Formalizing Constructive Cryptography using CryptHOL

Andreas Lochbihler

S. Reza Sefidgar David A. Basin Ueli Maurer

ETH zürich

compositionality

Computer-aided Cryptography

Mechanic checks for cryptographic proofs to overcome the crisis of rigour

compositionality

Computer-aided Cryptography

Mechanic checks for cryptographic proofs to overcome the crisis of rigour

CertiCrypt

CryptoVerif

```
EasyCrypt
```

FCF

CryptHOL

Computer-aided Cryptography

2/16

Computer-aided Cryptography

2/16

Formalizing Resources

1. Probabilistic transition system (d, σ_0)

$$d: \Sigma o I o \mathbb{D}(O imes \Sigma)$$

 $\sigma_0: \Sigma$

(= CryptHOL oracle)

Formalizing Resources

1. Probabilistic transition system (d, σ_0)

$$d: \Sigma o I o \mathbb{D}(O imes \Sigma)$$

 $\sigma_0: \Sigma$

(= CryptHOL oracle)

2. Abstract over the concrete state

 $\exists \Sigma. \ (\Sigma \to I \to \mathbb{D}(O \times \Sigma)) \times \Sigma$

 $\begin{array}{l} \text{codatatype } \mathbb{R}(I, O) = \\ \text{Resource } (I \to \mathbb{D}(O \times \mathbb{R}(I, O))) \end{array}$

Benefits

- Identifies bisimilar resources
- Can exploit corecursive structure (unwinding) in definitions and proofs

Formalizing Distinguishers (\approx CryptHOL Adversary)

CryptHOL: Generative probabilistic value (GPV) + probabilistic termination

 $\texttt{codatatype} \ \mathbb{G}(A,Q,R) = \textit{Gpv} \ (\mathbb{D}(A + (Q \times (R \rightarrow \mathbb{G}(A,Q,R)))))$

Formalizing Distinguishers (\approx CryptHOL Adversary)

CryptHOL: Generative probabilistic value (GPV) + probabilistic termination

 $\texttt{codatatype} \ \mathbb{G}(A,Q,\textbf{\textit{R}}) = \textit{Gpv} \ (\mathbb{D}(A + (Q \times (\textbf{\textit{R}} \rightarrow \mathbb{G}(A,Q,\textbf{\textit{R}})))))$

Formalizing Distinguishers (\approx CryptHOL Adversary)

CryptHOL: Generative probabilistic value (GPV) + probabilistic termination

 $\texttt{codatatype} \ \mathbb{G}(A,Q,\textbf{\textit{R}}) = \textit{Gpv} \ (\mathbb{D}(A + (Q \times (\textbf{\textit{R}} \rightarrow \mathbb{G}(A,Q,\textbf{\textit{R}})))))$

0

Algebraic Reasoning

lemma attach_parallel2: "(C1 $|_{=}$ C2) \triangleright (R1 || R2) = (C1 \triangleright R1) || (C2 \triangleright R2)"

Algebraic Reasoning Becomes Simpler

Abstraction over state simplifies reasoning about composition **lemma attach_compose:**

"(C1 \odot C2) \triangleright R = C1 \triangleright (C2 \triangleright R)"

Algebraic Reasoning Becomes Simpler

Abstraction over state simplifies reasoning about composition **lemma attach_compose:** "(C1 \odot C2) \triangleright R = C1 \triangleright (C2 \triangleright R)"

```
In CryptHOL:
lemma exec_gpv_inline:
    "exec_gpv R (inline C2 C1 s') s =
    map_spmf (\lambda(x, s', s). ((x, s'), s)) (exec_gpv
        (\lambda(s', s) y. map_spmf (\lambda((x, s'), s). (x, s', s)))
        (exec_gpv R (C2 s' y) s))
        C1 (s', s))"
```

Formalizing Secure Realization (asymptotic version)

Formalized Composition Theorems

Formalized Composition Theorems

Formalized Composition Theorems

A. Lochbihler (Digital Asset, ETH Zurich)

Example: One-time-pad Encryption over a Single-use Channel

Interfaces

ResourceUsersAdversarysecure channelsubmit / polllength, deliver, dropauthenticated ch.submit / polllook, deliver, dropshared keyget--

Encrypt:

- 1. get key
- 2. XOR key with message
- 3. submit

Decrypt:

- 1. get key
- 2. poll message
- 3. XOR key with message

Example: One-time-pad Encryption over a Single-use Channel

Interfaces

ResourceUsersAsecure channelsubmit / pollIdauthenticated ch.submit / pollIdshared keyget-

Adversary

length, deliver, drop
 look, deliver, drop

Encrypt:

- 1. get key
- 2. XOR key with message
- 3. submit

Decrypt:

- 1. get key
- 2. poll message
- 3. XOR key with message

Simulator:

authenticated	\mapsto secure channel
look	\mapsto length + sample bitstring
deliver	\mapsto deliver
drop	$\mapsto drop$

Proof Approach

??? ???

Why Bisimulation is too Strong

Why Bisimulation is too Strong

Why Bisimulation is too Strong

Random system [Maurer'02]: Family of conditional probability distributions

 $[I \times O] \longrightarrow I \longrightarrow \mathbb{D}(O)$

 $(\Sigma
ightarrow I
ightarrow \mathbb{D}(O imes \Sigma)) imes \Sigma$

Random system [Maurer'02]: Family of conditional probability distributions

Random system [Maurer'02]: Family of conditional probability distributions

Random system [Maurer'02]: Family of conditional probability distributions

Characterization theorem:

Two resources are trace equivalent iff the distinguishing advantage is 0.

A. Lochbihler (Digital Asset, ETH Zurich)

Random system [Maurer'02]: Family of conditional probability distributions

Characterization theorem:

Two resources are trace equivalent iff the distinguishing advantage is 0.

Sound and complete **unwinding proof rule** Local, simulation-like proof principle for trace equivalence

A. Lochbihler (Digital Asset, ETH Zurich)

Random system [Maurer'02]: Family of conditional probability distributions

Characterization theorem:

Two resources are trace equivalent iff the distinguishing advantage is 0.

Sound and complete **unwinding proof rule** Local, simulation-like proof principle for trace equivalence

A. Lochbihler (Digital Asset, ETH Zurich)

Limitations and Comparison

Limitations:

- Information-theoretic security
- Linear interactions (pull model)

Limitations and Comparison

Limitations:

- Information-theoretic security
- Linear interactions (pull model)

Underlying technology
Definitional approach
Expressive codatatypes
Library
Dependent types

CryptHOL	FCF	EasyCrypt
lsabelle/HOL	Coq	OCaml
•	•	•
•	0	•
•	0	growing
•	•	•

Take aways

- 1. Coalgebraic modelling \rightsquigarrow mechanized algebraic reasoning
- 2. Trace equivalence is the right equivalence notion
- 3. Unwinding proof rule for trace equivalence
- 4. Formalization suitable for abstract (composition) and concrete (OTP, MAC) reasoning

www.isa-afp.org/entries/Constructive_Cryptography.html

Take aways

- 1. Coalgebraic modelling \rightsquigarrow mechanized algebraic reasoning
- 2. Trace equivalence is the right equivalence notion
- 3. Unwinding proof rule for trace equivalence
- 4. Formalization suitable for abstract (composition) and concrete (OTP, MAC) reasoning

More in the paper

- Dependent type system for resources and converters
- Formalization of wiring

www.isa-afp.org/entries/Constructive_Cryptography.html

Take aways

- 1. Coalgebraic modelling \rightsquigarrow mechanized algebraic reasoning
- 2. Trace equivalence is the right equivalence notion
- 3. Unwinding proof rule for trace equivalence
- 4. Formalization suitable for abstract (composition) and concrete (OTP, MAC) reasoning
- More in the paper
 - Dependent type system for resources and converters
 - Formalization of wiring

Future work

- Further applications
- Computational security

www.isa-afp.org/entries/Constructive_Cryptography.html