructions. This closes the cir-
cle of simulations. In principle, it should be possible to define chk such that the bytecode
semantics gets stuck whenever red′1 does. Since this appears to be very tedious and sensitive
to small changes, I have not attempted to do so.

This detour only affects the semantics, not the bisimulation relation 1
e≈jvm. As before,

1
e≈jvm consists of two parts, (i) a relation between J1 call frames and JVM expression-level

states and (ii) well-formedness conditions of the states, which the individual semantics pre-
serve. The relation P,e,h` (e1,xs1)≈ (stk, loc, pc,xcp) relates a J1 call frame (e1,xs1) (ex-
pression and registers) to a JVM expression-level state (stk, loc, pc,xcp) for a heap h that is
the same for both. P only defines the class hierarchy, whereas the expression e :: ′addr expr1
compiles to the instruction list ins = compE2 e and xt = compxE2 e 0 0. The inductive def-
inition for ≈ mirrors the reduction rules of red′1 and relates a partially evaluated expression
e1 with the corresponding stack stk, registers loc, and the instruction position pc.

Figure 40 shows some representative rules from the inductive definition. The single rule
B1 for all expressions exploits that the last instruction in a compiled expression always puts
the result on top of the stack. Unfortunately, this does not extend to exceptions because byte-
code does not propagate exceptions from subexpressions, but uses exception tables. Hence,
≈ contains separate exception propagation rules for every expression, similar to B2. Still, it
abstracts from computed values and addresses of thrown exceptions and only requires that
they are the same in both states. Moreover, rules like B3 for all subexpressions of all expres-
sions embed bisimilar states for the subexpression into the context of the larger expression,
thereby shifting the stack and instruction pointer as necessary. Finally, the definition contains
a rule for every bytecode instruction and corresponding J1 state. For example, B4 relates the
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J1 state which next acquires the monitor’s lock to the intermediate JVM state after executing
the Store i instruction that stores the monitor address. Although J′1 and the JVM operate on
the local variable array in the same way, the bisimulation relation must not require that xs
and loc be equal since they differ in intermediate states like in B4, which R1LOCK skips.

The bisimulation relation 1
e≈jvm specialises this relation to complete call frames:

P`C sees M:Ts→T = bbodyc in D
P,blocks1 0 (Class D ·Ts) body,h` (e1,xs1)≈ (stk, loc, pc,xcp) max-vars e1 ≤ |xs1|

P,h` (e1,xs1) 1
e≈jvm (xcp,stk, loc,C,M, pc)

The main simulation theorems at the expression level are similar in structure to Theo-
rems 43 and 44. Their proofs consist of a huge induction on the relation and case analysis
of the reductions. Control constructs like conditionals and loops, which are compiled to
(conditional) jumps, are verified like in sequential Jinja.

The bisimulation relation 1
t≈jvm for single threads lifts 1

e≈jvm to call stacks. Although
great care is required to ensure that everything fits together, the construction and its verifi-
cation just reuses the ideas from the first compilation stage.

Theorem 52 (Correctness of stage 2) In locale typesafe, suppose that wf-J1-prog P. Then,

(i) 1
t≈jvm is a delay bisimulation with explicit divergence for J′1-red P t and the defensive

VM jvm-execd (compP2 P) t.
(ii) 1

m≈jvm is a delay bisimulation with explicit divergence for J′1.redT P and
jvmd.redT (compP2 P) that preserves final states.

Lemma 53 If wf-J1-prog P and wf-start P C M vs, then

J1-start P C M vs 1
m≈jvm jvm-start (compP2 P) C M vs.

5.6 Complete compiler

In the previous sections, I have shown that all relations in Figure 28 are delay bisimulations
with explicit divergence. Now, it remains to compose these results for the full compiler
J2JVM = compP2 ◦ compP1.

Preservation of well-formedness follows immediately from Theorems 42 and 51.

Theorem 54 If wf-J-prog P, then wf-jvm-prog (J2JVM P).

For semantic preservation, let (J≈jvm, J∼jvm) be the composition of all multithreaded

delay bisimulations, i.e., (J≈jvm, J∼jvm) =
m≈0#B 0

m≈1#B 1
m≈1#B 1

m≈jvm. Lemmas 38, 47, 50,
and 53 show that J≈jvm relates the start states. And Lemma 22 composes the bisimulation
theorems 37, 46, 52 and Corollary 49 to obtain the main correctness theorem 56.

Theorem 55 If wf-J-prog P and wf-start P C M vs, then

J-start P C M vs J≈jvm jvm-start (J2JVM P) C M vs.

Theorem 56 In locale typesafe, if wf-J-prog P, then (J≈jvm, J∼jvm) is a delay bisimulation
with explicit divergence that preserves final states.
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All proofs have been conducted independently of the heap implementation under the as-
sumptions of the locale typesafe. As 1

t
≈jvm imposes bytecode conformance on the JVM state

to show that exec-meth and exec-methd are equivalent, Theorem 56 holds for all implemen-
tations that satisfy typesafe, in particular sequential consistency and the JMM (Section 4).

Since J≈jvm decomposes into the relations for each stage, I now can break down cor-
rectness in terms of bisimilarity to concrete executions ξ , i.e., trace equivalence, using the
Theorems 24 and 25 about semantic preservation. As before, I decorate the semantics arrows
with J and jvmd to refer to the definition with the parameters appropriately instantiated.

Theorem 57 (Correctness) Let wf-J-prog and wf-start P C M vs.

(a) Let P ` J-start P C M vs �J ξ . Then, there is a ξ ′ such that ξ [J≈jvm, J∼jvm] ξ ′ and
J2JVM P ` jvm-start (J2JVM P) C M vs�jvmd ξ ′ and

(i) If ξ terminates in s and J.mfinal s, then ξ ′ terminates in the state mexception s,
which is jvm-final.

(ii) If ξ deadlocks in state s, then ξ ′ deadlocks in some s′, too.
(iii) If ξ diverges or runs infinitely, so does ξ ′.

(b) Let J2JVM P ` jvm-start (J2JVM P) C M vs �jvmd ξ ′. Then there is a ξ such that
P ` J-start P C M vs�J ξ and ξ [J≈jvm, J∼jvm] ξ ′ and

(i) If ξ ′ terminates in s′ and jvm.mfinal s′, then ξ terminates in some s such that
J.mfinal s and s′ = mexception s.

(ii) If ξ ′ deadlocks in state s′, then ξ deadlocks in some s, too.
(iii) If ξ ′ diverges or runs infinitely, so does ξ .

Proof (sketch) Case (a) states that every execution of the source code has a corresponding
execution of the bytecode, and case (b) states the converse. The main statements directly
follows from Theorems 24 and 25.

The subcases (i) to (iii) only specialise this statement to the concrete bisimulation. For a
final J state s, the function mexception s extracts the correct exception flag for every thread
in s, i.e., None for normal termination and bac if the exception at address a caused the abrupt
termination.

Preservation of deadlocks in subcase (ii) does not follow directly because I have defined
deadlock in terms of the semantics of single threads, not the interleaved semantics that
the bisimulation is about. However, Theorem 27 shows that

m≈0, 0
m≈1, and 1

m≈jvm preserve

deadlocks. For 1
m≈1, it is easy to show that the semantics for J#

1 and J′1 differ only in states

that cannot be in deadlock. Hence, 1
m≈1 preserves deadlocks, too. Since s and s′ are stuck by

construction of ξ and ξ ′, there are no τ-moves that Theorem 27 would allow, i.e., s and s′

are both deadlocked. ut

While the above theorem correctly describes semantic preservation for sequential con-
sistency, the JMM adds another layer 7 that is not yet reflected. By Corollary 28, delay
bisimiliarity enforces that the legal executions are the same.

Theorem 58 Let wf-J-prog P and wf-start P C M vs. Then, (E,ws) is a legal execution of P
with start state J-start P C M vs iff (E,ws) is a legal execution of J2JVM P with start state
jvm-start (J2JVM P) C M vs.

Corollary 59 Let wf-J-prog P and wf-start P C M vs. Then, P is correctly synchronised iff
J2JVM P is.
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6 Discussion

In this section, I reflect on some of my formalisation choices in JinjaThreads (Section 6.1)
and look back to see (i) how JinjaThreads manages to recycle much of the previous efforts
(Section 6.2) and (ii) what the motivations for the different parts were and what benefits they
brought (Section 6.3).

6.1 Formalisation choices

JinjaThreads uses standard techniques in programming language formalisation: The source
code semantics is a traditional small-step semantics with subexpression reduction and excep-
tion propagation rules and interleaving. Type safety is shown by progress and preservation.
The compiler verification relies on a simulation argument. The virtual machine mimicks an
abstract state machine. It thus shows that these standard techniques do scale to complicated
languages. In this section, I take a look back and discuss the advantages and disadvantages
over other formalisation choices.

The small-step semantics is defined as an inductive predicate with 98 rules for 23 lan-
guage constructs. 28 rules reduce subexpressions (these are the only recursive rules) and
27 propagate exceptions. That is, more than half of the rules merely control what is (not)
evaluated; they do not specify any actual behaviour. Consequently, the majority of cases in
an induction proof about the small-step semantics deal only with subexpressions and ex-
ceptions. I therefore tried to prove these cases automatically. This often worked pretty well
because many proof invariants were also defined inductively or recursively over the syntax.
As all these small-step rules pattern-match on constructors of the abstract syntax tree, Is-
abelle’s proof automation often automatically simplifies the proof invariants as needed and
solves the corresponding subgoals. Subexpression reduction rules are thus less of a problem
for proofs than for validating the semantics by inspection as some behaviours, in particular
for exceptions, arise only from the interplay of many rules.

To reduce the number of rules, I tried to combine all subexpression reduction rules in the
following evaluation context reduction rule as is often done in formalisations on paper [87]:

CONTEXT
P, t ` 〈e,s〉−ta→〈e′,s′〉

P, t ` 〈C[e],s〉−ta→〈C[e′],s′〉

where C denotes an evaluation context with a single hole and the context substitution C[e]
puts e into C’s hole. I abandoned this attempt, though, as it made the formalisation more
complicated instead of simpler. The inductive case for CONTEXT typically required a nested
induction over the evaluation contexts, whose cases corresponded exactly to the subexpres-
sion reduction cases I had before. The only difference was that now there were two nested
inductions instead of just one. All attempts to disentangle the induction lead to a lot of du-
plication. For example, proving that context substitution preserves well-typedness requires
a type system for evaluation contexts, whose rules mimick the type system for expressions.
Moreover, with CONTEXT, the small-step semantics is no longer executable. Isabelle’s com-
piler for inductive predicates can generate an interpreter out of the described JinjaThreads
semantics, but it would fail to invert the matching against context substitutions.

In summary, explicitly enumerating all subexpression reductions and exception propa-
gations worked reasonably well for JinjaThreads. In retrospect, however, it would have been
worth to try a continuation-passing style like in Krebbers’s C semantics [36] and in the K
framework [71]. Krebbers represents the evaluation context using a zipper data structure.
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This technique has three benefits over subexpression reduction rules: First, the relation is
not recursive any more, so case analysis instead of induction suffices. Second, the currently
evaluated subexpression is exposed at the root of the zipper. This makes the interpreter more
efficient as the evaluator need not search in every step for the next evaluation position. Third,
as a by-product, the method call stack would be explicit, too, so I could have avoided the
hackish call-stack semantics for J0 and J1. Conversely, like with CONTEXT, more definitions
are needed, e.g., a type system for the zipper. Moreover, the zipper manipulations introduce
even more intermediate states without a bytecode counterpart, which the downward simu-
lation proof for the compiler must deal with. For local assignment, e.g., the configurations
V := e and e |V :=◊ are equivalent. Subexpression reduction rules avoid the step that trans-
forms the former into the latter.

The strict separation between single-threaded and multithreaded semantics worked very
well and forced me to disentangle sequential and concurrent aspects. In particular, the de-
composition of the Java synchronisation primitives into basic thread actions paid off, as ev-
ery synchronisation aspect had to be formalised only once. Thanks to the interleaving, there
is always one current multithreaded state on which the BTA conditions are checked and the
updates performed. In hindsight, it would have been sensible to take the thread isolation one
step further by eliminating the shared heap altogether. Every memory access and address
type query would then be another basic thread action that the multithreaded semantics inter-
prets. Then, there would be no thread interactions hidden from the multithreaded level. This
would make obsolete all the locale assumptions about preservation under changes to the
heap by other threads (for example the third assumption of locales lifting-wf and lifting-inv
in Figure 21 and assumption heap-change in Figure 35). Moreover, a (coinductive) big-step
semantics would be possible for individual threads, which produces the set of all possible
traces of thread actions. Verifying the compiler against such a big-step semantics for the
single-threaded case might have been easier. Conversely, the type safety proof would have
been harder because type-correctness of values can no longer be determined for threads in
isolation. The semantics would no longer be executable, either.

In the compiler verification, the need for bisimulations seems artificial, only due to the
strict separation into single-threaded and multithreaded semantics and to quirks of the JMM.
Starting from scratch, I would try harder to prove only one direction: the upward simulation
for the single-threaded defensive VM or a downward simulation for a source code big-step
semantics. The simulation could similarly be lifted to the multithreaded case, except that
preservation of stuck states requires a syntactic characterisation. Breaking the abstraction
appears in retrospect less effort than proving both simulation directions.

6.2 From Java`ight to JinjaThreads

JinjaThreads has been designed to reuse Jinja’s definitions and proofs, which itself builds on
ideas in Java`ight and µJava. This shows that formalisation reuse is possible at a large scale.

Reuse is most obvious in Jinja’s program declaration infrastructure, lookup functions
and generic well-formedness constraints, which can be traced back to early versions of
Java`ight [59]. These definitions, theorems, and proofs needed only few adaptations and
some extensions such as exceptions being subclasses of Throwable and the formalisation
of native methods (Section 2.3.1). Similarly, the type system, definite assignment checks
and the bytecode verifier closely resemble Jinja’s and µJava’s.

The picture changes when we look at the semantics of the languages because this is
where concurrency becomes pervasive. The abstract heap module (Sections 2.3.2 and 3.4.1)
formally captures the abstract concept of a heap that was implicit in Jinja and its prede-
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cessors, and identifies the assumptions on the heap. To reuse the sequential semantics of
source code and bytecode, JinjaThreads defines a language-independent semantics for inter-
leaving that separates concurrency issues from single-threaded concerns. The crucial design
choice here is that the single-threaded semantics can only access the thread-local state and
the shared heap, but not the whole multithreaded state. This way, it was enough to extend
the sequential Jinja semantics slightly, namely with the thread ID and the thread action, and
to adapt the VM to return a set of successor states due to the non-determinism. Indeed, I
did not even change the order of arguments of the small-step semantics and the components
of the VM’s state. This can be seen in the definitions of J-red, jvm-exec, and jvm-execd in
Sections 2.3.4 and 2.4.2, which require some regrouping of the state to fit into the format
required by the interleaving semantics. Although not particularly nice, this glue code caused
less effort than manually editing all the definitions, lemmas, and proofs to account for a
different order of arguments and components. Unfortunately, Isabelle does not yet provide
any tool support for such large-scale refactorisations.

Reuse of theorems and proof scripts is much more important than of the definitions,
which make up only a small fraction of the JinjaThreads sources. Clearly, this is only pos-
sible if the definitions are changed and extended in ways that are in line with the previous
design decision. Otherwise, only the abstract proof ideas can be transferred, but the actual
proof script must be written anew. JinjaThreads contains examples of both.

The type safety proofs belong to the good cases. As the higlighting in Lemma 12 and
Theorem 13 in Section 3.4.1 shows, the single-threaded progress and preservation state-
ments for source code and bytecode hardly differ from Jinja’s. Indeed, the same invari-
ants (conformance, definite assignment, . . . ) are needed and the preservation proofs follow
the same proof structure and many cases of the proofs are textually identical in Jinja and
JinjaThreads. Clearly, threads require new invariants with their preservation lemmas and
new properties (Figure 25 on page 38), but this is to be expected when new features are
added. The important point is that the proofs for the existing features can be recycled. So,
JinjaThreads benefits from the good choice of proven lemmas and the setup for the proof
automation that had been developed for its predecessors.

For the compiler, the reuse situation is mixed. As the compiler does not optimize, the
language extensions for Java threads require only small adaptations and extensions to the ex-
isting definition of the compiler and the syntax of the intermediate language (Sections 5.4.1,
5.4.3, and 5.5.1). Similarly, the proofs that the compiler preserves well-formedness of pro-
grams (Theorems 42 and 51) are to a large extent taken over from Jinja, except for the
change in the induction principle in Lemma 41. In contrast, semantic preservation merely
relies on the same abstract ideas, but differs in all other respects as it is now carried out
against the single-threaded small-step semantics instead of the sequential big-step seman-
tics, which no longer exists. Interestingly, the equivalence proof for the small-step semantics
J and J0 reuses several invariants and preservation lemmas from Jinja’s equivalence proof
for the big-step and the small-step semantics (Lemma 31 and the last two claims in the proof
of Lemma 35). This is possible because Jinja’s equivalence proof, too, must prove that the
implicit call stack of the big-step semantics can be flattened to the dynamic method inlining
of the small-step semantics. So, proofs sometimes get reused for a different purpose.

In summary, although I have tried to reuse in JinjaThreads as much as possible from
Jinja, often it is more the general ideas and concepts that have survived than their textual
formulation in Isabelle/HOL. In the end, JinjaThreads is incompatible with Jinja, but every
Jinja program can be trivially transformed into a JinjaThreads program. Still, reuse saved
me from having to choose right from all those innumerable formalisation options, only a
few of which lead to easy and automatic proofs.
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Overall, the desire for reuse led to the modular architecture with a strict separation be-
tween sequential and concurrent features, and, in particular, to the stack of semantics in
Figure 2. It probably would have been much easier to formalise the semantics of source
code and bytecode as a single huge definition (Section 7 discusses other Java formalisations
in this style). But the modularity made it possible to reuse many parts of JinjaThreads for
both source code and bytecode, e.g., the interleaving semantics (Section 2.2), the memory
models (Section 4), and the lifting of bisimulation relations for the compiler verification
(Section 5.2.2). Overall, I am convinced that savings by reusing proofs clearly outweigh the
additional effort for the modular definitions.

Reuse also has a downside in that certain design decisions prevent clean formalisations
and extensions. For example, JinjaThreads’s small-step semantics avoids the need to model
call stacks like in Jinja, but call stacks are an important stepping stone in the compiler ver-
ification to make the proofs manageable. Therefore, I developed a version with call stacks
(Section 5.3.1), but extracting the calls using call is not an elegant solution. A proper solution
like Krebber’s with zippers for C [36] would have meant that I have to restructure and redo
the existing type safety proofs. Similarly, for the validation (Section 8), I tried to extend Jin-
jaThreads with break and continue control statements. In the end, I aborted this attempt
because these control statements break too many assumptions of the compiler verification,
i.e., the required adaptation effort was too high given the priority of the extension. Similarly,
JinjaThreads itself evolved over time, too, and early parts like the interleaving semantics in-
fluenced many later design decisions. For example, the JMM formalisation (layer 7) sitting
on top of the interleaving semantics (layer 5) is in conflict with the ideas of true concurrency.
In fact, the interleaving semantics introduces an artificial notion of global time and my for-
malisation therefore cannot produce certain out-of-order behaviours (Section 2.3.3). If for-
malising the JMM had been envisioned from the start, no interleaving semantics would have
been needed and the JMM could have been defined on top of a (coinductive) single-threaded
big-step semantics. Clearly, these cleaner re-developments could be realised in the future,
but when I made these design decisions, reuse seemed to be a better use of my research time.

6.3 Formalisation motivations, efforts, and outcomes

The motivations and goals of formalising Java changed with the different Java models. Back
in the 1990s, Oheimb and Nipkow formalised Java`ight in Isabelle/HOL to demonstrate
that “the technology for producing machine-checked programming language designs has
arrived” [64]. Meanwhile, mechanisation has become standard: many papers at top program-
ming language conferences come with a formalisation of their core calculi and theorems in
a proof assistant.

Bali and µJava were developed in the context of the VerifiCard project [82]. This project
aimed at developing a specification and verification tool set for the JavaCard platform ground-
ed in formal methods. Here, Bali and µJava provided the formal semantics that enables the
rigorous verification of programs against their specification, and the verified bytecode ver-
ifier enables the safe execution of untrusted code in a sandbox. The VerifiCard project as a
whole brought formal verification with model checkers and proof assistants closer to prac-
tice.

Next, Jinja [32] aimed at unifying the different models from Bali and µJava, i.e., finding
a balance between an abundance of features, which previously had been studied in isolation,
and tractability of the resulting model. Klein and Nipkow emphasized comprehensibility of
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the model and readability of the formal proofs, so they simplified the languages and left out
some of the features.

The Quis custodiet project [68] picked up Jinja as a formal foundation for verifying
an information flow control algorithm. Wasserrab and Lohner [86] formalised control flow
graphs, call graphs, and program dependence graphs for Jinja bytecode and connected them
to Wasserrab’s slicing framework [85]. This connection enabled them to show that program
slicing can establish non-interference properties of Jinja programs. To that end, they showed
that the different graphs correctly abstract the program. These proofs heavily rely on the
bytecode verifier’s correctness and type safety of the JVM because the graph constructions
depend on static type information.

The concurrency extensions towards JinjaThreads described in this paper originate in
the Quis custodiet project, too. The slicing algorithm had been extended to multithreaded
programs (assuming interleaving semantics) [20] and so should its formal verification. In
2007, the work on the interleaving semantics started, which was supposed to develop the
foundations for verifying the algorithm. Type safety and the correctness of the bytecode ver-
ifier were essential for the graph construction and its correctness. The compiler verification
had two aims: (i) to complete the extension of Jinja to concurrency and to sanity-check the
source code and bytecode formalisations against each other, and (ii) to enable the transfer
of non-interference properties between source code (e.g., established by a type system) and
bytecode. The verification of slicing-based non-interference for multithreaded programs is
still ongoing [12].

The Java memory model study, which I have only touched on in this paper, had several
goals. First, most Java program analyses, including slicing-based IFC, assume interleaving
semantics. They are therefore only sound for programs without data races, as these behave
as if threads were interleaved. Therefore, extending JinjaThreads with the JMM and proving
the DRF guarantee is necessary for the verification of such algorithms. Second, and more
importantly, the Java memory model and its interaction with the language had not been stud-
ied much before, unlike the sequential features of Jinja and the synchronisation primitives
of the interleaving semantics. So I aimed at understanding the JMM better and at clarifying
some of its dark corners. This study [50] has revealed subtle interactions with object allo-
cation and type safety, and showed that values may appear “out of thin air” in some Java
programs, which theoretically compromises the Java security architecture. The search for a
better JMM specification has started, but no convincing solutions have been found so far.

Regarding the formalisation effort, I can only give numbers for extending Jinja to Jin-
jaThreads. The first version of the interleaving semantics and its connection to the source
code semantics as described in [46] took about nine person months. Verifying the com-
piler as published in [47], i.e., without the memory model and without preservation of non-
termination and deadlocks, required one year. I spent on the JMM formalisation and the
DRF guarantee ( [48]) another year and on type safety for the JMM [50] about nine months.
Code generation and validation (see Section 8, [51]) were spread out over a longer period,
so I cannot give an estimate there. In parallel, I occasionally added new features and refac-
tored the existing formalisation, which is not included in the above times. The effort to add
a new feature varied a lot. Extensions that fit into the design of the language are easy. For
example, adding the compare-and-set operation took me three days. Some extensions, e.g.,
arrays, required weeks of refactoring to accomodate them in the model.

In summary, these efforts lead to three main benefits: First, they advanced the state of the
art in formalising programming languages and structuring the formalisations. In particular,
they showed that standard techniques scale to large models. Second, they identified problems
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with the Java programming language and proposed clarifications. Third, they produced an
artefact on which further work can be and is being built.

7 Related Work

7.1 Formalisation of multithreaded Java

Formalisations of (aspects of) sequential Java and Java bytecode abound in the literature.
Hartel and Moreau [24] provide a good overview and Alves-Foss [2] has collected many
early works. Most formalisations cover either only Java source code or only Java bytecode.
One notable exception is the semantics by Stärk et al. [79] for a subset of Java source code
and bytecode in terms of abstract state machines, for which they prove subject reduction.
They use neither machine support for the semantics nor for checking their proofs.

For concurrent Java source code, AtomicJava [19] by Flanagan et al. models most Java
source code features except inheritance and exception handling. They use it to show that
their non-standard type system ensures atomicity.

In K-Java, Bogdănaş and Roşu [11] formalise all features of Java 1.4 using the K system.
The multithreading features are similar to JinjaThreads’: they include threads with forks
and joins, synchronized blocks, interruption, and the wait-notify mechanism. There is
no compare-and-set operation as the java.util.concurrent package was added only in
Java 5. K-Java does not cover the Java memory model and assumes sequential consistency
instead. Bogdănaş and Roşu focus on completeness of the syntactic features and validate
their formalisation by running numerous test cases. Using the K framework, they generate
several tools such as a Java interpreter and a model checker form the semantics. They do not
prove any property about their formalisation, though.

There are more formalisations for multithreaded Java bytecode. First, Liu and Moore
[43] report on an executable model M6 of the KVM, a JVM implementation for embedded
devices, in ACL2, which covers all aspects of the Connected Limited Device Configuration
(CLDC) specification [13]. Like JinjaThreads, their VM semantics implements native meth-
ods from the CLDC standard library, in particular for class loading and concurrency, but
not thread interruption. In their monolithic semantics, every instruction and native method
can access any part of the state, which reduces modularity. They aim for verifying small
Java programs [44, 56] and JVM implementations with respect to the JVMS. Thus, they do
not define a type system for bytecode nor prove type safety. Instead, the M6 models byte-
code much closer to the JVMS than JinjaThreads does. Like its predecessors, JinjaThreads
abstracts from technical details like the constant pool and string literals.

Second, Bicolano [55] serves as the basis for the proof carrying code infrastructure in
the Mobius project [5]. It provides a comprehensive model for CLDC except for concur-
rency and class loading in Coq. In BicolanoMT, Huisman and Petri [25] extend Bicolano
with interleaving concurrency including interrupts and the wait-notify mechanism, but no
spurious wake-ups. By using the extension framework by Czarnik and Schubert [14], they
do not need to change the sequential Bicolano semantics at all, but the extension is tied to the
bytecode language. In contrast, JinjaThreads adds the semantics of MEnter and MExit in-
structions to the single-threaded semantics and labels all rules with thread actions. In return,
JinjaThreads uses the same interleaving semantics for source code and bytecode.

Third, Belblidia and Debbabi present a formal small-step semantics for multithreaded
Java bytecode [7]. Like JinjaThreads, they have a semantics for threads in isolation and a
second layer which manages the threads and receives basic thread actions. In contrast to
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the JinjaThreads interleaving framework, at most one basic thread action can be issued at a
time. Their single-threaded semantics already takes care of the locks, which are stored in the
shared memory, i.e., they only have actions for creating, killing, blocking, and unblocking
threads. They do not model the wait-notify mechanism nor thread interruption. Like the
M6 and BicolanoMT, they only give the semantics, but no type system and no proofs. In
JinjaThreads, the interleaving semantics manages the complete multithreaded state which
includes the locks, wait sets, and interrupts. This isolates them from one another and relieves
individual threads from the burdens of multithreading. By allowing multiple basic thread
actions in a single reduction step, single threads can combine basic thread actions as building
blocks for more complex behaviour, while each basic thread action has simple semantics.

Forth, JavaFAN [18, 17] is a formal analyser for Java source and bytecode in Maude.
Although two formal semantics for both source code and bytecode are provided, these are
unconnected. Their source code semantics covers about the same subset as JinjaThreads ex-
cept for exceptions. For efficiency reasons, their semantics is based on continuations. This
way, they bypass a major source of inefficiency from which the JinjaThreads source code in-
terpreter suffers. In JinjaThreads, dynamic method inlining encloses the statement to execute
in increasingly many blocks for this and the parameters and execution has to traverse them at
every step of execution. The JavaFAN VM follows a traditional style, but separates determin-
istic sequential instructions from non-deterministic multithreading to boost performance.

Beyond Java, Krebbers [36] has formalised a large (sequential) subset the C11 stan-
dard in Coq. He aims at modelling all the intricate corners of the C language as closely
as feasible, including bit-wise memory access, non-local control flow, and unspecified and
implementation-defined behaviour. The executable operational semantics traverses the pro-
gram expression using a zipper data structure. This way, traversal rules replace the traditional
subexpression reduction rules. This has two advantages: First, the interpreter becomes faster
as it need not search over and over again for the next subexpression to evaluate. Second,
non-local control flow like goto can freely traverse the whole program to find the jump
target. Krebbers also formalised an axiomatic semantics using separation logic and proves
it sound against the operational semantics. The implementation-defined behaviour is config-
urable using Coq type classes, which are remotely similar to locales in Isabelle.

7.2 Type safety proofs of concurrent languages

There are only few type safety proofs for multithreaded languages like Java. Often, only
subject reduction is shown, which eliminates the need to deal with deadlocks.

Grossman [23] reports on type-based data race detection for multithreaded Cyclone, a
type safe variant of C. In the type safety proof, he shows the progress property that no well-
typed thread can get “badly stuck”. A thread is badly stuck iff it either is final and still holds
some locks or it would not be able to reduce any further even if it could acquire an arbitrary
additional lock. Together with subject reduction, type safety follows. Like deadlocked in
JinjaThreads, badly stuck is defined semantically. In general, being deadlocked is stronger
than being badly stuck because being badly stuck misses the aspect of circular waiting.

Goto et al. [22] prove type safety for a multithreaded calculus with a weak memory
model. Their progress statement only applies to a thread if it is not about to execute a syn-
chronisation statement, which is a crude syntactic over-approximation of deadlock. Progress
with this restriction no longer guarantees that the semantics is not missing any rule. For ex-
ample, it holds even for a semantics without any rules for synchronized statements.

83



7.3 Verified compilers

Compiler verification has been an active research topic for more than 40 years; see [15] for
an annotated bibliography. Rittri [70] and Wand [84] first used bisimulations for verifying a
compiler for a parallel functional language. They showed that running the compiled code on
a VM is weakly bisimilar to the programs denotational semantics, which ignores divergence.

Most closely related to JinjaThreads’ compiler is naturally Jinja’s [32, §5] which itself
builds on Strecker’s [80] for µJava. They handle subsets of sequential JinjaThreads and are
verified with respect to the big-step semantics. Their correctness theorem cannot rule out
that the compiler transforms an infinitely running program into a terminating one.

Leroy’s CompCert project [40] has verified a complete compilation tool chain from a
subset of C source code to PowerPC assembly language in Coq. CompCert focuses on low-
level details and language features such as memory layout, register allocation and instruc-
tion selection. JinjaThreads’s simulation diagrams for well-founded delay bisimulations are
similar to CompCert’s, but the latter only require the downward direction (the upper half
of Figure 33). He claims that upward simulations are harder to show than downward ones
for CompCert. In JinjaThreads, the situation is the opposite because exception handling in
source code takes a lot more steps than in bytecode due to the exception propagation rules.

For CompCertTSO, Ševčı́k et al. [78] adapt Leroy’s approach of deriving upward from
downward simulations to the concurrent setting. They require that the single-threaded se-
mantics does not exhibit internal non-determinism and that it is receptive. Receptiveness
classifies observable single-thread steps (such as reading a value from memory) into equiva-
lence classes and requires that a thread can perform all the steps in the equivalence class if it
can do at least one of them. For example, when a thread reads in a step some specific value
from a memory location, then there are also steps that read any other value from the same
location. Then, thread-wise downward simulations yield thread-wise upward simulations if
the thread running the compiled code is determinate, i.e., all observable steps from any fixed
(reachable) state are in the same equivalence. Using the same argument, upward simulations
can be derived from downward simulations.

Receptiveness could be a way to avoid proving both simulation directions on the ex-
pression and thread level in JinjaThreads. It would require some changes to the interleaving
semantics, though, to satisfy the receptiveness requirements. For example, ThreadEx a True
and Spawn a (C, run,a) h as generated by STARTFAIL and START (Figure 14) would have
to be in the same class. But the additional arguments (C, run,a) and h of Spawn cannot be
determined from the former BTA, so ThreadEx a True is related to all BTAs of the form
Spawn a . Hence, the BTA ThreadEx would have to include C and h, which are not
needed anywhere else. Similarly, other BTAs would need to be duplicated. For example,
UnlockFail→a is used by method calls to wait, notify, and notifyAll. Clearly, each of these
usages should be in a separate equivalence class, i.e., different versions of UnlockFail are
needed. These modifications would thus weaken the abstraction boundary that the interleav-
ing semantics provides as the specific BTA usage of the single-threaded semantics shows up
in the abstract definitions.

The CakeML compiler [37] compiles a sequential, ML-like language to assembly code.
It has been verified using the HOL4 prover against a big-step semantics. Owens et al. [66]
found that a functional big-step semantics rather than a relational one simplifies the CakeML
correctness proofs, because the functional style avoids duplication in rules and works well
with rewriting. In JinjaThreads, duplication in the small-step rules is only a minor issue be-
cause most statements have only few cases (array update is the only exception) and Isabelle
can automaticaly derive the equations for rewriting from inductive definitions.

84



8 Conclusion

In this article, I have focused on studying the effects of Java multithreading in a unified
model rather than in isolation. This ensures that important details cannot be missed easily.
Tractability quickly becomes a major concern and modularity is the key to push the limits.
I have demonstrated how to disentangle sequential aspects, concurrency features, and the
memory model, and the proofs show that JinjaThreads is indeed a usable model despite
being sizeable.

However, the size and complexity make it non-trivial to ensure that JinjaThreads faith-
fully models (a subset of) Java. Rushby [72] and Norrish [61] suggest three ways to address
validation: (i) the social process of reviewing, publication, and reuse by others, (ii) chal-
lenging the specification by proving sanity theorems, and (iii) validation against a concrete
implementation. JinjaThreads has gone all three ways to some extend. First, JinjaThreads
continues the line of Java`ight , µJava, and Jinja. Hence, numerous publications in various
venues [8, 28–35, 45–48, 50, 51, 58–60, 62–65, 67, 74–77, 80, 81] and its reuse in [3, 57]
support the claim of faithfulness. Type safety (Section 3) and the compiler verification (Sec-
tion 5) are excellent examples for the second. Yet, bugs may still hide in technical details
that publications gloss over and in areas that sanity theorems fail to cover. Therefore, I have
extracted an executable interpreter, VM, and compiler from the formal definitions using
Isabelle’s code generator and validated the semantics by running Java test programs and
comparing the results with Sun’s reference implementation [51]. To make the vast supply
of Java programs available for testing, I also developed a translator Java2Jinja from Java to
JinjaThreads abstract syntax.16 Testing revealed a bug in the implementation of binary op-
erators that all previous proofs were unable to spot. Although validation through testing can
never prove the absence of errors, I am now confident that JinjaThreads faithfully models
the Java subset it covers.
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3. Backes, M., Busenius, A., Hriţcu, C.: On the development and formalization of an extensible code gen-
erator for real life security protocols. In: A.E. Goodloe, S. Person (eds.) NFM 2012, LNCS, vol. 7226,
pp. 371–387. Springer (2012). DOI 10.1007/978-3-642-28891-3 34

4. Ballarin, C.: Locales: A module system for mathematical theories. J. Autom. Reasoning 52(2), 123–153
(2014). DOI 10.1007/s10817-013-9284-7
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