Authenticated data structures allow several systems to convince each other that they are referring to the same data structure, even if each of them knows only a part of the data structure. Using inclusion proofs, knowledgeable systems can selectively share their knowledge with other systems and the latter can verify the authenticity of what is being shared.

In this paper, we show how to modularly define authenticated data structures, their inclusion proofs, and operations thereon as datatypes in Isabelle/HOL, using a shallow embedding. Modularity allows us to construct complicated trees from reusable building blocks, which we call Merkle functors. Merkle functors include sums, products, and function spaces and are closed under composition and least fixpoints.

As a practical application, we model the hierarchical transactions of Canton, a practical interoperability protocol for distributed ledgers, as authenticated data structures. This is a first step towards formalizing the Canton protocol and verifying its integrity and security guarantees.

1 Introduction

An authenticated data structure (ADS) allows several systems to use succinct digests to convince each other that they are referring to the same data structure, even if each of them knows only a part of the data structure. This has two main benefits. First, it saves storage and bandwidth, as the systems only have to store parts of the entire structure that they are interested in, and exchange just digests instead of the whole structure. This has been exploited for a wide range of applications, e.g., logs in Certificate Transparency and the blockchain structure and lightweight clients in Bitcoin. Second, ADSs allow parts of the structure to be kept confidential to a subset of the systems involved in processing the structure. For example, distributed ledger technology (DLT) promises to keep multiple organizations synchronized about the state of their joint business workflows. Synchronization requires transactions, i.e., atomic changes to the shared state. Yet organizations often do not want to share all the changes with all involved parties. Some DLT protocols such as the Canton interoperability protocol [6] and Corda [7] leverage ADSs to provide both transactionality and varying levels of confidentiality. The formalization of Canton was the starting point for this work.

Merkle trees [17] are the prime example of an ADS. The original Merkle tree is a binary tree with data at the leaves, where every node is assigned a hash (serving as the digest) using a cryptographic hash function h: a leaf with data d has hash $h(d)$ and an inner node...
has the hash h (h_1, h_r) where h_1 and h_r denote the hashes of the two children. If the hash of the root is known to all systems, then one system can convince another that a certain leaf stores data d. If π is the path from the root to the leaf, the inclusion proof consists of the sibling hashes of the nodes on the path. Given such an inclusion proof, the other system can recompute the hashes of the nodes on the path and check that the result matches the common root hash. This shows that the leaf indeed stores the given data if the hash function is collision-resistant. Moreover, the other system learns only hashes (of hashes) of the other data in the tree. So if h is preimage-resistant, then the inclusion proof does not leak information about the rest of the tree, provided that the hashed data contains sufficient entropy. This idea generalizes to finite tree data structures in general [18].

In this work, we consider authenticated data structures, which generalize Merkle trees to arbitrary shape, and we show how to modularly define them as datatypes in Isabelle/HOL. Modularity allows us to construct complicated trees from small reusable building blocks, for which properties are easy to prove. To that end, we consider authenticated data structures as functors and equip them with appropriate operations and their specifications. We show that this class of functors includes sums, products, and function spaces, and is closed under composition and least fixpoints. Concrete functors are defined as algebraic datatypes using Isabelle/HOL’s datatype package [1]. This shallow embedding makes it possible to use Isabelle’s rich infrastructure for datatypes.

As a practical application, we define ADSs over the hierarchical transactions [3] in the Canton protocol. To see an example of such a transaction, suppose that Alice wants to sell a car title to Bob. Transactionality allows Alice and Bob to exchange the title and the money atomically, which reduces their counterparty risks. Figure 1 shows the corresponding Canton transaction\footnote{Here and elsewhere in the paper, we take significant liberties in the presentation of Canton and focus on parts relevant for the construction of ADSs and for reasoning about them.} for exchanging the money and the title. The transaction is generated from a smart contract that implements the purchase agreement. Such smart contracts can be conveniently written in the functional programming language DAML [8], which is built on the same hierarchical transactions as Canton.

Canton’s hierarchical transactions offer three advantages over conventional flat transactions found in other DLT solutions. First, complex transactions can be composed from smaller building blocks. In the example above, the atomic swap transaction composes two transactions: the money transfer and the title transfer. Second, if a participant is involved only in a subtransaction, then the participant learns the contents of just this subtransaction, but not of other parts. In the example, the Bank only sees the money transfer, but not what Alice bought; similarly, the department of motor vehicles (DMV) does not see the amount the car was sold for. This also improves scalability as everyone must process only...
the data they are involved in. Third, they include mandatory authorization checks, which
are enforced even in the presence of Byzantine parties. Authorization flows from top to
bottom to enable delegation.

This hierarchy, enriched with some additional data, is encoded in ADSs and the protocol
exchanges inclusion proofs for such trees. More details will be given throughout the paper.

For now, it suffices to summarize the resulting requirements on the formalization:
1. Hashes allow for checking whether two inclusion proofs refer to the same ADS. This
allows Canton to commit the example transaction atomically at all participants, even if
the Bank and the DMV see only a part of it.
2. Inclusion proofs allow us to prove inclusion for multiple leaves at the same time. Canton
sends such inclusion proofs to save bandwidth. Note that conventional inclusion proofs
are only for a single leaf.
3. Multiple inclusion proofs can be merged into one if they refer to the same ADS. This
is because Canton merges inclusion proofs only if they have the same set of recipients.
This reduces the load on the sender because it can multi-cast the same inclusion proof
to all recipients. Merging also simplifies the recipients’ job: for example, Alice will
receive inclusion proofs for the entire transaction as well as both sub-transactions in
Figure 1. Merging them leaves her with just a single data structure representing the
entire transaction.

Our main contribution is a modular construction principle for ADSs as HOL datatypes,
i.e., functors. We also derive a variant of the ADSs that models inclusion proofs. To that end,
we introduce the class of Merkle functors, which are equipped with operations for hashing and
merging as required above. Our construction is modular in the sense that the class of Merkle
functors includes sums, products, and function spaces, and is closed under composition and
least fixpoints. Accordingly, the construction works for any inductive datatype (sums of
products and exponentials). Moreover, we show that the theory is suitable for constructing
concrete real-world instances such as Canton’s transaction trees. The construction lives
in the symbolic models, i.e., we assume that no hash collisions occur. Our Isabelle/HOL
formalization is available in the Archive of Formal Proofs [15].

The rest of the paper is structured as follows. In Section 2, we describe our abstract
interface for ADSs. Section 3 shows how to construct such interfaces for tree-like structures
in a modular fashion. Section 4 demonstrates how to create inclusion proofs for general rose
trees and Canton transactions in particular. We discuss the related work in Section 5 and
conclude in Section 6.

2 Inclusion Proofs for Authenticated Data Structures

We now present the operations and abstract interfaces for ADSs, motivated by their appli-
cation to Canton. Figure 2 shows a suitable a Canton-based deployment, where the Bank
and the DMV handle payments and car titles. The participants communicate with each
other using the Canton protocol. Unlike in most other DLT solutions, business data resides
with Canton primarily at the participants’ nodes that share the data only on a need-to-know
basis [5]. Canton participants run a two-phase commit protocol to atomically update the
system state using transactions. The protocol is run over a Canton domain, which is operated
by a third party. The domain acts as the commit coordinator. While the participants may
be Byzantine, the domain is assumed to be honest-but-curious. That is, it is trusted to
correctly execute the protocol, but it should not learn the contents of a transaction (e.g.,
how much Alice pays to Bob). Instead, it should only learn the minimal metadata that
allows the protocol to tolerate Byzantine participants. Consequently, Canton sends business
data through the domain only in encrypted or hashed form.

This motivates the transaction tree structure that Canton uses. The structure for the
example transaction from Figure 1 is shown in Figure 3. Each (sub)-transaction of Figure 1
is turned into a view in Figure 3, which consists of the view data and view metadata.
For example, the node labeled by 1 in Figure 3 is the view corresponding to the top-level
transaction in Figure 1. Its two children that are leaves contain the view's data and metadata.
The metadata contains the information about who is affected by the view (here, Alice and
Bob) and should therefore participate in the two-phase commit. The metadata is shared with
Alice, Bob and the domain. The view data contains the confidential data with the actual
state updates, and is shared only with Alice and Bob. This view also has two subviews, which
correspond to the sub-transactions in Figure 1 as expected. A view can have an arbitrary
number of subviews; the views labeled by 1.1 and 1.2 have no subviews, for example.

Additionally, the entire transaction is also equipped with metadata describing transaction-
wide parameters, common to all views. Some of it is visible to all the involved participants,
but not the domain, and some of it is visible to both the domain and the participants. The leaf
children of the tree’s root node store this metadata. Formally, the transaction tree can be mod-
elled by the following datatypes, for some types common-metadata, participant-metadata,
view-metadata, and view-data whose contents are not relevant for this paper.

```plaintext
datatype view =
  View (view-metadata) (view-data) (subviews: (view list))
datatype transaction =
  Transaction (common-metadata) (participant-metadata) (views: (view list))
```

In Figure 3, the Transaction and View constructors become the inner nodes (black circles)
and the data sits at the leaves (grey rectangles).

An ADS over this structure allows the participants and the domain use the root hash to
refer to a transaction, and be sure that they are all referring to the same transaction tree.
When constructing root hashes, it is useful to think of ADSs with multiple roots (i.e., forests)
rather than just a single root like in a Merkle tree. For example, consider how the root node
of a binary Merkle tree is constructed from two children. The two children themselves are
Merkle trees, so we already have a forest of Merkle trees. More precisely, this forest has the
shape of a pair. By adding the root node, we combine the whole forest into a larger Merkle
tree. By the construction of Merkle trees, the new root hash is computed solely from the root
hashes of the two child trees. Note that the concrete hash operation depends on the shape
of the forest (a pair in this case). The new root is again a degenerate forest of a single tree
with a single root hash. This view underlies our modular construction principle in Section 3.

In our construction, we will use the following conventions.

1. Raw data to be arranged in an ADSs is written as usual, e.g., ‘a’, ‘a list.
2. Hashes and forests of hashes carry a subscript \(h \) as in ‘a\(h \). We leave hashes for now
abstract as type variables and define them only in Section 3. Since the root hash identifies
an ADS, we represent ADSs by their hashes.

Taking a root hash can make communication more efficient, but it is not enough for our
purposes. For example, Bank does not know the contents of view 1.2 or even who is involved
in view 1.2; the domain hides the latter. The views that are visible to a participant are
called the participant’s projection of the transaction. Canton aims to achieve the following
integrity guarantee [3]: There exists a shared ledger that adheres to the underlying DAML
smart contracts such that its projection to each honest participant consists exactly of the
updates that have passed the participant’s local checks. Achieving this guarantee for the
Bank hinges on the Bank’s ability to ensure that the view 1.1 is really included in the
transaction tree. Thus, we also have to be able to prove that a substructure is included in a
root hash.

Inclusion proofs are therefore the main workhorse in our formalization and the focus of
this paper. We will denote the type of inclusion proofs over the source type with a subscript
\(m \), e.g., ‘a\(m \), (‘a\(m \), ‘a\(h \)) \(tree\(m \). We need two operations on inclusion proofs:
1. Computing the (forest of) root hashes (which identifies the ADS to which the inclusion
proof corresponds).
2. Merging two inclusion proof with the same root hash.

Accordingly, we introduce two type synonyms for these operations:

```plaintext
type_synonym (‘am, ‘ah) hash = (‘am \( \Rightarrow \) ‘ah)
type_synonym ‘am merge = (‘am \( \Rightarrow \) ‘am \( \Rightarrow \) ‘am option)
```

The merge operation returns \(None \) iff the inclusion proofs have different (forests of)
root hashes. We require that merging is idempotent, commutative, and associative. The
locale merkle-interface below captures these properties. Associativity is expressed using the monadic (\triangleright\triangleright) on the option type. The merge operation makes inclusion proofs with the same hash into a semi-lattice. We fix the induced order as another parameter bo of the locale, where an inclusion proof is smaller than another if it reveals less. In that case, we say that the smaller is a blinding of the larger inclusion proof.

type_synonym 'a_m blinding-of = ('a_m \Rightarrow 'a_m \Rightarrow bool)

locale merkle-interface =
 fixes h :: ('a_m, 'a_m) hash
 and bo :: 'a_m blinding-of
 and m :: 'a_m merge

assumes merge-respects-hashes: \langle h a = h b \iff (\exists ab. m a b = Some ab) \rangle
 and idem: \langle m a a = Some a \rangle
 and commute: \langle m a b \gg m b a \rangle
 and assoc: \langle m a b \gg m c = Some c \gg m b c \gg Some a \rangle
 and bo-def: \langle bo a b \iff m a b = Some b \rangle

As expected for a semi-lattice, merging computes the least upper bound in the blinding relation:

\((m a b = Some ab) = (bo a b \land bo b a \land (\forall u. bo a u \rightarrow bo b u \rightarrow bo ab u)) \)

Also, the equivalence closure of the blinding relation gives the equivalence classes of the inclusion proofs under the hash function: equivclp bo = vimage2p h h (=) where equivclp R denotes the equivalence closure of R and vimage2p f g R = (\lambda x y. R (f x) (g y)) the preimage of a relation under a pair of functions.

Our interface does not provide generic operations to build inclusion proofs for subtrees of tree-shaped data. This is because the construction depends on the exact shape of the tree. In Section 4, we will show how to create such proofs for the general shape of rose trees and Canton transactions in particular, using standard functional programming techniques.

3 Modularly Constructing Forests of Authenticated Data Structures

In this section, we develop the theory to modularly construct ADSs and their inclusion proofs as HOL datatypes, including the operations for merkle-interface. We first introduce the concept of a blindable position (Section 3.1), which models a node in an ADS, and show how we obtain ADSs for Canton’s transaction trees by introducing blindable positions in the right spots of the datatype definitions (Section 3.2).

The specification merkle-interface is not inductive and therefore not preserved by datatype constructions. We therefore generalize the specification and show that the generalization is preserved under composition of functors and least fixpoints (Section 3.4). Finally, we show that sums, products and function spaces preserve the generalization (Section 3.5).

3.1 Blindable position

A blindable position represents a node (inner node or leaf) in an ADS. Every node in an ADS comes with its root hash. In this work, we model such hashes symbolically. That is, we assume that no hash collisions occur, i.e., the hash function from values to the type of hashes is injective. We do not assume surjectivity though: some hashes do not correspond to any value. We model such values as garbage coming from a countable set (the naturals). A
countable set is large enough given that ADS are always finite in practice (since one cannot compute a hash of infinite amounts of data).

```
type_synonym garbage = {nat}
datatype 'a_h, blindable_h = Content `'a_h` | Garbage {garbage}
```

Since the hash function is injective, we can identify the values `a` with a subset of the hashes, namely those of form `Content _`. Accordingly, we could also have written `a blindable_h` instead of `a_h blindable_h`. However, as an ADS contains hashes of hashes, it is more accurate to use `a_h` here.

For example, a degenerate Merkle tree with a single leaf, which stores some data `x`, has the root hash `Content x`. What does an inclusion proof for this tree look like? It can take two forms:
1. The inclusion proof proves inclusion of `x`, i.e., the leaf is not blinded. The inclusion proof thus contains `x`.
2. The inclusion proof does not prove inclusion of `x`, i.e., the leaf is blinded. So the inclusion proof contains only the hash of `x`.

In the second case, the recipients of such an inclusion proof cannot verify that the hash is meaningful (unless they already know the contents). So the hash could also be garbage. The following datatype formalizes these cases.

```
datatype (‘a_m, ‘a_h) blindable_m = Unblinded (‘a_m) | Blinded (‘a_h blindable_h)
```

In general, inclusion proofs are nested, e.g., if a Merkle tree leaf contains another Merkle tree as data. We therefore use the inclusion proof type variable `a_m` instead of `a` for values, similar to `a_h in blindable_h`.

Note that our hashes are typed. Accordingly, the formalization cannot confuse hashes of ADSs that store `ints` in their leaves with hashes of ADSs that store some other data, say `string`. In the real world, this could happen as hashes are usually just bitstrings. However, for reasoning about inclusion proofs, the garbage hashes adequately model such confusion possibilities: If security best practices are followed, type flaw attacks lead to different hashes unless a hash collision occurs. So the hash of the `int` Leaf would be interpreted as garbage in the type of hashes for the ADS of `strings`. This is adequate for inclusion proofs because we care about the contents of a hash only if the position is unblinded, i.e., of shape `Content`.

Having introduced the types for blindable positions, we now define the corresponding operations and show that they satisfy the specification `merkle-interface`. The hash operation converts an inclusion proof into the root hash of the tree. We define it in two steps:

(i) `hash-blindable` assumes that there are no nested inclusion proofs, i.e., `a_m = a_h`.
(ii) `hash-blindable generalizes hash-blindable` to nested inclusion proofs. It first converting nested inclusion proofs to their root hashes using the hash function that is given as a parameter. Here, `map-blinddable_m` is the mapper generated by the `datatype` command.

```
primrec hash-blindable :: (‘a_h, ‘a_h) blindable_m, ‘a_h blindable_h) hash where
  ⟨hash-blindable (Unblinded x) = Content x⟩
  | ⟨hash-blindable (Blinded x) = x⟩

definition hash-blindable
  :: (‘a_m, ‘a_h) hash ⇒ (‘a_m, ‘a_h) blindable_m, ‘a_h blindable_h) hash where
  ⟨hash-blindable h = hash-blindable ’ ◦ map-blinddable_m h id⟩
```

Next, we define the blinding order `binding-of-blindable`. Like `hash-blindable`, it is parametrized by the hash function and the blinding order for the nested inclusion proofs.
The first clause lifts the blinding order in case the inclusion proof unblinds the contents.
The second clause, when the position on the left is blinded, checks that both positions have
the same hash.

context fixes \(h :: (\langle \mathbb{A}_m, \mathbb{a}_h \rangle \text{ hash} \) and \(bo :: (\langle \mathbb{A}_m \text{, blinding-of} \rangle \) begin

inductive blinding-of-blindable :: (\langle \mathbb{A}_m, \mathbb{a}_h \rangle \text{ blindable}_m \text{ blinding-of} \) where
\(\text{blinding-of-blindable (Unblinded x) (Unblinded y)} \) if \(\langle bo x y \rangle \)

\(\text{blinding-of-blindable (Blinded x) t} \) if \(\langle \text{hash-blindable h t = x} \rangle \)
end

Merging of blindable positions works similarly. If both positions are unblinded, \(\text{merge-blindable} \) tries to merge the contents. If both are blinded, it succeeds iff the hashes are the same.
Otherwise, it checks that the hashes are the same and, if so, returns the unblinded version.

context fixes \(h :: (\langle \mathbb{A}_m, \mathbb{a}_h \rangle \text{ hash} \) and \(m :: (\langle \mathbb{A}_m \text{, merge} \rangle \) begin

fun merge-blindable :: (\langle \mathbb{A}_m, \mathbb{a}_h \rangle \text{ blindable}_m \text{ merge} \rangle where
\(\text{merge-blindable (Unblinded x) (Unblinded y)} \) = \(\text{map-option Unblinded} (m x y) \)
\(\text{merge-blindable (Blinded t) (Blinded u)} \) = \(\text{if t = u then Some (Blinded u) else None} \)
\(\text{merge-blindable (Blinded x) (Unblinded y)} \) = \(\text{if x = Content (h y) then Some (Unblinded y) else None} \)
\(\text{merge-blindable (Unblinded y) (Blinded x)} \) = \(\text{if x = Content (h y) then Some (Unblinded y) else None} \)
end

It is straightforward to show that these definitions preserve the specification \(\text{merkle-interface} \).
That is, if the operations for nested inclusion proofs satisfy \(\text{merkle-interface} \), then so do the
operations for \(\text{blindable}_m \).

lemma merkle-blindable:
\(\text{merkle-interface} \)
\(\langle \text{hash-blindable h} \rangle \)
\(\langle \text{blinding-of-blindable h bo} \rangle \)
\(\langle \text{merge-blindable h m} \rangle \)
if \(\text{merkle-interface h bo m} \);

3.2 Example: Canton transaction trees

We now illustrate how to use \(\text{blindable}_h \) and \(\text{blindable}_m \) to define the ADSs and
inclusion proofs for the Canton transaction trees from Section 2. As shown in Figure 3, the
transaction tree contains a node for the transaction tree as a whole, every view, and every
leaf (\(\text{common-metadata, participant-metadata view-metadata, and view-data} \)). Yet, the
datatype declarations do not contain the information what should become a separate node
in the ADS. To make the construction systematic, we consider the blindable positions to be
marked in the datatype with the type constructor \(\text{blindable} \).

type_synonym \('a \text{ blindable} = (\langle 'a \rangle \)

So we pretend in this section as if \(\text{views} \) and \(\text{transactions} \) were defined as follows:

datatype \(\text{view} = \text{View} (\langle \langle \text{view-metadata} \text{blindable} \times \text{view-data} \text{blindable} \rangle \times \text{view list} \rangle \text{ blindable} \)
datatype \(\text{transaction} = \text{Transaction} \)
The construction for transaction trees is accordingly:

```
(type_synonym view-metadata_h = (view-metadata blindable_h)

datatype view_h = View_h (((view-metadata_h x_h view-data_h) x_h view_h list_h) blindable_h)

type_synonym view-metadata_m = ((view-metadata, view-metadata) blindable_m)

type_synonym view-data_m = ((view-data, view-data) blindable_m)

datatype view_m = View_m
 (((view-metadata_m x_m view-data_m) x_m view_m list_m),
  (view-metadata_h x_h view-data_h) x_h view_h list_h) blindable_m)
```

These types nest hashes and inclusion proofs: A view node, e.g., nests hashes and inclusion proofs for the metadata, the data, and all the subviews. In particular, the view_h and view_m datatypes recurse through the blindable_h and blindable_m type constructors. This works because blindable_h and blindable_m are bounded natural functors (BNFs) [21]. In fact, this transformation works for any datatype declaration thanks to the compositionality of BNFs. The construction for transaction trees is accordingly:

```
(type_synonym common-metadata_h = (common-metadata blindable_h)

type_synonym common-metadata_m =
 (common-metadata, common-metadata) blindable_m)

type_synonym participant-metadata_h = (participant-metadata blindable_h)

type_synonym participant-metadata_m =
 (participant-metadata, participant-metadata) blindable_m)

datatype transaction_h = Transaction_h
 (((common-metadata_h x_h participant-metadata_h) x_h view_h list_h) blindable_h)

datatype transaction_m = Transaction_m
 (((common-metadata_m x_m participant-metadata_m) x_m view_m list_m),
  (common-metadata_h x_h participant-metadata_h) x_h view_h list_h) blindable_m)
```

3.3 Composition

Having defined the types of ADSs, we next must define the operations on ADSs and prove that they satisfy `merkle-interface`. Doing so directly is possible, but prohibitively cumbersome. Instead, we modularize the proofs following the structure of the types. We can derive preservation lemmas for all involved type constructors analogous to `merkle-blindable`.

The preservation lemmas are compositional by construction: if `a_h τ_h/a_m τ_m` and `b_h σ_h/b_m σ_m` preserve `merkle-interface`, then so does their composition `a_h τ_h σ_h/a_m τ_m σ_m`. Moreover, every nullary functor also satisfies `merkle-interface` with the discrete ordering `=.`.

```
definition merge-discrete :: 'a merge where
```
lemma merkle-discrete: (merkle-interface id (=) merge-discrete)

For view-data, for example, we compose the corresponding discrete functor with a blindable position.

abbreviation hash-view-data :: ⟨(view-data_m, view-data_h) hash⟩ where
⟨hash-view-data ≡ hash-blindable id⟩

abbreviation binding-of-view-data :: ⟨view-data_m binding-of⟩ where
⟨binding-of-view-data ≡ binding-of-blindable id (=)⟩

abbreviation merge-view-data :: ⟨view-data_m merge⟩ where
⟨merge-view-data ≡ merge-blindable id merge-discrete⟩

lemma merkle-view-data:
⟨merkle-interface hash-view-data blinding-of-view-data merge-view-data⟩
by (rule merkle-blindable) (rule merkle-discrete)

If we do the same for view-metadata and consider the pair view-metadata × view-data, composition immediately gives us the following (the operations for products will be introduced in Section 3.5).

lemma merkle-interface
⟨hash-prod hash-view-metadata hash-view-data⟩
⟨binding-of-prod binding-of-view-metadata binding-of-view-data⟩
⟨merge-prod merge-view-metadata merge-view-data⟩

3.4 Inductive generalization for least fixpoints

The view datatype is the least fixpoint of the functor

'a F = ((view-metadata blindable × view-data blindable) × 'a list) blindable

and so are view_h and view_m of analogous functors F_h and F_m. Composition gives us a preservation theorem for F, but we need more for least fixpoints.

In fact, merkle-interface is not inductive, so least fixpoints need not preserve it. The problem is the following: In the inductive preservation proof, we get the induction hypothesis only for smaller values. We therefore cannot use F's preservation theorem because merkle-interface requires the conditions to hold on all values, not just the smaller ones. So we must generalize merkle-interface to make it inductive.

In our first attempt with a direct generalization, the proofs about the merge operation turned out to be rather cumbersome. The associativity law in particular required many case distinctions due to the options. We therefore present a different approach where the focus is on the blinding relation and merge is merely characterized as the join. We abstractly derive commutativity, idempotence, and associativity for merge once and for all from the ordering properties and merge's characterization. This leads to simpler proofs where all case distinctions dealt with by Isabelle's proof automation.

Our generalization splits merkle-interface into three locales (Figure 4):
1. The locale binding-respects-hashes splits off the first assumption of merkle-interface.
 No relativization is needed here because the (inductive) blinding order bo occurs only once and in a negative position. The preservation proof can therefore use rule induction rather than structural induction.
locale blinding-respects-hashes =
 fixes h :: (′a_m, ′a_h) hash
 and bo :: ′a_m blinding-of:
 assumes hash: (bo ≤ vimage2p h h (=))
locale blinding-of-on = blinding-respects-hashes ⟨h⟩ ⟨bo⟩ for A h bo +
 assumes refl: ⟨x ∈ A ⇒ bo x x⟩
 and trans: ⟨[bo x y; bo y z; x ∈ A] ⇒ bo x z⟩
 and antisym: ⟨[bo x y; bo y x; x ∈ A] ⇒ x = y⟩
locale merge-on = blinding-of-on ⟨UNIV⟩ ⟨h⟩ ⟨bo⟩ for A h bo m +
 assumes join: ⟨[h x = h y; x ∈ A] ⇒ ∃z. m x y = Some z ∧ bo x z ∧ bo y z ∧ (∀u. bo x u ⇒ bo y u ⇒ bo z u)⟩
 and undefined: ⟨[h x ≠ h y; x ∈ A] ⇒ m x y = None⟩

Figure 4 Inductive generalization of merke-interface

2. The locale blinding-of-on formalizes the order properties of the blinding relation bo (reflexivity, transitivity, antisymmetry). It fixes a set A in addition to the Merkle operations; the inductive proof for fixpoints instantiates A with the set of smaller terms for which the properties hold by the induction hypothesis. Accordingly, one of the variables in the properties is restricted to A. (Since the induction proof will be structural, it suffices to restrict one variable instead of all.) Unlike hash for blinding-respects-hashes, transitivity and antisymmetry cannot be shown by rule induction even though bo occurs as an assumption, because bo occurs multiple times, but rule induction acts only on one. Accordingly, F’s preservation theorem does not apply to the induction hypothesis because it assumes that all occurrences are the same.2

3. The locale merge-on augments blinding-of-on with the characterization for merge as the join. While merge-on’s assumptions are again restricted by A, the restriction is removed on the assumptions of the parent locale blinding-of-on by setting A to the type universe UNIV. This change is crucial and the reason for introducing three locales: When we prove join for the least fixpoint, we can (and must) use that bo is an order everywhere. This is because join uses bo with many different arguments, in particular the result z of the merge. In a unified locale, we would have to prove that z stays within the set A, which incurred a lot more proof effort.

In the unrestricted case, merge-on is equivalent to merkle-interface:

lemma ⟨merkle-interface h bo m ←→ merge-on UNIV h bo m⟩

We are now ready to define the class of Merkle functors. For readability, we only spell out the case of unary functors. The generalization to n-ary functors is as expected.

Definition 1 (Merkle functor). A unary BNF Fh and binary BNF Fm constitute a unary Merkle functor if there exist operations hash-F ′ :: (′a_h, ′a_h) F_m, ′a_h F_h) hash

2Alternatively, we could have generalized the property such that different blinding relations are allowed. Preservation of transitivity becomes preservation of relation composition and antisymmetry transforms into preservation of intersections. For reflexivity, we would still have needed to the set A however.
and \(\text{binding-of-F} \:: (\mathcal{A} \times \mathcal{H}) \to \mathcal{A} \) \(\text{blinding-of} \) \(\text{merge-F} \:: (\mathcal{A} \times \mathcal{H}) \to \mathcal{A} \) \(\text{merge} \) with the following properties:

- **Monotonicity**
 \[
 \text{bo} \leq \text{bo}' \\
 \forall a \in \mathcal{A}. \forall m \cdot a b = m' a b
 \]

- **Congruence**
 \[
 \forall x \in \{y. \text{set}_1 \text{F}_m y \subseteq \mathcal{A}\}. \forall b. \text{merge-} \text{h} m x y = \text{merge-} m' x y
 \]

- **Hashes**
 \[
 \text{binding-respects-hashes} \text{ h bo} \\
 \text{binding-respects-hashes} (\text{hash-} \text{h}) (\text{binding-of-} \text{h bo})
 \]

- **Blinding order**
 \[
 \text{binding-of-on} \mathcal{A} \text{ h bo} \\
 \text{binding-of-on} [x. \text{set}_1 \text{F}_m x \subseteq \mathcal{A}] (\text{hash-} \text{h}) (\text{binding-of-} \text{h bo})
 \]

- **Merge**
 \[
 \text{merge-on} \mathcal{A} \text{ h bo} m \\
 \text{merge-on} [x. \text{set}_1 \text{F}_m x \subseteq \mathcal{A}] (\text{hash-} \text{h}) (\text{binding-of-} \text{h bo}) (\text{merge-} \text{h} m)
 \]

where \(\text{hash-} \text{h} = \text{hash-} \text{h'} \circ \text{map-} \text{f}_m \text{ h id}. \)

Every Merkle functor preserves \text{merkle-interface}: \text{set} \(\mathcal{A} = \text{UNIV} \) in the merge property and use the above equivalence between \text{merkle-interface} and \text{merge-on}.

We are now ready to state and prove the main theoretical contribution of this paper.

▷ **Theorem 2.** Merkle functors of arbitrary arity are closed under composition and least fixpoints.

Proof. Closure under composition is obvious from the shape of the properties and the fact that BNFs are closed under composition.

For closure under least fixpoints, we consider a functor \(F \) and its least fixpoint \(T \) through one of \(F \)'s arguments. say \text{datatype} \(T = T \text{ "} \text{f} \text{"} \), and similarly for \(T_h \) and \(T_m \). The operations are defined as follows, where we omit all Merkle operation parameters for type parameters that are not affected.

- The hash operation \(\text{hash-} \text{h'} \) is defined by primitive recursion:
 \[
 \text{hash-} \text{h'} (\text{f}_m x) = T_h (\text{hash-} \text{h'} (\text{map-} \text{f}_m \text{ hash-} \text{h'} x)).
 \]

- The blinding order \(\text{binding-of-} \text{h} \) is defined inductively by the following rule:
 \[
 \text{binding-of-} \text{h} (\text{f}_m x) (\text{f}_m y)
 \]

 Monotonicity ensures that \(\text{binding-of-} \text{h} \) is well-defined.

- Merge \(\text{merge-} \text{h} \) is defined by well-founded recursion (over the subterm relation on \(T_m \)):
 \[
 \text{merge-} \text{h} (\text{f}_m x) (\text{f}_m y) = \text{map-option} \text{ f}_m (\text{merge-} \text{f}_m \text{ hash-} \text{h} \text{ merge-} \text{h} x y)
 \]

 Congruence ensures that \(\text{merge-} \text{f}_m \) calls \(\text{merge-} \text{h} \) recursively only on smaller arguments.

We have not been able to define \(\text{merge-} \text{h} \) with primitive recursion, which allows pattern matches only on one argument, not two. Our attempts with \text{primrec} failed because the recursive call occurs under \(\text{merge-} \text{f}_m \), which is not \(\text{f}_m \)'s mapper. The usual trick of using parametricity theorems to extract the recursive calls into \(\text{map-} \text{f}_m \) did not work because the parametricity theorem for \(\text{merge-} \text{f}_m \) is too weak. It is also not clear how it could be strengthened without excluding important examples of Merkle functors such as \text{blindable}.

Well-founded recursion works well, except that Isabelle has no automatic parametricity inference for well-founded recursion. We therefore manually proved the parametricity theorems that the transfer package needs.

Monotonicity and preservation of binding-respects-hashes are proven by rule induction on blinding-of-T. Congruence, binding-of-on, and merge-on are shown by structural induction on the argument that is constrained by A.

It is not possible to formalize this theorem abstractly in Isabelle/HOL because it is not possible to abstract over type constructors. Instead, we have axiomatized a binary Merkle functor using the bnf_axiomatization command and carried out the construction and proofs for least fixpoints and composition. This approach is similar to how Blanchette et al. have formalized the theory of bounded natural functors [2]. The axiomatization also illustrates how the definition and proofs generalize to several functors with type arguments. Moreover, all the example ADS constructions in Section 3.6 merely adapt these proofs to the concrete functors at hand.

3.5 Concrete Merkle functors

We now present concrete Merkle functors. They show that the class of Merkle functors is sufficiently large to be of interest. In particular, it contains all inductive datatypes (least fixpoints of sums of products). We have formalized all of the following:

- The discrete functor from Section 3.3 with hash operation id and the discrete blinding order (\equiv) is a nullary Merkle functor.
- Blindable positions bindable_h and bindable_m are a unary Merkle functor.
- Sums and products are binary Merkle functors. We set $\langle a \times h \rangle \equiv \langle a \rangle \times \langle b \rangle$ and $\langle a \rangle \times \langle b \rangle = \langle a \times b \rangle$ and similarly for $+_h$ and $+_m$. Formally, \times_h and $+_m$ should take four type arguments. However, as sums and products do not themselves contain blindable positions, the type arguments $\langle a \rangle$ and $\langle b \rangle$ are ignored and we therefore omit them. The hash operations hash-prod and hash-sum are the mappers map-prod and map-sum, respectively. The merging orders binding-of-prod and binding-of-sum are the relations rel-prod and rel-sum. The merge operations are defined as follows:

\[
\begin{align*}
\text{merge-prod} & \text{ ma ma } \langle x, y \rangle (x', y') = \\
& \text{ ma } x x' \equiv (\lambda x'. \text{ map-option } (\text{Pair } x') (\text{mb } y y'))
\end{align*}
\]

\[
\begin{align*}
\text{merge-sum} & \text{ ma ma } (\text{Inl } x) (\text{Inl } y) = \text{ map-option } \text{Inl } (\text{ma } x y) \\
\text{merge-sum} & \text{ ma ma } (\text{Inr } x) (\text{Inr } y) = \text{ map-option } \text{Inr } (\text{mb } x y) \\
\text{merge-sum} & \text{ ma ma } (\text{Inr } v) (\text{Inl } va) = \text{None} \\
\text{merge-sum} & \text{ ma ma } (\text{Inl } va) (\text{Inr } v) = \text{None}
\end{align*}
\]

- The function space $\langle a \Rightarrow b \rangle$ is a unary Merkle functor in the codomain. (Like for sums and products, $\langle a \Rightarrow h \rangle \equiv \langle a \Rightarrow b \rangle$ and $\langle a \Rightarrow m \rangle \equiv \langle a \Rightarrow b \rangle$ and we omit the ignored $\langle b \rangle$.) Hashing is function composition and the blinding order is pointwise. Merge is defined by

\[\text{The proof of transitivity preservation requires that the blinding order bo on } \langle a \rangle \text{ respects hashes everywhere, not only on } A. \text{ This is the reason why we have split the locale binding-respects-hashes from binding-of-on.}\]
```
merge-fun m f g =
(if ∀ x. m (f x) (g x) ≠ None then Some (λ x. the (m (f x) (g x))) else None)
```

Proving the Merkle properties requires choice.

3.6 Case study: Merkle rose trees and Canton’s transactions

Thanks to Theorem 2, all datatypes built from the Merkle functors in the previous section are also Merkle functors. We now show the elegance and expressiveness of Merkle functors using three datatypes: lists, rose trees and Canton transaction, where each builds on the previous ones.

- Lists are isomorphic to the datatype
  ```
datatype 'a list' = List' ('unit + 'a × 'a list')
  ```
 and therefore also a Merkle functor. We have carried out this construction as `list` occurs in Canton transaction trees. Like sums, products, and function spaces, `list`s do not contain blindable positions directly, so `list_h = list_m = list`. Hashing and the blinding order are the mapper and the relator. Initially, we tried to prove `merkle-interface` for `list` directly, but the proofs about merge quickly got out of control. We therefore carried out the fixpoint construction of Theorem 2 for `list'` and transferred the definitions and theorems to `list` using the transfer package [13].

- Rose trees are then given by the datatype
  ```
datatype 'a rose-tree = Tree' ('a × 'a rose-tree list) blindable
  ```
 Applying our construction, we obtain Merkle rose trees as
  ```
datatype 'a_h rose-tree_h = Tree_h ('a_h × 'a_h rose-tree_h list_h) blindable_h
  
datatype ('a_m, 'a_h) rose-tree_m = Tree_m
  ('a_m ×_m ('a_m, 'a_h) rose-tree_m list_m, 'a_h ×_h 'a_h rose-tree_h list_h) blindable_m
  ```
 with the corresponding operations and their properties.

 From here, it is only a small step to transactions in Canton. Views are Merkle rose trees where the data at the nodes is instantiated with the Merkle functor corresponding to `view-metadata blindable × view-data blindable`. Then, transactions compose the Merkle functor for `common-metadata blindable × participant-metadata blindable × list` with views. We have lifted our machinery from these raw Merkle functors to the datatypes `view_m` and `transaction_m` using the lifting and transfer packages [13].

4 Creating Inclusion Proofs

So far, given a tree-like data type `t`, we showed how to systematically construct the corresponding type of ADSs `t_h` and their inclusion proofs, `t_m`. To make use of this construction in practice, we must also be able to create values of type `t_m` from values of type `t`. As in the case of our composition and fixpoint theorem, HOL’s lack of abstraction over type constructors makes it impossible to express this process in HOL in its full generality.

Instead, we show how it works on rose trees, as these are the most general type of tree in terms of branching. The construction can be easily adapted for other kinds of trees.

There are three basic operations:

- Hashing `hash-source-tree` returns the root hash for a source tree.
Embedding \textit{embed-source-tree} returns the inclusion proof that proves inclusion of the whole tree.

Fully blinding \textit{blind-source-tree} returns the inclusion proof that proves no inclusion at all.

Hashing and fully blinding conceptually do the same thing, but their return types (\(\prime a_h\) rose-tree\(_h\) and \(\prime (a_m, a_h)\) rose-tree\(_m\)) differ. As rose trees are parameterized by their node label type, hashing, embedding and fully blinding take parameters which hash or embed the node labels. The expected properties hold: the embedded and fully blinded versions of the same source tree have the same hash, namely the hashing of the source tree, and the former is a blinding of the latter.

The more interesting operations concern creating an inclusion proof for a subtree of a tree. For example, with Canton’s hierarchical transactions, we would like to prove that a subtransaction is really part of the entire transaction. Such a proof consists of the subtree itself, together with a path connecting the tree’s root to the subtree’s root. As noticed by Seefried [20], this corresponds to a zipper [12] focused on the subtree. This enables simple manipulation of such proofs in a functional programming style, well-suited to HOL. The zippers for rose trees are captured by the following types.

\begin{verbatim}
 type_synonym 'a path-elem = ('a × 'a rose-tree list × 'a rose-tree list)
 type_synonym 'a path = ('a path-elem list)
 type_synonym 'a zipper = ('a path × 'a rose-tree)
\end{verbatim}

Given a zipper that focuses on a node, we define the operations that turn rose trees into zippers and vice-versa

\begin{verbatim}
 tree-of-zipper ([], t) = t
 tree-of-zipper ((a, l, r) · z, t) = tree-of-zipper (z, Tree (a, l @ t · r))
 zipper-of-tree t ≡ ([], t)
\end{verbatim}

The zippers for inclusion proofs have the exact same shape, except that all the type constructors are subscripted by \(m\) and have another type parameter capturing the type of hashes (e.g., \(\prime a, \prime a_h\) zipper\(_m\)). Like for source trees, we define operations that blind and embed a path respectively, and define operations that convert between Merkle rose trees and their zippers. As expected, given the same source zipper, blinded and embedding its path yield a Merkle rose tree with the same hash. Furthermore, reconstructing a Merkle rose tree constructed by embedding a source zipper gives the same result as first reconstructing the source zipper, and then embedding it into a Merkle rose tree. Finally, we show that reconstruction of trees from zippers respects the blinding relation if the Merkle operations on the labels satisfy \textit{merkle-interface}:

\begin{verbatim}
 blinding-of-tree h bo (tree-of-zipper_m (p, t)) (tree-of-zipper_m (p, t')) =
 blinding-of-tree h bo t t'
\end{verbatim}

Inclusion proofs derived from zippers prove inclusion of a single subtree of the rose tree. When we want to create an inclusion proof for several subtrees, we create an inclusion proof for each individual subtree and then merge them into one. To that end, we have defined the function \textit{zippers-rose-tree} that enumerates the inclusion proof zippers for all nodes of a rose tree.

For Canton’s transactions, we have lifted the zippers and their theorems from rose trees to \textit{views}. We define the projection of the inclusion-proof embedded view for one participant \(P\) as follows:
1. Enumerate all zippers for the views in the transaction using the lifted version of `zippers-rose-tree`.

2. Each such zipper gives us direct access to the view's metadata. Use the metadata to determine whether P is a recipient of the view. If not, filter out the zipper.

3. Convert the zippers into inclusion proofs for the view and compose each of them with the transaction metadata inclusion proof.

4. Merge all these inclusion proofs into one.

This gives an inclusion proof for the recipient's projection of the transaction. At the end of the two-phase commit protocol, the domains's commit message contains an inclusion proof of the view common data for all the views that the participant should have received. By comparing this inclusion proof against the projection using `blinding-of-transaction`, the participant can decide whether it has received all views it was supposed to receive. (Conversely, checking that it does not receive extraneous views is simple as it can be read from the view metadata.)

5. **Related Work**

Miller et al. developed a lambda calculus with authentication primitives for generic tree structures [18]. The calculus was formalized in Isabelle/HOL by Brun and Traytel [4]. In the calculus, the programmer annotates the structures with authentication tags. Given a value of such a structure, and a function operating on it, their presented method automatically creates a correctness proof accompanying a result. The proof allows a verifier that holds only a digest of values with authentication tags (but not the values themselves) to check the function's result for correctness. The proof is a stream of inclusion proofs, one for each tagged value that the function operates on. Merging of inclusion proofs is not considered, although the streams can be optimized by sharing. Unlike Brun and Traytel [4] who use a deep embedding with the Nominal library, our embedding is shallow. Furthermore, our ADSs can provide inclusion proofs for multiple sub-structures simultaneously. However, we do not aim to derive correctness proofs for functions on the data structures.

White [22] designed a cryptographic ledger with lightweight proofs of transaction validity and formalized the design in Coq. The ledger is a function from assets to addresses. Transactions move assets between addresses and transform one ledger into another. The transactions' plausibility can be proved by checking that the assets existed in the old ledger and that the assets in the new ledger were moved to the correct place. Ledgers are represented by a tree, where leaves list assets and a tree path encodes an address. A Merkle structure over the tree and Merkle inclusion proofs of the assets' movement relieve the verifiers from having to know the entire ledger. A merge operation allows a single Merkle tree to provide several inclusion proofs. The Coq development is tailored to the use case: the Merkle trees are binary and the leaves are restricted to fixed single type (either asset lists or sentinels that mark empty subtrees). Our generic development can be instantiated to cover this structure.

Yu et al. [23] use Merkle constructions on different binary trees to implement logs with inclusion and exclusion proofs. The constructions are proved correct using a pen-and-paper approach. The proved properties are then used in the Tamarin verification tool to analyze a security protocol.

Ogawa et al [19] formalize binary Merkle trees as used in a timestamping protocol. They automatically verify parts of the protocol using the Mona theorem prover.

Seefried [20] observed that inclusion proofs in a Merkle tree correspond to the derivative of the type, i.e., a Huet-style zipper [12], where the subtrees in zipper context have been
replaced by the Merkle root hashes. McBride showed that zippers represent one-hole contexts [16]. In this analogy, our inclusion proofs correspond to contexts with arbitrarily many holes where the subtrees without holes have been replaced by the corresponding hashes. These many-hole zippers must not be confused with Kiselyov’s zippers [14] and Hinze and Jeuring’s webs [11], which are derived from the traversal operation rather than the data structure.

6 Conclusion and Future Work

We have presented a modular construction principle for authenticated data structures over HOL datatypes (i.e., functors) that have a tree-like shape, and basic operations over these structures. The class of supported functors includes sums, products, and functions, and is closed under composition and least fixpoints. The supported operations are root hash computations and merging of inclusion proofs. We showed how to instantiate the construction to rose trees, as well as to a real-world structure used in Canton, a Byzantine fault tolerant atomic commit protocol.

The ongoing formalization of the Canton protocol will continue to test our abstractions and trigger further improvements. As noted earlier, ADSs cannot only improve storage efficiency, but also provide confidentiality. For example, Canton uses them to keep parts of a transaction confidential to a subset of the transaction’s participants. However, reasoning about confidentiality is not straightforward. As hashing is injective, we can simply write inv h x in HOL to obtain the pre-image of a hash x. In fact, our current model does not even distinguish between the authenticated data structure and its root hash because of this. A sound confidentiality analysis must therefore restrict the adversary using an appropriate calculus, e.g., a Dolev-Yao style deduction relation [9].

In a system, if a source substructure S is unblinded somewhere in an inclusion proof ip, then the confidentiality analysis of the structure should unblind all occurrences of Blinded (Content S), in ip, regardless of the position where they occur. Our blinding orders and the merge operation do not do this. For example, consider a binary Merkle tree of two leaves that both store a value x. So both leaves have the same hash, and the recipient of an inclusion proof for one leaf detects that the other leaf has the same hash. So they can deduce that the other leaf also contains the value x. Yet, in our blinding order, the inclusion proof for one leaf is strictly smaller than an inclusion proof for both leaves. For proving Canton’s integrity guarantees, this is not a problem because confidentiality is not a concern. Moreover, all leaves in the transaction tree contain nonces and the domain checks that all hashes in its inclusion proof are distinct. So the lack of unblinding might not be a problem for reasoning about confidentiality in Canton, even though a proper treatment would simplify the soundness argument.

A related issue is that our modular approach does not apply to commutative structures, such as multisets. The conceptual problem is that the issue with substructures and confidentiality also appears when merging inclusion proofs for commutative structures. One option is consider Merkle functors as quotients with respect to a normalization function that collects all unblinding information and propagates the unblinding across the whole inclusion proof. The normalized inclusion proofs then serve as the canonical representatives. We have not yet worked out whether such a construction can still be modular and whether the quotients are still BNFs [10].

Moreover, our representation of hashes as terms makes hashing injective. While this is "morally equivalent" to standard cryptographic assumptions, an alternative (followed by [4]) would be to prove results about authentication as a disjunction: either the result holds, or a hash collision was found. The advantage of such a statement would be that hash
collisions become explicit, which simplifies the soundness argument for the formalization. As
is, nothing that prevents us from conceptually "evaluating" the hash function on arbitrarily
many inputs, which would not be cryptographically sound. To make hash collisions explicit,
we must make hashes explicit, i.e., use a type like bitstrings instead of terms. This can be
done as additional step.

typedef bitstring

class encode =
 fixes encode :: ('a ⇒ bitstring)
 assumes inj-encode: (inj encode)

 Encoding functions must be defined for all types used as arguments to \textit{blindable}. For
\textit{blindable} itself, we then define the actual hash operation as follows.

primrec root-hash :: ('a, encode \textit{blindable} h ⇒ bitstring) where
 ⟨root-hash (Garbage garbage) = encode-garbage garbage⟩
 | ⟨root-hash (Content x) = encode x⟩

 This can be lifted to forests using the functorial structure of Merkle functors, similar
to how \textsl{hash-F} \textit{h} = \textsl{hash-P}' ◦ \textsl{map-F} \textit{m} \textit{h} id first hashes the elements of \textit{F} using \textit{h}
and then applies the actual function \textsl{hash-P}'. We do not expect problems with extending
our constructions to such a model, but it is unclear how severely the indirection through
bitstrings impacts our proofs, in particular the Canton formalization.

References

1 Jasmin Christian Blanchette, Johannes Hölzl, Andreas Lochbihler, Lorenz Panny, Andrei
 Popescu, and Dmitriy Traytel. Truly modular (co)datatypes for Isabelle/HOL. In Gerwin
 Klein and Ruben Gamboa, editors, Interactive Theorem Proving (ITP 2014), volume 8558

2 Jasmin Christian Blanchette, Andrei Popescu, and Dmitriy Traytel. Operations on bounded
 operations.html, Formal proof development.

3 Sören Bleikertz, Andreas Lochbihler, Ognjen Marić, Simon Meier, Matthias Schmalz,
 and Ratko G. Veprek. A structured semantic domain for smart contracts. Computer

4 Matthias Brun and Dmitriy Traytel. Generic authenticated data structures, formally. In
 John Harrison, John O’Leary, and Andrew Tolmach, editors, Interactive Theorem Proving

9 D. Dolev and A. Yao. On the security of public key protocols. IEEE Transactions on

10 Basil Fürer, Andreas Lochbihler, Joshua Schneider, and Dmitriy Traytel. Quotients of bounded

 doi:10.1017/S0956796801004129.

 10.1017/S0956796897002864.

