
Journal of Automated Reasoning manuscript No.
(will be inserted by the editor)

Effect polymorphism in higher-order logic (proof pearl)

Andreas Lochbihler

the date of receipt and acceptance should be inserted later

Received: date / Accepted: date
Abstract The notion of a monad cannot be expressed within higher-order logic
(HOL) due to type system restrictions. I show that if a monad is restricted to
values of a fixed type, this notion can be formalised in HOL. Based on this idea, I
develop a library of effect specifications and implementations of monads and monad
transformers. Hence, I can abstract over the concrete monad in HOL definitions and
thus use the same definition for different (combinations of) effects. I illustrate the
usefulness of effect polymorphism with a monadic interpreter.
Keywords monad · monad transformer · effects · polymorphism · equational
reasoning · Isabelle/HOL

1 Introduction

Monads have become a standard way to write effectful programs in pure functional
languages [34]. In proof assistants, they provide a popular abstraction for modelling
and reasoning about effects [4,5,8,19,22,32,36]. Abstractly, a monad consists of a type
constructor τ and two polymorphic operations, return :: α⇒α τ for embedding values
and bind :: α τ⇒ (α⇒β τ)⇒β τ for sequencing, with infix notation >>=, satisfying
three monad laws:

1. (m>>= f)>>= g = m>>= (λx. f x>>= g)
2. return x>>= f = f x

3. m>>= return = m

Yet, the notion of a monad cannot be expressed as a formula in higher-order
logic (HOL) [12] as there are no type constructor variables like τ in HOL and the

This article extends the conference version presented at Interactive Theorem Proving 2017 [23].
Most of this work was done while the author was at the Institute of Information Security at
ETH Zurich, Zurich, Switzerland.

A. Lochbihler
Digital Asset (Switzerland) GmbH
Luggwegstrasse 9, CH-8048 Zurich
E-mail: mail@andreas-lochbihler.de

sequencing operation bind occurs with three different type instances in the first
law. Thus, only concrete monad instances have been used to model side effects
of HOL functions. In fact, monad definitions for different effects abound in HOL,
e.g., a state-error monad [4], memoization [36], non-determinism with errors and
divergence [19], probabilistic choice [5], probabilistic resumptions with errors [22],
and certification monads [32]. Each of these formalisations fixes τ to a particular type
(constructor) and develops its own reasoning infrastructure. This approach achieves
value polymorphism, i.e., one monad can be used with varying types of values, but
not effect polymorphism where one function can be used with different monads.

In this article, I give up value polymorphism in favour of effect polymorphism. The
idea is to fix the type of values to some type α0. Then, the monad type constructor τ
is applied only to α0. The resulting combination α0 τ is represented by an ordinary
HOL type variable µ. So, the monad operations have the HOL types return :: α0⇒µ
and bind :: µ⇒ (α0⇒µ)⇒µ. This notion of a monad can be formalised within HOL.
In detail, I present an Isabelle/HOL library1 for different monadic effects and their
algebraic specification. All effects are also implemented as value-monomorphic monads
and monad transformers. Using Isabelle’s module system [2], function definitions can
be made abstractly and later specialised to several concrete monads. As a running
example, I formalise and reason about a monadic interpreter for a small arithmetic
language. The library has been used in a larger project to define and reason about
parsers and serialisers for security protocols (§6).

Contributions. I show the advantages of trading in value polymorphism for effect
polymorphism. First, HOL functions with effects can be defined in an abstract monadic
setting (§2) and reasoned about in the style of Gibbons and Hinze [7]. This preserves
the level of abstraction that the monad notion provides. As the definitions need not
commit to a concrete monad, they can be used in richer effect contexts too—simply
by combining the modular effect specifications. When a concrete monad instance is
needed, it can be easily obtained by interpretation using Isabelle’s module system.

Second, as HOL can express the notion of a value-monomorphic monad, I have
also formalised several monad transformers [20,26] in HOL (§3). Thus, there is no
need to define the monad and derive the reasoning principles for each combination of
effects, as is current practice with value polymorphism. Instead, it suffices to formalise
every effect only once as a transformer and combine them modularly.

Third, relations between different instances can be proven using the theory of
representation independence (§4) as supported by Isabelle’s Transfer package [14].
This makes it possible to switch in the middle of a bigger proof from a complicated
monad to a simpler one.

In comparison to the conference version [23], this article additionally imple-
ments binary probabilistic choice from countable choice (§2.3) and presents monad
transformers for non-determinism (§3.5) and a non-deterministic interpreter (§3.6).

2 Abstract Value-Monomorphic Monads in HOL

In this section, I specify value-monomorphic monads for several types of effects. A
monadic interpreter for an arithmetic language will be used throughout as a running

1 Available in the Archive of Formal Proofs at https://www.isa-afp.org/entries/
Monomorphic_Monad.html.

2

https://www.isa-afp.org/entries/Monomorphic_Monad.html
https://www.isa-afp.org/entries/Monomorphic_Monad.html

example. The language, adapted from Nipkow and Klein [27], consists of integer
constants, variables, addition, and division.

datatype ν exp = Const int | Var ν | (ν exp)⊕ (ν exp) | (ν exp)� (ν exp)

I formalise the concept of a monad using Isabelle’s module system of locales [2].
The locale monad below fixes the two monad operations return and bind (written
infix as >>=) and assumes that the monad laws hold. It will collect definitions of
functions, which use the monad operations, and theorems about them, whose proofs
can use the monad laws. Every locale also defines a predicate of the same name
that collects all the assumptions; for example, monad returnident bindident expresses
that the two functions returnident and bindident satisfy the monad laws. When a user
interprets the locale with more concrete operations (e.g., returnident and bindident) and
has discharged the assumptions for these operations, every definition and theorem
inside the locale context is specialised to these operations. Although the type of values
is a type variable α, α is fixed inside the locale. Instantiations may still replace α with
any other HOL type. In other words, the locale monad formalises a monomorphic
monad, but leaves the type of values unspecified. As usual, m>>m′ abbreviates
m>>= (λ_. m′).

locale monad = fixes return :: α⇒µ and bind :: µ⇒(α⇒µ)⇒µ (infixr >>=)
assumes bind-assoc : (m>>= f)>>= g =m>>= (λx. f x>>= g)

and return-bind : return x>>= f = f x
and bind-return : x>>= return = x

Monads become useful only when effect-specific operations are available. In
the remainder of this section, I formalise monadic operations for different types of
effects and their properties. For each effect, I introduce a new locale in Isabelle that
extends the locale monad, fixes the new operations, and specifies their properties.
A locale extension inherits parameters and assumptions. This leads to a modular
design: if several effects are needed, one merely combines the relevant locales in a
multi-extension.

2.1 Failure and Exception

Failures are among the simplest effects and are widely used. A failure aborts the
computation immediately. The locale monad-fail given below formalises the failure
effect fail :: µ. It assumes that a failure propagates from the left hand side of bind, i.e.,
fail aborts a computation. In contrast, there is no assumption about how fail behaves
on bind’s right hand side. Otherwise, if monad-fail also assumedm>>= (λ_. fail) = fail,
then fail would undo any effect ofm. Although the standard implementation of failures
using the option type satisfies this additional law, many other monad implementations
do not, e.g., state-exception monads. Note that there is no need to delay the evaluation
of fail in HOL because HOL has no execution semantics.

locale monad-fail = monad+fixes fail :: µ
assumes fail-bind : fail>>= f = fail

As a first example, I define the monadic interpreter eval :: (ν⇒µ)⇒ν exp⇒µ for
arithmetic expressions by primitive recursion using these abstract monad operations

3

inside the localemonad-fail.2 The first argument is an interpretation function E :: ν⇒µ
for the variables. The evaluation fails when a division by zero occurs.
primrec (in monad-fail) eval :: (ν⇒µ)⇒ν exp⇒µ where
eval E (Const i)= return i
| eval E (Var x) = E x
| eval E (e1⊕e2) = eval E e1>>= (λi1. eval E e2>>= (λi2. return (i1 + i2)))
| eval E (e1�e2) =

eval E e1>>= (λi1. eval E e2>>= (λi2. if i2 = 0 then fail else return (i1 div i2)))
Note that evaluating a variable can have an effect µ, which is necessary to

obtain a compositional interpreter. Let subst :: (ν⇒ν′ exp)⇒ν exp⇒ν′ exp be the
substitution function for exp. That is, subst σ e replaces every Var x in e with σ x.
Then, the following compositionality statement holds (proven by induction on e
and term rewriting with the definitions), where function composition ◦ is defined as
(f ◦g)(x) = f (g x).
lemma compositionality : eval E (subst σ e) = eval (eval E ◦σ) e

by induction simp-all
I refer to failures as exceptions whenever there is an operator catch :: µ⇒µ⇒µ to

handle them. Following Gibbons and Hinze [7], the locale monad-catch assumes that
catch and fail form a monoid and that returns are not handled. It inherits fail-bind
and the monad laws by extending the locale monad-fail. No properties about the
interaction between catch and bind are assumed because in general exception handling
does not distribute over sequencing.
locale monad-catch = monad-fail+fixes catch :: µ⇒µ⇒µ

assumes fail-catch : catch fail m=m
and catch-fail : catch m fail =m
and catch-catch : catch (catch m1 m2) m3 = catch m1 (catch m2 m3)
and return-catch : catch (return x) m= return x

2.2 State

Some computations rely on a state that changes over time, e.g., counters, pseudo-
random number generators, and destructive updates, where old versions are no longer
needed. Such stateful computations use operations to read (get) and replace (put)
the state of type σ. In a value-polymorphic setting, get :: σ τ and put :: σ⇒unit τ are
usually computations that return the state or () inhabiting the singleton type unit.
Without value-polymorphism, these types cannot be formalised in the HOL setting be-
cause τ cannot be applied to different value types. Instead, my operations additionally
take a continuation: get :: (σ⇒µ)⇒µ and put :: σ⇒µ⇒µ. In a value-polymorphic
setting, both signatures are equivalent. Passing the continuation return as in get return
and λs. put s (return ()) yields the conventional operations. Conversely, my operations
get f and put s m can be implemented as get>>= f and put s>>m using conventional
get and put. The locale monad-state collects the properties get and put must satisfy:

2 Type variables that appear in the signature of locale parameters are fixed for the whole
locale. In particular, the value type α cannot be instantiated inside the locale monad or its
extension monad-fail. The interpreter eval, however, returns ints. For this reason, eval is defined
in an extension of monad-fail that merely specialises α to int. For readability, I usually omit
this detail in this article.

4

locale monad-state = monad+fixes get :: (σ⇒µ)⇒µ and put :: σ⇒µ⇒µ
assumes put-get : put s (get f) = put s (f s)

and get-get : get (λs. get (f s)) = get (λs. f s s)
and put-put : put s (put s′ m) = put s′ m
and get-put : get (λs. put s m) =m
and get-const : get (λ_. m) =m
and bind-get : get f >>= g = get (λs. f s>>= g)
and bind-put : put s m>>= f = put s (m>>= f)
The first four assumptions adapt Gibbons’ and Hinze’s axioms for the state

operations [7] to the new signature. The fifth, get-const, additionally specifies that
get can be discarded if the state is not used. The last two assumptions, bind-get
and bind-put, demand that get and put distribute over bind. In the conventional
value-polymorphic setting, where the continuations are applied using bind, these two
are subsumed by the monad laws. In the remainder of this paper, get and put always
take continuations.3

A state update function update can be implemented abstractly for all state monads.
Like put, update takes a continuation m.
definition (in monad-state) update :: (σ⇒σ)⇒µ⇒µ where
update f m= get (λs. put (f s) m)

The expected properties of update can be derived from monad-state’s assumptions by
term rewriting. For example,
lemma update-id : update id m=m

by (simp add : update-def get-put)
lemma update-update : update f (update g m) = update (g ◦f) m

by (simp add : update-def put-get put-put)
lemma update-bind : update f m>>= g = update f (m>>= g)

by (simp add : update-def bind-get bind-put)
As an example, I implement a memoisation operator memo using the state

operations. To that end, the state must be refined to a lookup table, which I model
as a map of type β⇀α= β⇒α option. The definition uses the function λt. t(x 7→y)
that takes a map t and updates it to associate x with y, leaving the other associations
as they are; formally, t(x 7→y) = (λx′. if x= x′ then Some y else t x′).
definition (in monad-state) memo :: (β⇒µ)⇒β⇒µ where
memo f x= get (λtable.

case table x of Some y⇒ return y
| None⇒ f x>>= (λy. update (λt. t(x 7→y)) (return y)))

A memoisation operator should satisfy the following three properties. First, it
evaluates the memoised function at most on the given argument, not on others. This
can be expressed as a congruence rule, which holds by memo’s definition:

3 Continuation parameters like get’s and put’s make it possible to circumvent the restriction
to monomorphic values. More generally, if we made every definition take a continuation, like
in continuation-passing style, we would regain value polymorphism. In doing so, we would
however lose that sequencing of computations and control flow is captured by a small number of
(primitive) operations. Instead, every definition could implement arbitrary control flow, like in a
continuation monad. Thus, we would need a lot more lemmas to reason about sequencing. In a
commutative monad, e.g., one commutativity lemma would be needed for every pair of definitions.
In contrast, my approach needs just one assumption comm to express commutativity of sequenc-
ing (§2.5), and a few assumptions about the primitive operations, e.g., sample-comm (§2.3).

5

lemma memo-cong : f x= g x−→memo f x= memo g x
Second, memoisation should be idempotent, i.e., if a function is already being

memoised, then there is no point in memoising it once more.
lemma memo-idem : memo (memo f) x= memo f x
The mechanised proof of memo-idem in Isabelle needs only two steps, which are
justified by term rewriting with the properties of the monad operations and the case
operator. Every assumption about get and put except get-put is needed. Appendix A
contains a step-by-step proof that illustrates reasoning with the algebraic monad
properties.

Third, the memoisation operator should indeed evaluate f on x at most once. As
memo f x memoises only the result of f x, but not the effect of evaluating f x, the
next lemma captures this correctness property. Its proof is similar to memo-idem’s.
lemma correct : memo f x>>= (λa. memo f x>>= g a) = memo f x>>= (λa.g a a)

2.3 Probabilistic Choice

Randomised computations are built from an operation ¢ for probabilistic choice. The
probabilities are specified using probability mass functions (type π pmf) [11], i.e., dis-
crete probability distributions. Binary probabilistic choice, which is often used in the
literature [6, 7, 30], is less general as it leads to finite distributions. Continuous distri-
butions would work, too, but they would require measurability conditions everywhere.

Like the state operations, ¢ :: π pmf⇒(π⇒µ)⇒µ takes a continuation to separate
the type of probabilistic choices π from the type of values. The locale monad-prob
assumes the following properties:
– sampling from the one-point distribution dirac x has no effect (sample-dirac),
– sequencing bindpmf in the probability monad yields sequencing (sample-bind),
– sampling can be discarded if the result is unused (sample-const),
– sampling from independent distributions commutes (sample-comm, independence

is expressed by p and q not taking y and x as an argument, respectively.)
– sampling is relationally parametric in the choices (sample-param), and
– sampling distributes over both sides of bind (bind-sample1, bind-sample2).

locale monad-prob = monad+fixes ¢ :: π pmf⇒ (π⇒µ)⇒µ
assumes sample-dirac : ¢ (dirac x) f = f x

and sample-bind : ¢ (bindpmf p f) g = ¢ p (λx. ¢ (f x) g)
and sample-const : ¢ p (λ_. m) =m
and sample-comm : ¢ p (λx. ¢ q (f x)) = ¢ q (λy. ¢ p (λx. f x y))
and sample-param : bi-unique R−→ (¢,¢) ∈ relpmf R Z⇒ (R Z⇒ (=)) Z⇒ (=)
and bind-sample1 : ¢ p f >>= g = ¢ p (λx. f x>>= g)
and bind-sample2 : m>>= (λx. ¢ p (f x)) = ¢ p (λy. m>>= (λx. f x y))

The assumption sample-param ensures that ¢ does not look at the identity of the
choices. This is expressed as a Reynolds-style parametricity condition [31] where
– R is a relation between the choices, where the condition bi-unique expresses that
R relates each choice with at most one choice, i.e., R does not identify choices;4

4 In my monad implementations in §3, sampling is relationally parametric for arbitrary
relations R, so I could drop the restriction bi-unique R. However, this would unnecessarily
exclude some other implementations as all my abstract proofs so far used only bi-unique relations.

6

– the relator relpmf lifts a relation on elementary events to probability distributions:
(p,q) ∈ relpmf A iff P [p ∈X] ≤ P [q ∈ {y | ∃x ∈X. (x,y) ∈A}] for all X, where
P [p ∈X] denotes the probability of the event X under the distribution p;

– the right-associative function relator A Z⇒B relates two functions f and g iff
(x,y) ∈A implies (f(x),g(y)) ∈B for all x and y; and

– (=) denotes the identity relation.

For example, consider two biased coins p1 and p2 that show heads with probabil-
ities r and 1− r, respectively. Then, it should not matter whether we flip p1 or p2
provided that we switch the actions for heads and tails. Formally, ¢ p1 f = ¢ p2 g
if f heads = g tails and f tails = g heads. This identity follows from sample-param
using R= {(heads, tails),(tails,heads)}.

Parametricity in particular ensures that ¢ p f calls the continuation f only on
values in p’s support5 supp p (take R= {(x,x) | x ∈ supp p} in sample-param):6

lemma (in monad-prob) sample-cong : (∀x ∈ supp p. f x= g x)−→ ¢ p f = ¢ p g
Binary probabilistic choice m1 C rBm2 can be defined in terms of ¢. It behaves

as m1 with probability r and as m2 with probability 1− r. For it to be well-behaved,
we must require that the type π of choices contains at least three choices, say À, Á,
and Â. Let flip r :: π pmf be the distribution that assigns probability r to À and 1−r
to Á. (The third choice Â is needed to prove the associativity law below.)

definition _C_B_ :: µ⇒ real⇒µ⇒µ where
m1 C rBm2 = ¢ (flip r) (λx. if x= À then m1 else m2)

From the monad-prob assumptions, I can derive Gibbons and Hinze’s specification [7].
All assumptions are used except sample-comm. Associativity crucially relies on
sample-param and the existence of a third choice Â as we must distribute the
probability over three computations, not just the two of the inner choice operator.

lemma choose-0 : mC0Bm′ =m′

lemma choose-1 : mC1Bm′ =m

lemma choose-idem : mC rBm=m

lemma choose-commute : mC1− rBm′ =m′ C rBm

lemma choose-bind : (mC rBm′)>>= f = (m>>= f)C rB (m′>>= f)
lemma bind-choose : m>>= (λx. f xC rBg x) = (m>>= f)C rB (m>>= g)
lemma choose-assoc : m1 CpB (m2 C qBm3) = (m1 C rBm2)CsBm3

if p= r ∗s and 1−s= (1−p)∗ (1− q)

2.4 Combining Abstract Monads

Formalising monads in this abstract way has the advantage that the different effects
can be easily combined. In the running example, suppose that the variables represent
independent random variables. Then, expressions are probabilistic computations
and evaluation computes the joint probability distribution. For example, if x1 and

5 The support of p is the set of elementary events with positive probability: x ∈ supp p iff
P [p ∈ {x}]> 0.

6 The conference paper [23] demanded sample-cong instead of sample-param. Parametricity
is a better condition as it allows us to rename choices like in the biased coin flip example above.

7

x2 represent coin flips with 1 representing heads and 0 tails, then Var x1⊕Var x2
represents the probability distribution of the number of heads.

Here is a first attempt. Let X :: ν⇒ int pmf specify the distribution X x for each
random variable x. Combining the locales for failures and probabilistic choice, we let
the variable environment do the sampling, where sample-var X x= ¢ (X x) return:
locale monad-fail-prob = monad-fail+monad-prob
definition (in monad-fail-prob) wrong :: (ν⇒ int pmf)⇒ν exp⇒µ where
wrong X e= eval (sample-var X) e

As the name suggests, wrong does not achieve what was intended. If a variable
occurs multiple times in e, say e= Var x⊕Var x, then wrong X e samples x afresh
for each occurrence. So, if X x = uniform {0,1}, i.e., x is a coin flip, wrong X e
computes the probability distribution given by 0 7→ 1/4,1 7→ 1/2,2 7→ 1/4 instead of
0 7→ 1/2,2 7→ 1/2. Clearly, every variable should be sampled at most once. Memoising
the variable evaluation achieves that. So, we additionally need state operations.

locale monad-fail-prob-state = monad-fail-prob+monad-state+
assumes sample-get : ¢ p (λx. get (f x)) = get (λs. ¢ p (λx. f x s))

definition (in monad-fail-prob-state) lazy :: (ν⇒ int pmf)⇒ν exp⇒µ where
lazy X e= eval (memo (sample-var X)) e

The interpreter lazy samples a variable only when needed. For example, in e0 = (Const 1
�Const 0)⊕Var x0, the division by zero makes the evaluation fail before x0 is sampled.

The locale monad-fail-prob-state adds an assumption that ¢ distributes over get.
Such distributivity assumptions are typically needed because of the continuation
parameters, which break the separation between effects and sequencing. Their format
is as follows: If two operations f1 and f2 with continuations do not interact, then we
assume f1 (λx. f2 (g x)) = f2 (λy. f1 (λx. g x y)). Sometimes, such assumptions follow
from existing assumptions. For example, sample-put follows from bind-sample2
and put s m= put s (return x)>>m for all x. A similar law holds for update.
lemma sample-put : ¢ p (λx. put s (f x)) = put s (¢ p f)

In contrast, sample-get does not follow from the other assumptions due to the
restriction to monomorphic values. The state of type σ, which get passes to its
continuation, may carry more information than a value can hold. Indeed, in the case
of lazy, the type int of values is countable, but the state type ν⇀ int is not if the
type of variables is infinite. As put passes no information to its continuation, put’s
continuation can be pushed into bind as shown above. Still, put needs its continuation;
otherwise, it would have to create a return value out of nothing, which would cause
problems later (§4). Moreover, there is no need to explicitly specify how fail interacts
with get and ¢ as get (λ_. fail) = fail and ¢ p (λ_. fail) = fail are special cases of
get-const and sample-const.

Instead of lazy sampling, we can also sample all variables eagerly. Let vars e return
the (finite) set of variables in e. Then, the interpreter eager with eager sampling is
defined as follows (all three definitions live in the locale monad-fail-prob-state):
definition sample-vars :: (ν⇒ int pmf)⇒ν set⇒µ⇒µ where
sample-vars X A m= fold (λx m. memo (sample-var X) x>>m) m A

definition lookup :: ν⇒µ where
lookup x= get (λs. case s x of None⇒ fail | Some i⇒ return i)

8

definition eager :: (ν⇒ int pmf)⇒ν exp⇒µ where
eager X e= sample-vars X (vars e) (eval lookup e)

where fold is the fold operator for finite sets [28]. The operator fold h requires that the
folding function h is left-commutative, i.e., h x (h y z) = h y (h x z) for all x, y, and
z. In our case, h = λx m. memo (sample-var X) x>>m is left-commutative by the
following lemma about memo whose assumptions hold for f = sample-var X thanks
to return-bind, bind-sample1, bind-sample2, and sample-get. Moreover, by
correct, it is also idempotent, i.e., h x◦h x= h x.
lemma memo-commute :

(∀m x g. m>>= (λa. f x>>= g a) = f x>>= (λb. m>>= (λa. g a b)))
−→ (∀x g. get (λs. f x>>= g s) = f x>>= (λa. get (λs. g s a)))
−→memo f x>>= (λa. memo f y>>= (λb. g a b)) =

memo f y>>= (λb. memo f x>>= (λa. g a b))
This lemma and correct illustrate the typical form of monadic statements. The

assumptions and conclusions take a continuation g for the remainder of the program.
This way, the statements are easier to apply because they are in normal form with
respect to bind-assoc. This observation also holds in a value-polymorphic setting.

Now, the question is whether eager and lazy sampling are equivalent. In general,
the answer is no. For example, for e0 from above, eager X e0 samples and memoises
the variable x0, but lazy X e0 does not. Thus, there are contexts that distinguish the
two. If we extend monad-fail-prob-state with exception handling from monad-catch
such that get and put never fail,
catch-get : catch (get f) m2 = get (λs. catch (f s) m2)
catch-put : catch (put s m) m2 = put s (catch m m2)
then the two can be distinguished:

catch (lazy X e0) (lookup x0) = fail
catch (eager X e0) (lookup x0) = memo (sample-var X) x0

In contrast, if we assume that failures erase state updates, then the two are equivalent:
theorem lazy-eager : (∀s. put s fail = fail)−→ lazy X e= eager X e

Proof The proof consists of three steps proven by induction on e. First, by idempotence
and left-commutativity, sample-vars X V commutes with lazy X e for any finite V :

∀g. sample-vars X V (lazy X e>>= g) = lazy X e>>= (λi. sample-vars X V (g i)) (1)

Here, put s fail = fail ensures that all state updates are lost if a division by zero occurs.
The next two steps will use (1) in the inductive cases for ⊕ and � to bring together
the sampling of the variables and the evaluation of the subexpressions. Second,

lazy X e>>= g = sample-vars X (vars e) (lazy X e>>= g) (2)

shows that the sampling can be done first, which holds by correct. Finally,

sample-vars X V (lazy X e>>= g) = sample-vars X V (eval lookup e>>= g) (3)

holds for any finite set V with vars e⊆ V . Here, Var x is the interesting case, which
follows from ∀g. memo f x>>= (λi. lookup x>>= g i) = memo f x>>= (λi. g i i) and
correct. Taking V = vars e and g = return, (2) and (3) prove the theorem. ut

In §3.6, I show that some monads satisfy lazy-eager’s assumption, but not all.

9

2.5 Abstract Monad Properties

Some monad transformer implementations require that the transformed monad
satisfies additional properties. I consider three properties, which I formalise as locales:
– A monad is commutative if independent computations can be reordered.
– A monad is discardable if we may drop a computation whose result is not used.
– A monad is duplicable if a computation may be duplicated.

locale monad-comm = monad+
assumes comm : m1>>= (λx. m2>>= f x) =m2>>= (λy. m1>>= (λx. f x y))

locale monad-discard = monad+
assumes discard : m1>>m2 =m2

locale monad-dup = monad+
assumes dup : m>>= (λx. m>>= f x) =m>>= (λx. f x x)

2.6 Further Abstract Monads

Apart from exceptions, state, and probabilistic choice, I have formalised specifica-
tions for the following effects. I only present them to the level of detail needed for
understanding the remainder of this paper.

Non-determinism. Non-determinism is often used in specification where implementa-
tion choices are unspecified; implementations can then refine the non-determinism
[1,19]. Backtracking can also be implemented elegantly using non-deterministic choice
and failure [33]. I specify two choice operators: binary alt :: µ⇒µ⇒µ and countable
altc :: χ cset⇒ (χ⇒µ)⇒µ where the type χ cset consists of all countable sets over χ.
Unbounded choice would be similar to countable choice. Their specification is similar
to probabilities, but I demand less to allow more implementations in §3.5. The laws
for alt are taken from Gibbons and Hinze [7].
locale monad-alt = monad return bind+fixes alt :: µ⇒µ⇒µ

assumes alt-assoc : alt (alt m1 m2) m3 = alt m1 (alt m2 m3)
and alt-bind : alt m m′>>= f = alt (m>>= f) (m′>>= f)

locale monad-altc = monad return bind+fixes altc :: χ cset⇒ (α⇒µ)⇒µ
assumes altc-bind : altc C f >>= g = altcC (λc. f c>>= g)

and altc-single : altc {x} f = f x
and altc-Union : altc (

⋃
c∈C g c) f = altc C (λc. altc (f c) g)

and alt-param : bi-unique R−→ (altc,altc) ∈ relcset R Z⇒ (R Z⇒ (=)) Z⇒ (=)

Reader and writer monads. The reader monad makes it possible to pass immutable
data to (many) functions without threading the parameter through. For example, a
security parameter in cryptography is typically hidden in pen-and-paper notation and
a reader monad achieves the same in a formalisation. Environments, e.g., variable
bindings, are also good candidates for a reader monad. The operation ask :: (ρ⇒µ)⇒µ
retrieves the data of type ρ.

The writer monad allows programs to output data in several steps using tell ::
ω⇒µ⇒µ. Unlike updates in the state monad, outputs cannot be made undone. It is
in particular suitable for logging.

10

Resumption. Resumptions provide a semantic domain for reactive and concurrent
programs [9,29]. The primitive operation pause :: o⇒ (ι⇒µ)⇒µ interrupts a com-
putation to output a value of type o and waits for some input of type ι before the
computation resumes.

3 Implementations of Monads and Monad Transformers

In the previous section, I specified the properties of monadic operations abstractly.
Now, I provide monad implementations that satisfy these specifications. Some effects
are implemented as monad transformers [20,26], which allow me to compose imple-
mentations of different effects almost as modularly as the locales specifying them
abstractly. In particular, I analyse whether the transformers preserve the specifications
of the other effects. All implementations are polymorphic in the values such that they
can be used with any value type, although by the value-monomorphism restriction,
each usage must individually commit to one value type.

3.1 The Identity Monad

The simplest monad implementation in my library is the identity monad ident, which
models the absence of all effects. It is not really useful in itself, but will be an
important building block when combining monads using transformers. The datatype
α ident is a copy of α with constructor Ident and selector run-ident. To distinguish
the abstract monad operations from their implementations, I subscript the latter
with the implementation type. The lemma states that returnident and bindident satisfy
the assumption of the locale monad. Moreover, the identity monad is commutative,
discardable, and duplicable.

datatype α ident = Ident (run-ident : α)
definition returnident :: α⇒α ident where returnident = Ident
definition bindident :: α ident⇒ (α⇒α ident)⇒α ident where
m>>=ident f = f (run-ident m)

lemma monad returnident bindident

3.2 The Probability Monad

The probability monad α prob is another basic building block. I use discrete probability
distributions [11] and Giry’s probability monad operations dirac and bindpmf, which I
already used in the abstract specification in §2.3. Then, probabilistic choice ¢prob is just
monadic sequencing on α pmf. The probability monad is commutative and discardable.

type-synonym α prob = α pmf
definition returnprob :: α⇒α prob where returnprob = dirac
definition bindprob :: α prob⇒(α⇒α prob)⇒α prob wherebindprob = bindpmf
definition ¢prob :: π pmf⇒ (π⇒α prob)⇒α prob where ¢prob = bindpmf

lemma monad-prob returnprob bindprob ¢prob

11

3.3 The Failure and Exception Monad Transformer

Failures and exception handling are implemented as a monad transformer. Thus,
these effects can be added to any monad τ . In the value-polymorphic setting, the
failure monad transformer takes a monad τ and defines a type constructor failT such
that β failT is isomorphic to (β option) τ . That is, the transformer specialises the
value type α of the inner monad to β option. In the value-monomorphic setting, the
type variable µ represents the application of τ to the value type, i.e., β option. So,
µ failT is just a copy of µ:

datatype µ failT = FailT (run-fail : µ)

As failT’s operations depend on the inner monad, I fix abstract operations return
and bind in an unnamed context and define failT’s operations in terms of them. The
line on the left indicates the scope of the context. At the end, which is marked by ,
the fixed operations become additional arguments of the defined functions. Values in
the inner monad now have type α option. The definitions themselves are standard [26].

context fixes return :: α option⇒µ and bind :: µ⇒ (α option⇒µ)⇒µ

definition returnfailT :: α⇒µ failT where
returnfailT x= FailT (return (Some x))

definition bindfailT :: µ failT⇒ (α⇒µ failT)⇒µ failT where
m>>=failT f = FailT (run-fail m>>=

(λx. case x of None⇒ return None | Some y⇒ run-fail (f y)))
definition failfailT :: µ failT where failfailT = FailT (return None)
definition catchfailT :: µ failT⇒µ failT⇒µ failT where

catchfailT m1 m2 = FailT (run-fail m1>>=
(λx. case x of None⇒ run-fail m2 | Some _⇒ return x))

If return and bind form a monad, so do returnfailT and bindfailT, and failfailT and
catchfailT satisfy the effect specification from §2.1, too. The next lemma expresses
this.

lemma monad-catch returnfailT bindfailT failfailT catchfailT
if monad return bind

The monad µ failT is

– commutative if the inner monad µ is commutative and discardable;
– duplicable if µ is duplicable and discardable; and
– not discardable, e.g., failfailT>> returnfailT x= failfailT 6= returnfailT x.

Clearly, I want to keep using the existing effects of the inner monad. So, I must
lift their operations to failT and prove that their specifications are preserved. The
lifting is not hard; the continuations of the operations are transformed in the same
way as bindfailT transforms its continuation. Here, I only show how to lift the state
operations, where the locale monad-catch-state extends monad-catch and monad-state
with catch-get and catch-put. Moreover, failT also lifts ¢, alt, altc, ask, tell, and
pause, preserving their specifications.

12

context fixes get :: (σ⇒µ)⇒µ and put :: σ⇒µ⇒µ

definition getfailT :: (σ⇒µ failT)⇒µ failT where
getfailT f = FailT (get (λs. run-fail (f s)))

definition putfailT :: σ⇒µ failT⇒µ failT where
putfailT s m= FailT (put s (run-fail m))

lemma monad-catch-state returnfailT bindfailT failfailT catchfailT getfailT putfailT
if monad-state return bind get put

From now on, as the context scope has ended, returnfailT and bindfailT take the
inner monad’s operations return and bind as additional arguments. For example,
I obtain a plain failure monad by applying failT to ident. Interpreting the locale
monad-fail for returnF = returnfailT returnident and bindF = bindfailT returnident bindident
and failF = failfailT returnident yields an executable version of the interpreter eval from
§2.1, which I refer to as evalF. Then, Isabelle’s code generator and simplifier both
evaluate

evalF (λx. returnF (((λ_. 0)(x0 := 5)) x)) (Var x0⊕Const 7)

to FailT (Ident (Some 12)). Given some variable environment Y :: ν⇒ int,7 I obtain a
textbook-style interpreter [27, §3.1.2] as run-ident (run-fail (evalF (returnF ◦Y) e)).

3.4 The State Monad Transformer

The state monad transformer adds the effects of a state monad to some inner
monad. The formalisation follows the same ideas as for failT, so I only mention the
important points. The state monad transformer transforms a monad α τ into the
type σ⇒ (α×σ) τ where σ is the type of states. So, in HOL, the type of values of
the inner monad becomes α×σ and µ represents (α×σ) τ .

datatype (σ,µ) stateT = StateT (run-state : σ⇒µ)

Like for failT, the state monad operations returnstateT and bindstate depend on inner
monad operations return and bind. With getstateT and putstateT defined in the obvious
way, the transformer satisfies the specification monad-state for state monads.

context fixes return :: α×σ⇒µ and bind :: µ⇒ (α×σ⇒µ)⇒µ

definition returnstateT :: α⇒ (σ,µ) stateT where
returnstateT x= StateT (λs. return (x,s))

definition bindstateT :: (σ,µ)stateT⇒ (α⇒ (σ,µ)stateT)⇒ (σ,µ)stateT where
m>>=stateT f = StateT (λs. run-state f s>>= (λ(x,s′). run-state (f x) s′))

definition getstateT :: (σ⇒ (σ,µ) stateT)⇒ (σ,µ) stateT where
getstateT f = StateT (λs. run-state (f s) s)

definition putstateT :: σ⇒ (σ,µ) stateT⇒ (σ,µ) stateT where
putstateT s m= StateT (λ_. run-state m s)

lemma monad-state returnstateT bindstateT getstateT putstateT
if monad return bind

7 Such environments can be nicely handled by adding a reader monad transformer (§4).

13

The state monad transformer lifts the other effect operations fail, ¢, ask, tell, alt,
altc, and pause according to their specifications. But catch cannot be lifted through
stateT such that catch-get and catch-put hold. As our exceptions carry no informa-
tion, the inner monad cannot pass the state updates before the failure to the handler.

3.5 The Non-determinism Transformers

Non-determinism can be modelled by a collection type like lists, multisets, and sets.
Thanks to value monomorphism, I can abstract over the collection type and provide
one generic implementation. Later, I will obtain four implementations based on finite
lists, finite multisets, finite sets, and countable sets by instantiation. Being finite, the
first three only support binary non-deterministic choice alt, whereas countable sets
additionally implement countable choice altc. Moreover, they all have an “empty”
value—the empty list or (multi-)set—which can model failure. All implementations
therefore provide a fail operation, which is the neutral element for nondeterministic
choice: alt fail m = m = alt m fail. As I will discuss below, the different collection
types impose different requirements on the inner monad.

The generic non-determinism transformer ndT changes the inner monad’s value
type from α to a collection of α, which I model by the type variable ζ. Thus, the
inner monad’s return operation has type ζ⇒µ and bind has type µ⇒ (ζ⇒µ)⇒µ.
Similar to the other monad transformers, the bindndT operation must first swap the
inner monad constructor with the collection type constructor such that it can use
the inner monad’s bind operation. In my monomorphic setting, I model the swap as
a merge operation with type ζ⇒ (α⇒µ)⇒µ. It takes a collection C of values and a
family f of non-deterministic computations indexed by C and merges all their effects
and values into one computation. Moreover, I also need operations empty, single,
and union (written infix as t) to construct collections, as I have abstracted over the
concrete type. The locale nondetM captures these operations and their properties:
– The inner monad must be commutative (extension of the locale monad-comm).
– The second argument to merge plays a role similar to the continuation arguments

of other effect operations like get and ¢. Therefore, merge must respect the monad
laws (merge-bind and merge-return).

– merge combines the effects of a computation family as expected for the collection
operations (merge-empty, merge-single, merge-union).

– The collection operations form a monoid, i.e., union is associative and empty the
neutral element (monoid).

datatype µ ndT = NdT (run-nd : µ)
locale nondetM = monad-comm return bind+

fixes merge :: ζ⇒ (α⇒µ)⇒µ
and empty :: ζ and single :: α⇒ ζ and union :: ζ⇒ ζ⇒ ζ (infixl t)

assumes merge-bind :
merge C f >>= (λC′. merge C′ g) = merge C (λx. f x>>= (λC′. merge C′ g))

and merge-return : merge C (λx. return (single x)) = return C
and merge-empty : merge empty f = return empty
and merge-single : merge (single x) f = f x
and merge-union :
merge (C tC′) f = merge C f >>= (λA. merge C′ f >>= (λA′. return (AtA′)))

and monoid : monoid union empty

14

I can now implement the monad operations for the non-determinism transformer for
binary choice. Commutativity of the inner monad is needed only for alt-bind.
definition returnndT :: α⇒µ ndT where

returnndT x= return (single x)
definition bindndT :: µ ndT⇒ (α⇒µ ndT)⇒µ ndT where
m>>=ndT f = NdT (run-nd m>>= (λC. merge C (run-nd◦f)))

definition altndT :: µ ndT⇒µ ndT⇒µ ndT where
altndT m1 m2 = NdT (run-nd m1>>= (λC1. run-nd m2>>= (λC2. return (C1tC2))))

definition failndT :: µ ndT where
failndT = return empty

lemma monad-alt returnndT bindndT altndT and monad-fail returnndT bindndT failndT

Most other effect operations lift through ndT as usual, except for catch and ¢. As altndT
absorbs failndT, failures cannot be caught. For ¢, bind-sample2 cannot be preserved:
on the left-hand side, sampling from p is done independently for every possible result
of m whereas on the right-hand side, the same sample y is used for all of m’s results.

Countable choice altcndT requires a bit more. Ideally, we could use merge to
combine all the effects of countable choice, but the monomorphism restriction does
not allow this: merge combines a family of computations indexed by a collection of
values, whereas altcndT must merge a family indexed by a countable set of choices.
Like for probabilistic choices in §2.3, I do not want to unify the value type α with the
choice type χ. I therefore fix another operation merge′ :: χ cset⇒ (χ⇒µ)⇒µ and its
appropriate properties. Then, I get
definition altcndT :: χ cset⇒ (χ⇒µ)⇒µ where

altcndT C f = NdT (merge′ C (run-nd◦f))
lemma monad-altc returnndT bindndT altcndT

Like for probabilistic sampling in §2.3, binary choice altndT can be expressed using
countable choice altcndT if the choice type χ contains at least three elements.

I have instantiated the generic implementation for four collection types: finite
lists, finite multisets, finite sets, and countable sets. The first three are similar: The
operations empty and single are obviously the empty and singleton list or (multi-)set,
and union is list concatenation or (multi-)set union. Since the three collection types
are all finite, merge is implemented by folding binary choice over the collection,
starting with empty as the neutral element. For lists, e.g., I define mergelist C f =
foldr (λm1 m2. m1>>= (λA. m2>>= (λB. return (A++B)))) (return []) (map f C),
where foldr and map are the well-known functions on lists.

The requirements on the inner monad are as follows: Lists and multisets need a
commutative monad, and finite sets need a commutative and duplicable monad. From
a reasoning perspecitive, the list implementation is therefore inferior to multisets:
they both require a commutative inner monad, but multisets satify more laws than
lists. For example, altmultiset ndT is commutative, but altlist ndT is not. Conversely,
from a programming perspective, the lack of commutativity allows a programmer to
specify preferences among the alternatives, which cannot be done with (multi-)sets.

The finite set implementation is commutative if the inner monad is additionally
discardable. Lists and multisets are not commutative for cardinality reasons. All
implementations are neither discardable (because of failndT) nor duplicable (because
choices need not be made consistently.)

15

For countable sets, the inner monad must be commutative and duplicable. Yet, we
cannot implement mergecset (or merge′

cset) using the operations of the inner monad as
there is no “limit” operation to deal with infinite sets. Instead, I treat mergecset like an-
other effect operation that monads can implement and transformers lift. Among the im-
plementations, only the identity monad from §3.1 and the reader and failure transform-
ers from §3.7 and §3.3 meet the commutativity and duplicatibility requirement. I have
implemented the merge operations only for the identity monad and the reader trans-
former. Lifting fails for the failure transformer because the failure operation from the
non-determinism transformer is incompatible with failure from the failure transformer.

3.6 Composing Monads with Transformers

Composing the two monad transformers failT and stateT with the monad prob, I can
now instantiate the probabilistic interpreter from §2.4. As is well known, the order of
composition matters. If I first apply failT to prob and then stateT (SFP for short), the
resulting interpreter evalSFP E e :: (ν⇀ int,(int× (ν⇀ int)) option prob failT) stateT
nests the result state of type ν⇀ int inside the option type for failures, i.e., failures
do not return a new state. Thus, failures erase state updates, i.e., putSFP s failSFP =
failSFP, and lazy and eager sampling are equivalent (lazy-eager). Conversely, if I
apply failT after stateT to prob (FSP for short), then evalFSP E e :: (ν⇀ int,(int option
× (ν⇀ int)) prob) stateT failT and failures do return a new state as only the result
type int sits inside option. In particular, putFSP s failFSP 6= failFSP in general, and
lazy and eager sampling are not equivalent. I will consider the SFP case further in §4.

If we are interested in a non-deterministic rather than a probabilistic interpreter,
then we can use the non-determinism monad transformer instead, say with countable
choice. So let us compose countable choice cset ndT and stateT with the identity monad
ident (SNI for short; the order NSI is not sensible as the non-determinism transformer
should not be applied to a non-commutative state monad). Note that no failure
transformer shows up in the composition as the non-determinism transformer already
provides a failure operation. Failure therefore behaves differently from the probabilistic
case. For example, I can define a lazy evaluator like in the probabilisitic case by using
choose-var X x = altc (X x) return instead of sample-var. Consider the expression
e=Const 2�Var x0. Running lazySNI X e in the initial state empty= (λ_. None) with
X x= {0,1} yields only one possible outcome 2, which results from choosing 1 for x0.
Choosing 0 for x0 results in a division by 0, i.e., a failure, and failures in ndT are silently
ignored. In contrast, in the SFP monad, lazySFP X ′ e with X ′ x= uniform {0,1} gives
a uniform distribution over two outcomes: failure and 2. The SFP behaviour can be
recovered by sandwiching a failure transformer between the state and non-determinism
transformers (SFNI). Then, lazySFNI X e also produces both outcomes, failure and 2.

3.7 Further Monads and Monad Transformers

Apart from the monad implementations presented so far, my library provides imple-
mentations for the other types of effects mentioned in §2.6. In particular, I define
a reader (readT) and a writer monad transformer. The reader monad transformer
differs from stateT only in that no updates are possible. Thus, (ρ,µ) readT leaves the
type of values of the inner monad unchanged, as no new state must be returned.

16

datatype (ρ,µ) readT = ReadT (run-read : ρ⇒µ)
context fixes return :: α⇒µ and bind :: µ⇒ (α⇒µ)⇒µ

definition returnreadT :: α⇒ (ρ,µ) readT where
returnreadT x= ReadT (λ_. return x)

definition bindreadT :: (ρ,µ) readT⇒ (α⇒ (ρ,µ) readT)⇒ (ρ,µ) readTwhere
m>>=readT f = ReadT (λr. run-read m r>>= (λx. run-read (f x) r))

definition askreadT :: (ρ⇒ (ρ,µ) readT)⇒ (ρ,µ) readT where
askreadT f = ReadT (λr. run-read (f r) r)

definition failreadT :: (µ⇒ (ρ,µ) readT) where failreadT fail = ReadT (λ_. fail)

Resumptions are formalised as a plain monad using the codatatype

codatatype (o, ι,α) resumption = Done α | Pause o (ι⇒ (o, ι,α) resumption)

Unfortunately, I cannot define resumptions as a monad transformer in HOL despite
the restriction to monomorphic values. The reason is that for a transformer with inner
monad τ , the second argument of the constructor Pause would have to be of type ι⇒
(o, ι,α) resumption τ , i.e., the codatatype would recurse through the unspecified type
constructor τ . This is not supported by Isabelle’s codatatype package [3] and, in fact,
for some choices of τ , e.g., unbounded nondeterminism, the resumption transformer
type does not exist in HOL at all. For the same reason, we cannot have other monad
transformers that have similar recursive implementation types. Therefore, I fail to
modularly construct all combinations of effects. For example, probabilistic resumptions
with failures [22] are out of reach and must still be constructed from scratch.

3.8 Overloading the Monad Operations

When several monad transformers are composed, the monad operations quickly
become large HOL terms as the transformer’s operations take the inner monad’s as
explicit arguments. These large terms must be handled by the inference kernel, the
type checker, the parser, and the pretty-printer, even if locale interpretations hide
them from the user using abbreviations. To improve readability and the processing
time of Isabelle, my library also defines the operations as single constants which are
overloaded for the different monad implementations using recursion on types [35]. As
overloading does not need these explicit arguments, it avoids the processing times
for unification, type checking, and (un)folding of abbreviations. Yet, Isabelle’s check
against cyclic definitions [18] fails to see that the resulting dependencies must be
acyclic (as the inner monad is always a type argument of the outer monad). So, I
moved these overloaded definitions to a separate file and marked them as unchecked.8
Overloading is just a syntactic convenience, on which the library and the examples in
this paper do not rely. If users want to use it, they are responsible for not exploiting
these unchecked dependencies.

8 Isabelle’s adhoc-overloading feature, which resolves overloading during type checking,
cannot be used either as it does not support recursive resolutions. For example, resolving return ::
α⇒α option ident failT takes two steps: first to returnfailT return and then to returnfailT returnident.
The second step fails due to the intricate interleaving of type checking and resolution. Even
if this is just an implementation issue, resolving overloading during type checking prevents
definitions that are generic in the monad, which general overloading supports.

17

4 Moving Between Monad Instances

Once all variables have been sampled eagerly, the evaluation of the expression itself
is deterministic. Thus, the actual evaluation need not be done in a monad as complex
as FSP or SFP. It suffices to work in a reader-failure monad with operations fail and
ask, which I obtain by applying the monad transformers readT and failT to ident (RFI
for short). Such simpler monads have the advantage that reasoning becomes easier as
more laws hold. I now explain how the theory of representation independence [25]
can be used to move between different monad instances by going from SFP to RFI.
This ultimately yields a theorem that characterises evalSFP in terms of evalRFI. So,
in general, this approach makes it possible to switch in the middle of a bigger proof
from a complicated monad to a much simpler one.

Let me first deal with sampling. To go from α prob to β ident, I use a relation
IP(A) between α ident and β prob since relations work better with higher-order
functions than equations. Following Huffman and Kunčar [14], I call such a relation
a correspondence relation. IP(A) is parametrised by a relation A between the values,
which I will use later to express the differences in the values due to the monad
transformers changing the value type of the inner monad. In detail, IP(A) relates
a value Ident x to the one-point distribution dirac y iff A relates x to y. Then, the
monad operations of ident and prob respect this relation. Respectfulness is formalised
using the function relator A Z⇒B, which was already used in §2.3 for parametricity.
The following two conditions express that the monad operations respect IP(A):
– (returnident, returnprob) ∈A Z⇒ IP(A) and
– (bindident,bindprob) ∈ IP(A) Z⇒ (A Z⇒ IP(A)) Z⇒ IP(A).

Note the similarity between the relations and the types of the monad operations, where
A and IP take the roles of the type variables for values and of the monad type construc-
tor, respectively. As the monad transformers failT and stateT are relationally paramet-
ric in the inner monad and eval is parametric in the monad, I prove the following rela-
tion between the evaluators automatically using Isabelle/HOL’s Transfer prover [14]

(evalSFP lookupSFP e,evalSFI lookupSFI e) ∈ relstateT (relfailT (IP(=))) (4)

where SFI refers to the state-failure-identity composition of monads, and relstateT
and relfailT are the relators for the datatypes stateT and failT [3]. Formally, the
relators lift relations on the inner monad to relations on the transformed monad. For
example, (m1,m2) ∈ relstateT M iff (run-state m1 s, run-state m2 s) ∈M for all s, and
(m1,m2) ∈ relfailT M iff (run-fail m1, run-fail m2) ∈M . Intuitively, (4) states that in
the monads SFP and SFI, eval behaves the same with respect to states updates and
failure and the results are the same; in particular, the evaluation is deterministic.

In the following, I use the property of a relator rel that if M is the graph Gr f of a
function f , then rel M is the graph of the function map f , where map is the canonical
map function for the relator. For example, mapfailT f = FailT◦f ◦ run-fail, so

relfailT (Gr f) = Gr (mapfailT f) (5)

where (x,y) ∈ Gr f iff f x = y. Isabelle’s datatype package automatically proves
these relator-graph identities. The correspondence relation IP satisfies a similar law:
IP(Gr f) = Gr (mapIP f) where mapIP f = dirac◦f ◦ run-ident.

Having eliminated probabilities, I next switch from the state monad transformer
to the reader monad transformer. I again define a correspondence relation RS(s,M)
between readT and stateT. It takes as parameters the environment s and the cor-

18

respondence relation M between the inner monads. It relates the two monadic
values m1 and m2 iff M relates the results of running m1 and m2 on s, i.e.,
(run-read m1 s, run-state m2 s) ∈M . Again, I show that the monad operations re-
spect RS(s,M) as formalised below. As readT and stateT are monad transformers,
I assume that the operations of the inner monads respect M . These assumptions
can be expressed using Z⇒ since the inner operations are arguments to readT’s and
stateT’s operations. Here, AC×s adapts the relation A on values to stateT’s change
of the value type from α to α×σ; (x,(y,s′)) ∈AC×s iff (x,y) ∈A and s′ = s, i.e., A
relates the results and the state is not updated.
– (returnreadT, returnstateT) ∈ (AC×s Z⇒M) Z⇒A Z⇒RS(s,M),
– (bindreadT,bindstateT) ∈

(M Z⇒ (AC×s Z⇒M) Z⇒M) Z⇒RS(s,M) Z⇒ (A Z⇒RS(s,M)) Z⇒RS(s,M),
– (askreadT,getstateT) ∈ ({(s,s)} Z⇒RS(s,M)) Z⇒RS(s,M), and
– (failreadT, failstateT) ∈M Z⇒RS(s,M),

Then, by representation independence, the Transfer package automatically proves
the following relation between evalRFI and evalSFI, where lookupRFI uses askreadT
instead of getstateT, and relident and reloption are the relators for the datatypes ident
and option.

(evalRFI lookupRFI e,evalSFI lookupSFI e) ∈ RS(s, relfailT (relident (reloption (=C×s))))

This says that running eval in RFI and SFI computes the same result, has the same
behaviour with respect to state queries and failures, and does not update the state.

Actually, I can go from SFP directly to RFI, without the monad SFI as a stepping
stone, thanks to IP taking a relation on the value types:

(evalRFI lookupRFI e,evalSFP lookupSFP e) ∈ RS(s, relfailT (IP(reloption (=C×s)))) (6)

As =C×s is the graph of λa. (a,s), using only the graph properties like (5) of IP and the
relators, and using RS’s definition, I derive the characterisation of evalSFP from (6):
run-state (evalSFP lookupSFP e) s=

mapfailT (mapIP (mapoption (λa. (a,s)))) (run-read (evalRFI lookupRFI e) s)
where mapfailT and mapoption are the canonical map functions for failT and option.
Thus, instead of reasoning about evalSFP in SFP, I can conduct the proofs in the
simpler monad RFI. For example, as RFI is commutative, subexpressions can be
evaluated in any order. Thus, I get the following identity expressing the reversed
evaluation order (and a similar one for �).9

evalRFIE (e1⊕e2) = evalRFIEe2>>=RFI (λj.evalRFIEe1>>=RFI (λi. returnRFI (i+ j)))

In summary, I have demonstrated a generic approach to switch from a complicated
monad to a much simpler one. Conceptually, the correspondence relations IP and RS
just embed one monad or monad transformer (ident and readT) in a richer one (prob
and stateT). It is precisely this embedding that ultimately yields the map functions
in the characterisation. In this functional view, the respectfulness conditions express
that the embedding is a monad homomorphism. Yet, I use relations for the embedding
instead of functions because only relations work for higher-order operations in a
compositional way.

9 Following the “as abstract as possible” spirit of this paper, I actually proved the identities in
the locale of commutative monads and showed that readT is commutative if its inner monad is.

19

The reader may wonder why I go through all the trouble of defining correspondence
relations and showing respectfulness and parametricity. Indeed, in this example, it
would probably have been easier to simply perform an induction over expressions and
prove the equation directly. The advantage of my approach is that it does not rely on
the concrete definition of eval. It suffices to know that eval is parametric in the monad,
which Isabelle derives automatically from the definition. This automated approach
therefore scales to arbitrarily complicated monadic functions whereas induction proofs
do not. Moreover, note that the correspondence relations and respectfulness lemmas
only depend on the monads. They can therefore be reused for other monadic functions.

5 Related work

Huffman et al. [13, 15] formalise the concept of value-polymorphic monads and
several monad transformers in Isabelle/HOLCF, the domain theory library of Isa-
belle/HOL. They circumvent HOL’s type system restrictions by projecting everything
into HOLCF’s universal domain of computable values. That is, they trade in HOL’s
set-theoretic model with its simple reasoning rules for a domain-theoretic model with
ubiquituous ⊥ values and strictness side conditions. This way, they can define a
resumption monad transformer (for computable continuations). Being tied to domain
theory, their library cannot be used to model effects of plain HOL functions, which is
my goal, the strictness assumptions make their laws and proofs more complicated
than mine, and functions defined with HOLCF do not work with Isabelle’s code
generator. Still, their idea of projecting everything into a universal type could also
be adapted to plain HOL, albeit only for a restricted class of monads; achieving a
similar level of automation and modularity would require a lot more effort than my
approach, which uses only existing Isabelle features.

Gibbons and Hinze [7] axiomatize monads and effects using Haskell-style type
constructor classes and use the algebraic specification to prove identities between
Haskell programs, similar to my abstract locales in §2. Their specification of state
effects omits get-const, but they later assume that it holds [7, §10.2]. Being
value-polymorphic, their operations do not need my continuations and the laws
are therefore simpler. In particular, no new assumptions are typically needed when
monad specifications are combined. In contrast, my continuations sometimes require
interaction assumptions like sample-get. Gibbons and Hinze only consider reasoning
in the abstract setting and do not discuss the transition to concrete implementations
and the relations between implementations. Also, they do not prove that monad
implementations satisfy their specifications. Later, Jeuring et al. [17] showed that the
implementations in Haskell do not satisfy them because of strictness issues similar to
the ones in Huffman’s work.

Lobo Vesga [21] formalised some of Gibbons’ and Hinze’s examples in Agda.
She does not need assumptions for the continuations like I do as value-polymorphic
monads can be directly expressed in Agda. Like Gibbons and Hinze, she does not
study the connection between specifications and implementations. Thanks to the
good proof automation in Isabelle, my mechanised proofs are much shorter than hers,
which are as detailed as Gibbons’ and Hinze’s pen-and-paper proofs.

Lochbihler and Schneider [24] implemented support for equational reasoning about
applicative functors, which are more general than monads. They focus on lifting iden-
tities on values to a concrete applicative functor. Reasoning with abstract applicative

20

functors is not supported. Like monads, the concept of an applicative functor cannot
be expressed as a predicate in HOL. Moreover, the applicative operations do not
admit value monomorphisation like monads do, as the type of � contains applications
of the functor type constructor τ to α⇒β, α, and β.10 So, monads seem to be the
right choice, even though I could have defined the interpreter eval applicatively (but
not, e.g., memoisation).

Grimm et al. [8] model several effects and their combinations in the dependently
typed logic of F* to reason about various effectful programs. They need not choose
between effect and value polymorphism thanks to F*’s richer logic. Like me, they
model monads for probabilities, state, exceptions, and the reader monad, and study
among others the memoization problem and an interpreter. They also discuss how
they can switch from a reader monad to a state monad. Yet, their definitions do
not achieve my level of modularity in two respects: First, the type annotation of an
F* function fixes the monad implementation whereas my approach with locales can
leave the implementation abstract. Second, they define a new monad for every effect
combination whereas I combine effects modularly thanks to monad transformers.

Wimmer et al. [36] propose a tool to automatically memoize pure recursive
functions using a state monad similar to my memo function. They use similar ideas
of relational parametricity (§4) to prove the monadification step correct. However,
their memoization function only works in a concrete state monad and only for pure
functions; other effects like probabilistic choice and non-determinism are not yet
supported.

6 Conclusion

I have presented a library of abstract monadic effect specifications and their imple-
mentations as monads and monad transformers in Isabelle/HOL. I illustrated its
usage and the elegance of reasoning using a monadic interpreter. The type system
of HOL forced me to restrict the monads to monomorphic values. Monomorphic
values work well when the reasoning involves only a few monadic functions like
in the running example. In larger projects, this restriction can become a limiting
factor. Nevertheless, in a project on formalising computational soundness results,11 I
successfully formalised and reasoned about several complicated serialisers and parsers
for symbolic messages of security protocols. In that work, reasoning abstractly about
effects and being able to move from one monad instance to another were crucial.
For example, the serialiser converts symbolic protocol messages into bitstrings. The
challenges were similar to those of the interpreter eval. Serialisation may fail when
the symbolic message is not well-formed, similar to division by zero in the interpreter.
When serialisation encounters a new nonce, it randomly samples a fresh bitstring,
which must also be used for serialising further occurrences of the same nonce. I
formalised this similar to the memoisation of variable evaluation in the interpreter.
A further challenge not present in the interpreter was that the serialiser must also

10 The alternative applicative interface [16] with the operator zip :: α τ⇒β τ⇒ (α×β) τ is
amenable to monomorphisation if we restrict ourselves to infinite value types α as then α×α is
isomorphic to a. This interface is tailored towards a first-order language [10]. So functions must
be uncurried and their arguments encoded using the isomorphism. We would thus clutter the
definitions and proofs with conversions and lose the benefits of built-in higher-order unification.
11 http://www.infsec.ethz.ch/research/projects/FCSPI.html

21

http://www.infsec.ethz.ch/research/projects/FCSPI.html

record the serialisation of all subexpressions such that the parser can map bitstrings
generated by the serialiser back to symbolic messages without calling a decryption
oracle or inverting a cryptographic hash function. The construction relied on the
invariant that the recorded values were indeed generated by the serialiser, but such an
invariant cannot be expressed easily for a probabilistic, stateful function. I therefore
formalised also the switch from lazy to eager sampling for the serialiser (lazy sampling
was needed to push the randomisation of encryptions into an encryption oracle) and
the switch to a read-only version without recording of results using techniques similar
to the example in §4.

Instead of specifying effects abstractly and composing them using monad trans-
formers, I obviously could have formalised everything in a sufficiently rich monad that
covers all the effects of interest, e.g., continuations. Then, there would be no need for
abstract specifications as I could work directly with a concrete monad as usual, where
my reasoning on the abstract level could be mimicked. But I would deprive myself of
the option of going to a specific monad that covers precisely the effects needed. Such
specialisation has two advantages: First, as shown in §4, simpler monads satisfy more
laws, e.g., commutativity, which make the proofs easier. Second, concrete monads
can have dedicated setups for reasoning and proof automation that are not available
in the abstract setting. My library achieves the best of both worlds. I can reason
abstractly and thus achieve generality. When this gets too cumbersome or impossible,
I can switch to a concrete monad, continuing to use the abstract properties already
proven.

In the long run, I can imagine a definitional package for monads and monad
transformers that composes concrete value-polymorphic monad transformers. Similar
to how Isabelle’s datatype package composes bounded natural functors [3], such a
package must perform the construction and the derivation of all laws afresh for every
concrete combination of monads, as value-polymorphic monads lie beyond HOL’s
expressiveness. When combined with a reinterpretation framework for theories, I
could model effects and reason about them abstractly and concretely without the
restriction to monomorphic values.

Acknowledgements I thank Dmitriy Traytel and the anonymous reviewers for sug-
gesting many improvements to the presentation. This work is supported by the Swiss
National Science Foundation grant 153217 “Formalising Computational Soundness
for Protocol Implementations”.

References

1. Back, R.J., Wright, J.: Refinement Calculus–A Systematic Introduction. Springer (1998)
2. Ballarin, C.: Locales: A module system for mathematical theories. J. Automat. Reason.

52(2), 123–153 (2014). DOI 10.1007/s10817-013-9284-7
3. Blanchette, J.C., Hölzl, J., Lochbihler, A., Panny, L., Popescu, A., Traytel, D.: Truly

modular (co)datatypes for Isabelle/HOL. In: ITP 2014, LNCS, vol. 8558, pp. 93–110.
Springer (2014)

4. Bulwahn, L., Krauss, A., Haftmann, F., Erkök, L., Matthews, J.: Imperative functional
programming with Isabelle/HOL. In: TPHOLs 2008, LNCS, vol. 5170, pp. 134–149.
Springer (2008). DOI 10.1007/978-3-540-71067-7_14

5. Eberl, M., Hölzl, J., Nipkow, T.: A verified compiler for probability density func-
tions. In: J. Vitek (ed.) ESOP 2015, LNCS, vol. 9032, pp. 80–104. Springer (2015).
DOI 10.1007/978-3-662-46669-8_4

22

6. Erwig, M., Kollmansberger, S.: Functional pearls: Probabilistic functional program-
ming in Haskell. Journal of Functional Programming 16, 21–34 (2006). DOI
10.1017/S0956796805005721

7. Gibbons, J., Hinze, R.: Just do it: Simple monadic equational reasoning. In: ICFP 2011,
pp. 2–14. ACM (2011). DOI 10.1145/2034773.2034777

8. Grimm, N., Maillard, K., Fournet, C., Hriţcu, C., Maffei, M., Protzenko, J., Ramananandro,
T., Rastogi, A., Swamy, N., Zanella Béguelin, S.: A monadic framework for relational
verification: Applied to information security, program equivalence, and optimizations. In:
CPP 2018, pp. 130–145. ACM (2018). DOI 10.1145/3167090

9. Harrison, W.L.: The essence of multitasking. In: M. Johnson, V. Vene (eds.) Algebraic
Methodology and Software Technology (AMAST 2006), LNCS, vol. 4019, pp. 158–172.
Springer (2006). DOI 10.1007/11784180_14

10. Hinze, R.: Lifting operators and laws. http://www.cs.ox.ac.uk/ralf.hinze/Lifting.pdf (2010)
11. Hölzl, J., Lochbihler, A., Traytel, D.: A formalized hierarchy of probabilistic sys-

tem types. In: ITP 2015, LNCS, vol. 9236, pp. 203–220. Springer (2015). DOI
10.1007/978-3-319-22102-1_13

12. Homeier, P.V.: The HOL-Omega logic. In: S. Berghofer, T. Nipkow, C. Urban,
M. Wenzel (eds.) TPHOLs 2009, LNCS, vol. 5674, pp. 244–259. Springer (2009).
DOI 10.1007/978-3-642-03359-9_18

13. Huffman, B.: Formal verification ofmonad transformers. In: ICFP2012, pp. 15–16. ACM
(2012). DOI 10.1145/2364527.2364532

14. Huffman, B., Kunčar, O.: Lifting and Transfer: A modular design for quotients
in Isabelle/HOL. In: CPP 2013, LNCS, vol. 8307, pp. 131–146. Springer (2013).
DOI 10.1007/978-3-319-03545-1_9

15. Huffman, B., Matthews, J., White, P.: Axiomatic constructor classes in Isabelle/HOLCF.
In: J. Hurd, T. Melham (eds.) TPHOLs 2005, LNCS, vol. 3603, pp. 147–162. Springer
(2005). DOI 10.1007/11541868_10

16. Hutton, G.: Higher-order functions for parsing. Journal of Functional Programming 2(3),
323–343 (1992)

17. Jeuring, J., Jansson, P., Amaral, C.: Testing type class laws. In: Haskell 2012, pp. 49–60.
ACM (2012). DOI 10.1145/2364506.2364514

18. Kunčar, O.: Correctness of Isabelle’s cyclicity checker: Implementability of overloading
in proof assistants. In: CPP 2015, pp. 85–94. ACM (2015). DOI 10.1145/2676724.2693175

19. Lammich, P., Tuerk, T.: Applying data refinement for monadic programs to Hopcroft’s
algorithm. In: ITP 2012, LNCS, vol. 7406, pp. 166–182. Springer (2012). DOI
10.1007/978-3-642-32347-8_12

20. Liang, S., Hudak, P., Jones, M.: Monad transformers and modular interpreters. In: POPL
1995, pp. 333–343. ACM (1995). DOI 10.1145/199448.199528

21. Lobo Vesga, E.: Hacia la formalización del razonamiento ecuacional sobre mónadas. Tech.
rep., Universidad EAFIT (2013). http://hdl.handle.net/10784/4554

22. Lochbihler, A.: Probabilistic functions and cryptographic oracles in higher order logic.
In: P. Thiemann (ed.) ESOP 2016, LNCS, vol. 9632, pp. 503–531. Springer (2016).
DOI 10.1007/978-3-662-49498-1_20

23. Lochbihler, A.: Effect polymorphism in higher-order logic (proof pearl). In: M. Ayala-
Rincón, C.A. Muñoz (eds.) Interactive Theorem Proving (ITP 2017), LNCS, vol. 10499,
pp. 389–409. Springer (2017). DOI 10.1007/978-3-319-66107-0_25

24. Lochbihler, A., Schneider, J.: Equational reasoning with applicative functors. In: J.C.
Blanchette, S. Merz (eds.) ITP 2016, LNCS, vol. 9807, pp. 252–273. Springer (2016).
DOI 10.1007/978-3-319-43144-4_16

25. Mitchell, J.C.: Representation independence and data abstraction. In: POPL 1986, pp.
263–276. ACM (1986). DOI 10.1145/512644.512669

26. Moggi, E.: An abstract view of programming languages. Tech. Rep. ECS-LFCS-90-113,
LFCS, School of Informatics, University of Edinburgh (1990)

27. Nipkow, T., Klein, G.: Concrete Semantics. Springer (2014). DOI
10.1007/978-3-319-10542-0

28. Nipkow, T., Paulson, L.C.: Proof pearl: Defining functions over finite sets. In: J. Hurd,
T. Melham (eds.) TPHOLs 2005, LNCS, vol. 3603, pp. 385–396. Springer (2005)

29. Piróg, M., Gibbons, J.: The coinductive resumption monad. In: Mathematical Foundations
of Programming Semantics (MFPS 2014), ENTCS, vol. 308, pp. 273–288 (2014).
DOI 10.1016/j.entcs.2014.10.015

23

http://www.cs.ox.ac.uk/ralf.hinze/Lifting.pdf
http://hdl.handle.net/10784/4554

30. Ramsey, N., Pfeffer, A.: Stochastic lambda calculus and monads of probability distributions.
In: POPL 2002, pp. 154–165. ACM (2002). DOI 10.1145/503272.503288

31. Reynolds, J.C.: Types, abstraction and parametric polymorphism. In: IFIP 1983,
Information Processing, vol. 83, pp. 513–523. North-Holland/IFIP (1983)

32. Sternagel, C., Thiemann, R.: A framework for developing stand-alone certifiers. In:
M. Ayala-Rincón, I. Mackie (eds.) Logical and Semantic Frameworks with Applications
(LSFA 2014), ENTCS, vol. 312, pp. 51–67 (2015). DOI 10.1016/j.entcs.2015.04.004

33. Wadler, P.: How to replace failure by a list of successes: a method for exception handling,
backtracking, and pattern matching in lazy functional languages. In: J.P. Jouannaud (ed.)
Functional Programming Languages and Computer Architecture (FPCA 1985), LNCS,
vol. 201, pp. 113–128. Springer (1985). DOI https://doi.org/10.1007/3-540-15975-4_33

34. Wadler, P.: Monads for functional programming. In: J. Jeuring, E. Meijer (eds.)
Advanced Functional Programming, LNCS, vol. 925, pp. 24–52. Springer (1995).
DOI 10.1007/3-540-59451-5_2

35. Wenzel, M.: Type classes and overloading in higher-order logic. In: E.L. Gunter,
A. Felty (eds.) TPHOLs 1997, LNCS, vol. 1275, pp. 307–322. Springer (1997).
DOI 10.1007/BFb0028402

36. Wimmer, S., Hu, S., Nipkow, T.: Verified memoization and dynamic programming. In:
ITP 2018, LNCS. Springer (2018). To appear.

A Step-By-Step Proof of Lemma memo-idem

Proof First, I prove that updating the table of memoised calls is idempotent. Let
U x y = update (λt. t(x 7→y)) (return y). Then, U x y>>= U x= U x y holds:

U x y>>=U x= update (λt. t(x 7→y)) (return y)>>=U x
= { update-bind }
update (λt. t(x 7→y)) (return y>>=U x)

= { return-bind, definition of U }
update (λt. t(x 7→y)) (update (λt. t(x 7→y)) (return y))

= { update-update }
update ((λt. t(x 7→y))◦ (λt. t(x 7→y))) (return y)

= { idempotence of λt. t(x 7→y) }
update (λt. t(x 7→y)) (return y) = U x y

Next, let F = λtable′. case table′ x of Some y⇒ return y | None⇒ f x>>=U x. Then,

memo (memo f) x
= { definition of memo }
get (λtable. case table x of Some y⇒ return y

| None⇒ get F>>=U x)
= { bind-get, get-const }
get (λtable. case table x of Some y⇒ get (λ_. return y)

| None⇒ get (λtable′. F table′>>=U x))
= { case distributes over get }
get (λtable. get (λtable′. case table x of Some y⇒ return y

| None⇒ F table′>>=U x))
= { get-get }
get (λtable. case table x of Some y⇒ return y | None⇒ F table>>=U x)

= { propagate table x= None into F }
get (λtable. case table x of Some y⇒ return y | None⇒ (f x>>=U x)>>=U x)

= { bind-assoc, U idempotent, definition of memo }
memo f x ut

24

	Introduction
	Abstract Value-Monomorphic Monads in HOL
	Implementations of Monads and Monad Transformers
	Moving Between Monad Instances
	Related work
	Conclusion
	Step-By-Step Proof of Lemma memo-idem

