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Abstract5

Aharoni et al. [3] proved the max-flow min-cut theorem for countable networks, namely that in6

every countable network with finite edge capacities, there exists a flow and a cut such that the flow7

saturates all outgoing edges of the cut and is zero on all incoming edges. In this paper, we formalize8

their proof in Isabelle/HOL and thereby identify and fix several problems with their proof. We also9

provide a simpler proof for networks where the total outgoing capacity of all vertices other than the10

source is finite. This proof is based on the max-flow min-cut theorem for finite networks.11
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1 Introduction21

The max-flow min-cut (MFMC) theorem for finite networks [10] has wide-spread applications:22

network analysis, optimization, scheduling, etc. Aharoni et al. [3] have generalized this23

theorem to countable networks, i.e., graphs with countably many vertices and edges, as follows:24

▶ Theorem 1. Let ∆ = (V, E, s, t, c) be a directed graph with countably many edges E ⊆ V ×V ,25

vertices s and t and a capacity function c :: E → R≥0. There exists a flow f and an s-t-cut C26

such that f saturates all outgoing edges e of C, i.e. f(e) = c(e), and is 0 on all incoming edges.27

The countable MFMC theorem is used, e.g., in probability [22] and programming language28

theory [17], privacy [7], and for random walks [21]. Here, we formalize this theorem in Isabelle.29

Traditionally, the max-flow min-cut theorem is stated in terms of equality of values:30

The value of the maximum flow is equal to the value of the minimum cut. Here, a flow31

f :: E ⇒ R≥0 assigns values to the edges of ∆ such that the incoming and outgoing amounts in32

every vertex are the same, except for the source s and the sink t. The value |f | is the amount33

that leaves the source s, i.e., |f | =
∑

x∈OUT(s) f(s, x) where OUT(x) = {y | (x, y) ∈ E}.34

Dually, an s-t-cut partitions the vertices into two sets (C, V − C) such that C contains the35

source s but not the sink t. Its value |C| is the total capacity of the edges that leave C:36

|C| =
∑

e∈OUT(C) c(e) where OUT(C) = {(x, y) ∈ E | x ∈ C ∧ y /∈ C}.37

For finite networks, the equality-of-values condition |f | = |C| is equivalent to the flow f38

saturating the cut C. In infinite networks, the saturation condition is preferable. For example,39

Fig. 1 shows a network with source s and sink t and countably many vertices xi. The edge40

capacities are given as white rounded rectangles on the edges. The black rectangles denote a41

flow f and the vertices in the grey area form a cut C. The flow f saturates the outgoing edges42
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Figure 1 A countable network with a flow and a cut of infinite value.

of C and we have |f | = ∞ = |C|. However, there is another flow g given by g(e) = 1/2f(e)43

that sends only half the amount of f . Still, |g| = ∞ = |C|. So the equality-of-values condition44

does not distinguish between f and g. Yet, we should consider only f a maximum flow, not45

g, as one can obviously increase g on some edges. The cut-saturation condition achieves this46

as it compares the finite capacities of individual edges with the flow through them.47

This subtlety highlights the main challenge in proving the max-flow min-cut theorem48

for countable networks: avoiding infinite summations. Aharoni et al.’s proof performs an49

elaborate dance around this problem, transforming the network several times on the way. Our50

formalization follows these steps through all the transformations (Sect. 3) until the problem51

is reduced to finding some sort of matching in an infinite bipartite graph. The original proof52

then jumps back to arbitrary networks. Our proof forks into two proofs: The first takes a53

shortcut to a significantly simpler argument based on the max-flow min-cut theorem for finite54

networks (Sect. 4.1). This shortcut works only for networks where the sum of the capacities55

of the outgoing edges of any vertex other than the source is finite. This condition is met56

in some applications [7, 17]. The second proof follows the original (Sect. 4.2).57

Our main contributions are as follows:58

We have formalized Aharoni et al.’s strong version of the max-flow min-cut theorem59

for countable networks in Isabelle/HOL. The resulting formalization is usable in other60

formalizations; e.g., we have applied it to the problem of proving parametricity of a61

probabilistic programming language with recursion [17]. The formalization has clarified62

the definitions and theorems and has revealed several problems in the original proofs63

(Sect. 6), which we have fixed. In particular, the reduction to bipartite graphs did not64

work as expected and required more general theorems.65

We give an alternative proof for the case when every inner vertex of a network has only66

finite total outgoing capacity. This local boundedness assumption allows us to reuse67

Lammich and Sefidgar’s formalization of the max-flow min-cut theorem for finite networks68

[14] by applying a majorised convergence argument. This proof is considerably simpler69

and suffices for some use cases in programming languages and privacy [7, 17].70

Neither of the two proofs requires a large background theory; basic notions like infinite71

summations, monotone and majorised convergence, and fixpoints of increasing functions72

suffice. The formalization therefore does not rely on specific Isabelle/HOL features and could73

have been done similarly in other systems like HOL4 and Coq.74

The formalization started in 2015 and a first version was published in the Archive of75

Formal Proofs in 2016. This paper describes the cleaned-up version for Isabelle2021 [16],76

which also includes the simpler proof for the bounded case. This paper first presents the77

corrected proof using conventional mathematical notation (Sects. 2–4). Informal proofs are78

given for theorems and lemmas unless our formalized proof follows the original proof and we79

have not found any glitches in there. We discuss the formalization aspects in Sect. 5 and the80

problems with the original proof in Sect. 6.81
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Figure 2 Example of a network (left) and a flow (values of 0 are omitted) with an orthogonal cut,
and the corresponding web (right) with a maximal wave (black rectangles) and its set of terminal
vertices (grey circles). Capacities and weights are shown as labels in rounded rectangles.

2 Graphs, Networks, and Webs82

In this section, we introduce the relevant notions for graphs, networks, and webs. The83

terminology and notation follows [3] to ease the comparison and make the presentation84

accessible to mathematicians. Formalization considerations will be discussed in Sect. 5.85

▶ Definition 2 (Graph). A (directed) graph G = (V, E) consists of a set of vertices V and a86

set of directed edges E ⊆ V × V . A graph is countable iff its set of edges is countable. The87

neighbours of a vertex x ∈ V are given by OUTG(x) = { y | (x, y) ∈ E } and ING(x) = { y |88

(y, x) ∈ E }. If the graph G is obvious from the context, we drop the subscript G.89

Given a function f :: E → R≥0, the in-degree d−
f :: V → R∞

≥0 of f given by d−
f (x) =90 ∑

y∈IN(x) f(y, x) assigns to each vertex x ∈ V the sum of f over all incoming edges to x.91

Analogously, d+
f (x) =

∑
y∈OUT(x) f(x, y) denotes f ’s out-degree of x ∈ V . If d+

f (x) = 0,92

then x is a sink for f . The set SINK(f) denotes the set of sinks for f .93

▶ Definition 3 (Network). A network ∆ = (V, E, s, t, c) is a graph (V, E) with two dedicated94

vertices, the source s and the sink t, and a capacity function c :: E → R≥0. A network is95

countable iff the graph is countable.96

▶ Definition 4 (Flow). For a network ∆ = (V, E, s, t, c), a flow f :: E → R≥0 in ∆ satisfies97

1. (Capacity restriction) f(x, y) ≤ c(x, y) for all (x, y) ∈ E, and98

2. (Kirchhoff’s 1st law) d−
f (x) = d+

f (x) for all x ∈ V − { s, t }.99

The value |f | of a flow f is f ’s out-degree of s: |f | = d+
f (s).100

▶ Definition 5 (Orthogonal cut). In a network ∆ = (V, E, s, t, c), a set of vertices C is a cut101

iff s ∈ C and t /∈ C. A cut C is orthogonal to a flow f iff f saturates all edges going out of102

C (i.e., f(x, y) = c(x, y) for all (x, y) ∈ E with x ∈ C and y /∈ C) and f is zero on all edges103

entering C (i.e., f(x, y) = 0 for all (x, y) ∈ E with x /∈ C and y ∈ C).104

We have already seen an orthogonal pair of a flow of infinite value and a cut in Fig. 1.105

Another example of an orthogonal flow-cut pair of value 9 is shown in Fig. 2 on the left.106

A network constrains the capacities of the edges in a graph, but the throughput of a107

vertex is unconstrained. So the sums on the two sides of Kirchhoff’s first law may be infinite.108

To avoid such infinite sums, a web constrains the throughput of a vertex and leaves the edge109

capacity unconstrained. Section 3.1 explains how to convert between networks and webs.110

▶ Definition 6 (Web). A web Γ = (V, E, A, B, w) is a graph (V, E) with two sets of vertices111

A, B ⊆ V (the sides A and B) and a weight function w :: V → R≥0. We refer to the112

components of Γ by VΓ, EΓ, AΓ, BΓ, and wΓ.113

ITP 2021
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Figure 3 The network and web from Fig. 2 with a different flow (left) and a web-flow (right).

The two vertex sets A and B correspond to the source and sink of a network, respectively.114

Currents in a web take the role of flows in a network. The difference is that vertices may115

leak some of the incoming current (condition 2), i.e., they need not preserve the current.116

▶ Definition 7 (Current). Given a web Γ = (V, E, A, B, w), a current f :: E → R≥0 satisfies117

1. (weight restriction) d−
f (x) ≤ w(x) and d+

f (x) ≤ w(x) for all x ∈ V ,118

2. (flow reflection) d−
f (x) ≥ d+

f (x) for all x ∈ V − A, and119

3. (side restriction) d−
f (x) = 0 for x ∈ A and d+

f (y) = 0 for y ∈ B.120

A current f is called a web-flow if d−
f (x) = d+

f (x) for all x ∈ V − (A ∪ B). If d+
f (x) ≥ w(x),121

then f exhausts x. If x ∈ A or d−
f (x) ≥ w(x), then f saturates x. A saturated sink x is122

called terminal. The set of saturated vertices is written as SAT(f) and the set of terminal123

vertices as TER(f) = SAT(f) ∩ SINK(f).124

Figure 2 shows an example web on the right where the weight of the vertices are shown in125

rounded rectangles. It is derived from the network on the left as we will see in Sect. 3.1. The126

black rectangles specify a current f whose terminal vertices TER(f) are shown in grey. It127

exhausts none of the vertices. The current f is not a web-flow because some vertices are128

leaking, e.g., d−
f (bc) = 7 > 6 = d+

f (bc).129

Figure 3 shows a different flow and current for same network and web, respectively. The130

flow on the left differs from the one in Fig. 2 only in that three units are routed through (s, a)131

and (a, c) instead of through (s, b) and (b, c). So the vertex c now mixes the units coming132

from a with the three units coming from b and outputs five of them to d and one to e. On the133

right, a web-flow is shown, which refines the flow on the left as will be explained in Sect. 3.1.134

The light-grey area contains the exhausted vertices, namely ad, cd, and ce. There are no135

terminal vertices as the three sinks dt, et, and eb are disjoint from the saturated vertices sa,136

sb, ad, cd, and ce.137

▶ Definition 8 (Essential vertex). Given sets of vertices S and B in a graph G = (V, E),138

a vertex x ∈ S is essential in S iff there is a path from x to a vertex in B which does not139

contain a vertex in S − {x}. The set of essential vertices of S is written as EG,B(S).140

▶ Definition 9 (Separation and roofing). A set S of vertices in graph G separates a vertex x141

from a set of vertices B iff every path from x to a vertex in B contains a vertex in S. The142

set S is said to separate a set of vertices A from B iff it separates every vertex in A from B.143

The roofing of S and B (notation RFG,B(S)) consists of all vertices which S separates144

from B. The strict roofing excludes essential vertices: RF◦
G,B(S) = RFG,B(S) − EG,B(S).145

In a web Γ = (V, E, A, B, w), S is A-B-separating iff it separates A and B. If f is146

a current in Γ, we abbreviate E(f) = EΓ,B(TER(f)) and RF(f) = RFΓ,B(TER(f)) and147

RF◦(f) = RF◦
Γ,B(TER(f)).148
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In the web in Fig. 2, the grey vertices TER(f) separate A from B. The vertex ac is not149

essential in TER(f) as all paths from ac to B pass either through cd or ce, which are both in150

TER(f). The roofing RF(f) contains all the vertices to the left of ad, cd, and ce, inclusive,151

i.e., RF(f) = {sa, sb, ac, bc, ad, eb, cd, ce}. The strict roofing RF◦(f) excludes the essential152

vertices ad, eb, and ce. Since ac is not essential in TER(f), the strict roofing includes ac.153

▶ Lemma 10 ([2, Lemma 2.14]). If S separates A from B in G, so does EG,B(S).154

The key tool for the proof is the concept of a wave. Waves are currents whose terminal155

vertices separate A from B and which are zero outside of the roofing of the terminal vertices.156

Intuitively, a wave’s essential terminal vertices identify a bottleneck in the web: since the157

wave saturates them, all other separating sets between the A side and the terminal vertices158

must allow at least the same current.159

▶ Definition 11 (Wave). A current f in Γ is a wave iff TER(f) is A-B-separating and160

d+
f (x) = 0 for x /∈ RF(f).161

In Fig. 2, the current f is 0 outside of RF(f), i.e., on the edges entering B. So f is a wave.162

Conversely, the web-flow g in Fig. 3 is not a wave as TER(g) = {} does not separate A from B.163

3 From Networks to Bipartite Webs and Back164

Aharoni et al.’s proof proceeds in four steps [3]:165

1. Transform the network into a web.166

2. Find a maximal wave in the web. Its roofing determines the cut.167

3. Trim the wave, i.e., reduce the wave such that strictly roofed vertices preserve the current.168

4. Extend the wave to a web-flow. This uses a reduction to bipartite webs in which every169

current is a web-flow by definition.170

In this section, we cover these steps up to the reduction to bipartite webs. The next section171

takes care of actually finding a suitable current in the bipartite web.172

3.1 From Networks to Webs173

The first step reduces a network ∆ to a web, which we denote by web(∆). Every edge e174

becomes a vertex of web(∆) with weight c(e). Every two incident edges (x, y) and (y, z) in175

the network induce an edge between the vertices (x, y) and (y, z) in web(∆). The side A176

consists of the edges leaving s and B of the edges entering t. Formally:177

Vweb(∆) = E∆ wweb(∆)(e) = c(e) Aweb(∆) = {(s, y) | (s, y) ∈ E∆}
Eweb(∆) = {((x, y), (y, z)) | (x, y) ∈ E∆ ∧ (y, z) ∈ E∆} Bweb(∆) = {(x, t) | (x, t) ∈ E∆}

178

For example, Figs. 2 and 3 show the same network ∆ on the left and the corresponding179

web web(∆) on the right. Webs have the advantage over networks that the current makes180

explicit how the incoming flow is split up into the outgoing edges of a vertex. In Fig. 3, e.g.,181

the web-flow on the right specifies that the three units flowing from sa to ac split up into182

two units going to cd and one unit going to ce. The flow in the network on the left cannot183

express this detail: the vertex c mixes the two incoming flows of 3 units each and distributes184

somehow into five and one outgoing units.185

Webs therefore allow us to capture flow preservation more precisely than networks. For if186

a flow f through a network vertex x is infinite, then flow preservation at x merely states187

that both sums are infinite: d−
f (x) = d+

f (x) = ∞. This creates problems if we want to188

ITP 2021
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Figure 5 A trimming of the wave from
Fig. 2.

subtract two infinite flows f and g from one another because d−
f (x) − d−

g (x) = ∞ − ∞ is not189

meaningful. So even if both f and g satisfy Kirchhoff’s first law at a vertex, it is not clear190

that their difference f − g satisfies it. In the corresponding web, in contrast, a web-flow g191

specifies precisely the finite amount each incoming edge contributes to each outgoing edge.192

So for a web-flow or current g, the sums d−
g (x) and d+

g (x) are finite because they are bounded193

by the finite vertex weights, i.e., the edge capacities in the network. Accordingly, subtraction194

of flows has nice algebraic properties such as d−
f (x) − d−

g (x) = d−
f−g(x) if f ≥ g.195

We next transfer the orthogonality notion from networks to webs. We show that an A-B-196

separating set S and an orthogonal web-flow f in web(∆) induce a cut Ŝ and an orthogonal197

flow f̂ in the original network ∆. Figure 3 illustrates the reduction: The flow f̂ in the network198

∆ on the left corresponds to the web-flow f in web(∆) on the right. The set E(SAT(f)) in199

grey on the right is orthogonal to the web-flow f and yields the cut Ŝ on the left.200

▶ Definition 12 (Orthogonal current). Let Γ = (V, E, A, B, w) be a web. A set of vertices S201

is orthogonal to a current f iff202

(i) d−
f (x) = w(x) for x ∈ S − A,203

(ii) d+
f (x) = w(x) for x ∈ (S ∩ A) − B, and204

(iii) f(x, y) = 0 for x ∈ V − RF◦(S) and y ∈ RF(S).205

Intuitively, an orthogonal current exhausts the vertices in S unless the vertex belongs to both206

sides. Condition (iii) ensures that nothing flows back into the roofed vertices. For example,207

the web-flow in Fig. 4 is not orthogonal to the vertices in the grey area, because one unit208

flows from the essential vertex ce back to the roofed vertex eb.209

▶ Lemma 13 (Reduction from networks to webs). Let ∆ = (V, E, s, t, c) be a network with210

s ̸= t and no outgoing edge from t and no direct edge from s to t. Suppose that all edges have211

positive capacity, i.e., c(e) > 0 for e ∈ E.212

(a) Let f be a web-flow in web(∆). Define f̂ by f̂(e) = max(d+
f (e), d−

f (e)) for e ∈ E. Then,213

f̂ is a flow in ∆.214

(b) Let S be an A-B-separating set in web(∆). Define Ŝ = RF∆,{t}({x | ∃y. (x, y) ∈ E(S)}).215

Then Ŝ is a cut in ∆.216

(c) Let an A-B-separating set S be orthogonal to a web-flow f . Then Ŝ is orthogonal to f̂ .217

Proof. (a) It is straightforward to check that f̂ is a flow.218

(b) If S is A-B-separating in web(∆), then S′ = {x | ∃y. (x, y) ∈ E(S)} separates s from219

t in ∆: for if π is a path from s to t in ∆, this path is non-empty as s ̸= t and therefore220

corresponds to a path π′ in web(∆) from A to B; as E(S) is A-B-separating by Lemma 10,221
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π′ meets S, say at web(∆)’s vertex (x, y), and therefore x is a vertex in π and x ∈ S′. Hence,222

the roofing Ŝ = RF∆,{t}(S′) contains s. Also, Ŝ does not contain t because t has no outgoing223

edges.224

(c) We first prove that all edges leaving Ŝ are in S. Let (x, y) ∈ E with x ∈ Ŝ and y /∈ Ŝ.225

As y /∈ Ŝ, there is a path π from y to t that bypasses S′. Hence x ∈ S′, as otherwise the226

path x, π bypasses S′, which contradicts S′ separating x from t, i.e., x ∈ Ŝ. Let π′ be the227

path in web(∆) whose vertices are the edges of x, π. If x = s, then π′ is a path from A to B,228

so (x, y) ∈ S as S is separating and only the first vertex of π′ can be in S because π bypasses229

S′. So suppose that x ̸= s. As x ∈ S′, there is a z with (x, z) ∈ S. As S is orthogonal to230

f , (x, z) ∈ SATweb(∆)(f). So, d−
f (x, z) = c(x, z) > 0 as x ̸= s and all edges have positive231

capacity. Hence, there must be an edge (u, x) ∈ E with f((u, x), (x, z)) > 0. By (iii) of232

orthogonality, (u, x) ∈ RF◦
web(∆)(S) and therefore (u, x) /∈ E(S). Thus, since E(S) separates233

(u, v) from B, the path (u, x), π′ must contain a vertex in E(S), which can only be (x, y) as234

π bypasses S′.235

We next show that f̂ saturates all edges leaving Ŝ. Let (x, y) ∈ E such that x ∈ Ŝ and236

y /∈ Ŝ. We must show that f̂(x, y) = c(x, y). By the above argument, (x, y) ∈ S. If x = s,237

then y ≠ t as there is no direct edge from s to t. So, (x, y) ∈ Aweb(∆) and (x, y) /∈ Bweb(∆)238

and therefore f̂(x, y) = max(d−
f (x, y), d+

f (x, y)) = d+
f (x, y) = wweb(∆)(x, y) = c(x, y) by (ii)239

of othogonality. Otherwise, if x ̸= s, then (x, y) ∈ S − Aweb(∆) and d−
f (x, y) = c(x, y) by (i)240

of orthogonality and d−
f (x, y) = d+

f (x, y) as f is a web-flow. Hence, f̂(x, y) = c(x, y).241

It remains to show that f̂ is zero on all edges entering Ŝ. Let (x, y) ∈ E such that242

x /∈ Ŝ and y ∈ Ŝ. Clearly, x ̸= s as otherwise S′ would not separate s from t, and therefore243

(x, y) /∈ Aweb(∆). So, it suffices to show that d−
f (x, y) = 0 as d−

f (x, y) ≥ d+
f (x, y) by the flow244

restriction on the current f . Consider any edge to the vertex (x, y) in web(∆) from the245

vertex (u, x) ∈ Vweb(∆) = E. By (iii) of orthogonality, f((u, x), (x, y)) = 0 if (x, y) ∈ RF(S)246

and (u, x) /∈ RF◦(S).247

To see (x, y) ∈ RF(S), consider any path π from (x, y) to some (z, t) ∈ Bweb(∆). This248

path π induces a path π′ in ∆ from y to t, which must meet S′ as y ∈ Ŝ. Let w be the last249

vertex on π′ that is in S′. Then, w has a successor vertex w′ on π′ as otherwise w = t ∈ Ŝ250

violates Ŝ being a cut. As w is the last vertex, the edge (w, w′) leaves Ŝ and therefore251

(w, w′) ∈ S, i.e., π meets S.252

Next, suppose that (u, x) ∈ RF◦(S). As x is not separated from t by S′, there is a path253

π from x to t that bypasses S′. Let π′ be the path in web(∆) whose edges are the vertices254

of the path u, π in ∆, i.e., π′ starts in the vertex (u, x). As (u, x) is strictly roofed by S,255

there must be a vertex (z, z′) on π′ that meets E(S) and this vertex cannot be not (u, x).256

Hence, z is a vertex on π and z ∈ S′, which contradicts that π bypasses S′. Therefore,257

(u, x) /∈ RF◦(S), which completes the proof of orthogonality of Ŝ and f̂ . ◀258

By this lemma, to find a cut and an orthogonal flow in a network ∆, it suffices to find a259

separating set of vertices in web(∆) and an orthogonal web-flow f . In the next section, we260

focus on finding a suitable separating set, namely the terminal vertices of a maximal wave.261

3.2 Maximal Waves and Trimmings262

Waves and currents can be ordered pointwise: if f and g are waves or currents in Γ =263

(V, E, A, B, w), then f ≤ g iff f(e) ≤ g(e) for all e ∈ E. The waves in a countable web form264

a chain-complete partial order (ccpo), and so do the currents. Therefore, every countable265

web contains a maximal wave [3, Cor. 4.4] by Zorn’s lemma.266
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Recall that a wave’s terminal vertices describe a bottleneck in the web. Intuitively, the267

maximal wave identifies a narrowest bottleneck in the web: Roughly speaking, the roofed268

part cannot contain a tighter bottleneck because if so, the current could not saturate the269

terminal vertices due to the flow reflection condition. Conversely, if a separating set beyond270

the terminal vertices formed a tighter bottleneck, then we could extend the wave and saturate271

that smaller bottleneck, which contradicts maximality. Here, it is crucial that a wave may272

partially leak the incoming current of some vertices, i.e., they need not preserve the current.273

A trimming of a wave reduces the current such that the incoming current is preserved on274

the strict roofing. For example, the wave in Fig. 2 on the right is maximal. Its trimming is275

shown in Fig. 5. The current is reduced on the edge from sb to bc from 7 to 6 and on the276

edge from sa to ac from 4 to 0.277

▶ Definition 14 (Trimming). Let f be a wave in Γ = (V, E, A, B, w). A wave g is called a278

trimming of f iff279

(i) g ≤ f ,280

(ii) d+
g (x) = d−

g (x) for all x ∈ RF◦(f) − A, and281

(iii) E(TER(g)) − A = E(TER(f)) − A.282

▶ Lemma 15 ([3, Lemma 4.8]). Every wave in a countable web has a trimming.283

Proof. The trimming for a wave f is constructed as the transfinite fixpoint iteration of the284

one-step trimming function trim1 starting at f . For a wave g, trim1(g) picks some strictly285

roofed vertex z where Kirchhoff’s first law does not hold, i.e., z ∈ RF◦(g)−A∧d+
g (z) ̸= d−

g (z).286

Then, trim1 reduces the current on z’s incoming edges by the factor d+
g (z)

d−
g (z) so that Kirchhoff’s287

first law holds at z afterwards.288

trim1(g)(y, x) =

g(y, x) if g is a trimming
if x = z then d+

g (z)
d−

g (z) ∗ g(y, x) else g(y, x) if such a z exists
289

The fixpoint exists by Bourbaki-Witt’s fixpoint theorem [8] as trim1 is decreasing, i.e.,290

trim1(g) ≤ g, and the set of waves g with g ≤ f is a chain-complete partial order w.r.t. ≥.291

The proof that the fixpoint satisfies the trimming conditions relies on d+ and d− being point-292

wise order-continuous, which holds by monotone convergence as the web is countable. ◀293

3.3 A Linkage in the Quotient of a Web294

The trimming of a maximal wave f describes the first half of the web-flow we are looking295

for (Fig. 5). For the second half, we consider the residual web beyond f ’s terminal vertices,296

which is called the quotient Γ/f . Figure 6 shows the quotient for the web and wave f from297

Fig. 2. The essential terminal vertices of the wave become the side A. The quotient does298

not include the roofed vertex eb even though it is reachable from E(TER(f)) as we want to299

construct an orthogonal current and nothing may flow back into roofed vertices. The formal300

definition is a bit complicated so that it also works when there are edges between vertices301

in E(TER(f)) or when E(TER(f)) contains vertices from B. The details are discussed in302

Sect. 6.303

▶ Definition 16 (Quotient). Let Γ = (V, E, A, B, w) and f be a wave in Γ. The quotient304

Γ/f is the following web:305

EΓ/f = {(x, y) ∈ E | x /∈ RF◦
Γ(f) ∧ y /∈ RFΓ(f)}306

AΓ/f = EΓ(TERΓ(f)) − (B − A) and BΓ/f = B307
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Figure 6 The quotient of the web and
wave of Fig. 2 with a linkage.
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Figure 7 A web that contains no non-zero
wave, but the zero wave is a hindrance.

wΓ/f (x) = w(x) for x ∈ V − (RF◦
Γ(f) ∪ (TERΓ(f) ∩ B)) and wΓ/f (x) = 0 for x ∈308

TERΓ(f) ∩ B.309

In the quotient Γ/f , we now look for a web-flow g that saturates all vertices in A, i.e., TER(f).310

Such a web-flow is called a linkage. Then, the web-flow in Γ is given by the trimming of f311

plus g. Figure 6 shows such a linkage; together with the trimmed wave from Fig. 5, they form312

the orthogonal web-flow whose reduction (Lemma 13) yields the network flow shown in Fig. 2.313

▶ Definition 17 (Linkage [3, Def. 4.1]). A web-flow f in a web Γ = (V, E, A, B, w) is called314

a linkage iff f exhausts all vertices in A, i.e., d+
f (a) = w(a) for all a ∈ A.315

Under what conditions does a web Γ contain a linkage? Certainly, there must not be a316

bottleneck beyond the A side. Waves describe such bottlenecks. So if the zero wave is the317

only wave in Γ, then the A side is the only bottleneck. Moreover, we need that all vertices318

in A are essential for separation unless their weight is 0. For example, the web in Fig. 7319

contains only the zero wave, but not a linkage. The problem is that the vertex a2 with320

weight 1 is bottlenecked by the zero-weight vertex x ∈ E(TER(0)). Such a situation is called321

a hindrance.322

▶ Definition 18 (Hindrance, looseness, [3, Def. 4.5]). A wave f in a web Γ = (V, E, A, B, w)323

is a >ε-hindrance iff there is a vertex a ∈ A − E(TER(f)) such that ε < w(a) − d+
f (a). Also,324

f is a hindrance iff there exists a ε > 0 such that f is a >ε-hindrance. A web is called325

hindered (respectively >ε-hindered) iff it contains a hindrance (respectively a >ε-hindrance).326

A web is called loose iff it contains no non-zero wave and the zero wave is not a hindrance.327

▶ Lemma 19 ([3]). If f is a maximal wave in the web Γ = (V, E, A, B, w), then Γ/f is loose.328

Proof. Suppose g is a wave in Γ/f . Then it is easy to verify that f + g is a wave in Γ,329

where (f + g)(e) = f(e) + g(e). By the maximality of f , g must be the zero wave. Now,330

assume for a proof by contradiction that the zero wave 0 in Γ/f is a hindrance, i.e., there331

is a vertex a ∈ EΓ,B(TERΓ(f)) − EΓ/f,B(TERΓ/f (0)) with w(a) > 0. So, there is a path π332

in Γ from a to some b ∈ B whose vertices are not in TERΓ(f) − {a}. By construction, π333

is also a path in Γ/f from a to b ∈ BΓ/f . As a /∈ EΓ/f (TERΓ/f (0)), π contains a vertex334

x ∈ TERΓ/f (0) ⊆ TERΓ(f), which contradicts the choice of π. ◀335

3.4 Reduction to Bipartite Webs336

To find linkages in countable loose webs, Aharoni et al. [3] transform webs into bipartite337

webs. A web Ω = (V, E, A, B, w) is bipartite iff there are only edges from nodes in A to nodes338

in B, i.e., iff V = A ∪ B and A ∩ B = ∅ and E ⊆ A × B.339
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Figure 8 An unhindered web Γ (left) and
its bipartite reduction bp(Γ) (right). The
wave f in bp(Γ) induces the wave f̃ in Γ.
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Figure 9 A linkage g in bp(Γ) (left) that
yields a linkage (right) in the web Γ from
Fig. 8 by trimming g̃ at vertex x.

We briefly review the transformation described in [1]; Fig. 8 shows an example. In340

this section, we always assume that the web Γ = (V, E, A, B, w) has no incoming edges341

to vertices in A, no outgoing edges from vertices in B, no loops, and that A and B are342

disjoint. In the bipartite web bp(Γ), there are two copies x′ and x′′ for every vertex343

x ∈ V − (A ∪ B). Vertices x ∈ A and y ∈ B only have one copy x′ and y′′, respectively.344

The edges are Ebp(Γ) = {(x′, y′′) | (x, y) ∈ E} ∪ {(x′, x′′) | x ∈ V − (A ∪ B)} and the345

sides Abp(Γ) = {x′ | x ∈ V − B} and Bbp(Γ) = {x′′ | x ∈ V − A} and the weight function346

w(x′) = w(x) for x ∈ V − B and w(x′′) = w(x) for x ∈ V − A.347

An A-B-separating set S in bp(Γ) induces an A-B-separating set S̃ in Γ given by S̃ =348

(AS ∩ BS) ∪ (A ∩ AS) ∪ (B ∩ BS) where AS = {v | v′ ∈ S} and BS = {v | v′′ ∈ S} [1].349

Moreover, a wave f in bp(Γ) induces a wave f̃ in Γ given by f̃(x, y) = f(x′, y′′) for (x, y) ∈ E350

with TERΓ(f̃) = ˜TERbp(Γ)(f) [3, Lemma 6.3].351

▶ Lemma 20. If Γ is loose, then bp(Γ) is unhindered.352

Proof. Suppose that f is a hindrance in bp(Γ). Let a ∈ V − B be the vertex whose copy a′
353

witnesses the fact that f is a hindrance, i.e., a′ /∈ Ebp(Γ)(TERbp(Γ)(f)) and d+
f (a′) < w(a).354

As f̃ is a wave in Γ and Γ is loose, f̃ = 0. Hence, d+
f (x′) = f(x′, x′′) = d−

f (x′′) for all355

x ∈ V − (A ∪ B).356

We prove that the zero wave 0 is a hindrance in Γ as witnessed by a, which contradicts357

Γ being loose. We first show that a ∈ A by contradiction. So suppose a /∈ A. As358

TERbp(Γ)(f) is A-B-separating and (a′, a′′) ∈ Ebp(Γ) with a′ ∈ Abp(Γ) and a′′ ∈ Bbp(Γ),359

either a′ ∈ TERbp(Γ)(f) or a′′ ∈ TERbp(Γ)(f). In the first case, d+
f (a′) = 0, so a′′ /∈ SAT(f),360

i.e., a′ is essential in TERbp(Γ)(f), which contradicts the choice of a. In the second case,361

a′′ ∈ SAT(f), so d+
f (a′) = w(a), which contradicts d+

f (a′) < w(a).362

Moreover, a is not essential in TERΓ(0). Suppose it was. Then there is a path π from a to363

some b ∈ B which does not pass through any vertex in TERΓ(0) other than a. Every vertex364

x in π other than a and b is in V − (A ∪ B) because no vertex in B has an outgoing edge and365

none in A an incoming edge, so (x′, x′′) ∈ Ebp(Γ). Let x denote the last vertex on π such that366

x /∈ B and x′ /∈ TERbp(Γ)(f) (in case no such vertex exists, let x = a). Let y be the next367

vertex on π after x. So, (x′, y′′) ∈ E and therefore y′′ ∈ TERbp(Γ)(f), because TERbp(Γ)(f)368

is A-B-separating and—in case x = a—a′ is not essential in TERbp(Γ)(f). As y ̸= a lies on369
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π, we have y /∈ TERΓ(0). Overall, we get 0 = d−
0 (y) < w(y) = wbp(Γ)(y′′) = d−

f (y′′). So370

y /∈ B (otherwise d−
f (y′′) = 0) and y′ /∈ TERbp(Γ)(f) as d+

f (y′) = f(y′, y′′) = d−
f (y′′) > 0.371

This contradicts x being the last such vertex on π. ◀372

Aharoni et al. wrongly claimed the stronger statement that if Γ is loose then bp(Γ) is loose373

[3, below Thm. 6.5]. We provide a counterexample in Sect. 6. Note that the reduction bp374

does not preserve unhinderedness either.375

Conversely, a linkage g in bp(Γ) yields a linkage in Γ as illustrated in Fig. 9: For g̃ as376

defined above, we have d+
g̃ (a) = d+

g (a′) = w(a) for a ∈ AΓ and d+
g̃ (x) ≥ d−

g̃ (x) for all x /∈ B.377

So the out-flow of some vertices may surpass the in-flow, e.g., x in Fig. 9. Analogously to378

the trimming of waves, we can trim g̃ using a fixpoint iteration to obtain the linkage in Γ.379

▶ Lemma 21 ([3]). If bp(Γ) contains a linkage and Γ is countable, then Γ contains a linkage.380

4 Linkability in unhindered bipartite webs381

By the results in Sect. 3, the max-flow min-cut theorem for the countable case (Thm. 1)382

follows from the following theorem, which we prove in this section.383

▶ Theorem 22 (Bipartite linkability). A countable unhindered bipartite web contains a linkage.384

In fact, we present two ways how to construct such a linkage in an unhindered bipartite385

web. Both ways enumerate the vertices in A = {a1, a2, a3, . . .} and construct a sequence of386

web-flows fi that exhaust {a1, . . . , ai} so that the limit f exhausts all of A. The difference is387

in how the fi are constructed and in the limit argument. In Sect. 4.1, each fi is constructed388

independently as the limit of maximum flows in a finite network; the existence and the389

linkage property of the limit for these fi themselves is shown using diagonalization and390

majorised convergence. Unfortunately, this construction only works if the neighbours of any391

ai vertex have finite total weight.392

In contrast, fi+1 in Sect. 4.2 saturates ai+1 by extending the previous web-flow fi with393

a sequence of augmenting flows in the so-called residual network, similar to how classic394

max-flow algorithms for finite networks work [9]. This construction avoids taking infinite395

summations and thus yields a proof of Thm. 22 without additional assumptions. However,396

the proof is more involved than in the bounded case.397

4.1 The Bounded Case398

We first prove Thm. 22 for the case where the neighbours of each vertex in A have only399

bounded total weight, i.e.,
∑

y∈OUT(x) w(y) < ∞ for all x ∈ A. The general case is shown in400

the next section.401

The next lemma states the crucial property of unhindered bipartite webs, namely that the402

total weight of any finite set of A vertices is at most the total weight of their neighbours in B.403

▶ Lemma 23. Let Ω = (V, E, A, B, w) be a countable unhindered bipartite web and X ⊆ A be404

finite. Then,
∑

x∈X w(x) ≤
∑

y∈E[X] w(y) where E[X] = {y | ∃x ∈ X. (x, y) ∈ E} denotes405

the neighbours of X.406

Proof by contradiction. Suppose there exists a finite set X ⊆ A such that
∑

x∈X w(x) >407 ∑
y∈E[X] w(y). Let X be such a set which is minimal w.r.t. to set inclusion, i.e.,

∑
x∈X′ w(x) ≤408 ∑

y∈E[X′] w(y) for all X ′ ⊊ X. Such a minimal set exists as we only consider finite subsets of A.409

Clearly, X is non-empty as otherwise the inequality (??) would hold trivially. Let x0, . . . , xn410
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be the elements of X, and y0, y1, . . . the elements of E[X]. Note that
∑

y∈E[X] w(y) <411 ∑
i≤n w(xi) < ∞. We will construct a hindrance in Ω with hindered vertex xn using412

Corollary 24.413

Define f : X → R≥0 by414

f(xi) =
{

w(xi) if i < n,∑
y∈E[X] w(y) −

∑
i<n w(xi) if i = n,

415

and g : E[X] → R≥0 by g(y) = w(y). Then,
∑

x∈X f(x) =
∑

y∈E[X] g(y) =
∑

y∈E[X] w(y) <416

∞. Let X̂ ⊆ X. We want to show that
∑

x∈X̂ f(x) ≤
∑

y∈E[X̂] g(y). If X̂ = X, this417

holds trivially by construction of f and g. So suppose X̂ ⊊ X. Note that w(xn) =418 ∑
i≤n w(xi) −

∑
i<n w(xi) >

∑
y∈E[X] w(y) −

∑
i<n w(xi) = f(xn). Hence

∑
x∈X̂ f(x) =419 ∑

x∈X̂−xn
f(x) + 1X̂(xn) ∗ f(xn) ≤

∑
x∈X̂−xn

w(x) + 1X̂(xn) ∗ w(xn) =
∑

x∈X̂ w(x) ≤420 ∑
y∈E[X̂] w(y) =

∑
y∈E[X] g(y), where the last inequality holds by the minimality of X.421

Therefore, by Corollary 24, there exists a function h′ : X ×E[X] → R≥0 such that h′(x, y) = 0422

if (x, y) /∈ E, and f(x) =
∑

y∈E[X] h′(x, y) and g(y) =
∑

x∈X h′(x, y) for all x ∈ X and423

y ∈ E[X]. Define h : E → R≥0 by h(x, y) =
{

h′(x, y) if x ∈ X

0 otherwise
for (x, y) ∈ E. We show424

that h is a hindrance in Ω.425

First, h is a current in Ω as d+
h (x) = f(x) ≤ w(x) for x ∈ X and d+

h (x) = 0 for x ∈ V −X426

and d−
h (y) = g(y) = w(y) for y ∈ E[X] and d−

h (y) = 0 for y ∈ V − E[X]. Moreover, h is also427

a wave as TER(h) ⊇ (A − X) ∪ E[X] is A-B-separating for if (x, y) ∈ E with x /∈ TER(h),428

then x ∈ X and therefore y ∈ E[X]. Finally, note that xn is not in E(TER(h)) because all429

its neighbours E[{xn}] are terminal. As d+
h (xn) = f(xn) < w(xn), h is a hindrance in Ω.430

This contradicts Ω being unhindered. ◀431

This lemma allows us to understand a linkage in an unhindered bipartite web as an A×B432

matrix over the reals where the weights on A are the row sums of the countable matrix and433

the edges describe the matrix elements that may be non-zero. In the proof below, we will434

use the following result about the existence of a countable matrix with given marginals.435

▶ Proposition 24 (Matrix with given marginals). Let f : A → R≥0 and g : B → R≥0 for436

countable sets A, B such that
∑

i∈A f(i) =
∑

j∈B g(j) < ∞, and let R ⊆ A×B. Assume that437 ∑
i∈X f(x) ≤

∑
j∈R[X] g(j) for all X ⊆ A. Then, there exists a function h : A × B → R≥0438

such that for all i ∈ A and j ∈ B:439

h(i, j) = 0 if (i, j) /∈ R,440

f(i) =
∑

j∈N h(i, j), and441

g(j) =
∑

i∈N h(i, j).442

Proposition 24 follows easily from the following proposition by Kellerer, which is an443

instance of Strassen’s theorem [24]. We have formalized neither Kellerer’s proposition nor444

Strassen’s theorem; instead, we adapted Kellerer’s proof so that we directly prove Prop. 24.445

▶ Proposition 25 ([12, Satz 4.1]). Let f, g : N → R≥0 and t : N × N → R≥0 such that446 ∑
j∈N t(i, j) < ∞ for all i ∈ N, and

∑
i∈N t(i, j) < ∞ for all j ∈ N, and for all sets447

X, Y ⊆ N,448 ∑
i∈X

f(i) ≤
∑
i∈X
j∈Y

t(i, j) +
∑

j∈N−Y

g(j) and
∑
j∈Y

g(j) ≤
∑
i∈X
j∈Y

t(i, j) +
∑

i∈N−X

f(i)449
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Then, there exists a function h : N × N → R≥0 such that h ≤ t and f(i) =
∑

j∈N h(i, j) and450

g(j) =
∑

i∈N h(i, j) for all i, j ∈ N.451

Proof of Proposition 24. Set t(i, j) = 1R(i, j) · max(f(i), g(j)) where 1A is the character-452

isitic function for a set A. We apply Proposition 25 to f , g, and t. Clearly,
∑

j∈N t(i, j) ≤453 ∑
j∈N g(j) < ∞ for i ∈ N and

∑
i∈N t(i, j) ≤

∑
i∈N f(i) < ∞. Let X, Y ⊆ N. Then,454 ∑

i∈X f(i) ≤
∑

j∈R[X] g(j) =
∑

j∈R[X]−Y g(j)+
∑

j∈R[X]∩Y g(j) ≤
∑

j∈R[X]−Y g(j)+
∑

j∈N−Y g(j)455

◀456

We can now prove bipartite linkability in the bounded case. The proof starts with a457

sequence of increasing finite subsets An of A that converge to A, and suitable, possibly458

infinite subsets Bn of their neighbours in B. For these subsets, we obtain a An × Bn matrix459

hn with the right marginals. This sequence hn converges and its limit yields the desired460

linkage, using a majorised convergence argument with the bound on the neighbours.461

▶ Theorem 26 (Bounded bipartite linkability). A countable unhindered bipartite web Ω =462

(V, E, A, B, w) contains a linkage if
∑

y∈OUT(x) w(y) < ∞ for all x ∈ A.463

Proof. Let A = {a0, a1, . . .} be an enumeration of all vertices in A. We write An =464

{a0, . . . , an}. We start by defining two sequences of functions fn : An ∪ {t} → R≥0 and465

gn : B → R≥0 as follows, where t /∈ V is a new vertex. For each n and each X ⊆ An,466

choose a set Yn,X ⊆ R[X] such that
∑

x∈X w(x) ≤
∑

y∈Yn,X
w(y) < ∞; such a YX exists467

because
∑

x∈X w(x) < ∞ (as X is finite) and
∑

x∈X w(x) ≤
∑

y∈R[X] w(y) by Lemma 23.468

Set Yn =
⋃

X⊆An
Yn,X and sn =

∑
y∈Yn

w(y). Then, sn < ∞ as sn =
∑

y∈
⋃

X⊆An

w(y) ≤469 ∑
X⊆An

∑
y∈Yn,X

w(y) is bounded by a finite sum of values that are all finite by choice of Yn,X .470

Define fn(x) = w(x) for x ∈ An and fn(t) = s −
∑

x∈An
w(x). Define gn(y) = 1Yn(y) · w(y).471

Set Rn = E∩(An×Yn)∪{t}×Yn. Then, fn, gn, and Rn satisfy the assumptions of Corollary 24,472

as the following shows: Clearly,
∑

x∈An∪{t} f(x) = s =
∑

y∈Yn
g(y) < ∞ by definition of fn473

and gn and choice of Yn. So let X ⊆ An ∪ {t}. If t ∈ X, then Rn[X] = Yn and
∑

x∈X f(x) ≤474 ∑
x∈An∪{t} f(x) = s =

∑
y∈Yn

g(y). Otherwise, if t /∈ X, then Yn,X ⊆ R[X] ∩ Yn = Rn[X]475

and
∑

x∈X f(x) =
∑

x∈X w(x) ≤
∑

y∈Yn,X
w(y) ≤

∑
y∈R[X]∩Yn

w(y) =
∑

y∈Rn[X] g(y) by476

the choice of Yn,X . By Corollary 24, there are thus functions hn : An ∪ {t} × Y → R≥0 such477

that hn(x, y) = 0 if (x, y) /∈ Rn, and fn(x) =
∑

y∈Y hn(x, y), and gn(y) =
∑

x∈An∪{t} hn(x, y)478

for all x ∈ An ∪ {t} and y ∈ Yn.479

Define the sequence of functions h′
n : E → R≥0 by480

h′
n(x, y) =

{
hn(x, y) if x ∈ An and y ∈ Yn

0 otherwise
481

for (x, y) ∈ E. Then, if x ∈ An, we have w(x) = fn(x) =
∑

y∈Y h(x, y) = d+
h′(x).482

Moreover, d−
h′

n
(y) ≤ w(y) for all y ∈ B because if y ∈ Yn then w(y) =

∑
x∈An∪{t} h(x, h) ≥483 ∑

x∈An
hn(x, y) = d−

h′
n
(y). Further, 0 ≤ h(x, y) ≤ w(x) < ∞ for all (x, y) ∈ E, so h is484

bounded. Using a standard diagonal argument due to Cantor, there must be a subsequence485

h′
nk

of h′
n such that h′

nk
(x, y) converges pointwise for all (x, y) ∈ E as E is countable. Set486

h(x, y) = limk→∞ h′
nk

(x, y). We show that h is the linkage we are looking for.487

First, since w(ai) = d+
h′

nk

(ai) for all i < nk, taking the limit also gives us w(ai) = d+
h (ai)488

by majorised convergence as h′
nk

(ai, y) ≤ w(y) and
∑

(x,y)∈E w(y) ̸= ∞ by assumption. So h489

saturates all vertices in A. Moreover, h is also a current in Ω as d−
h (y) = limk→∞ d−

h′
nk

(y) ≤490

w(y) for all y ∈ Y . As in a bipartite web, every current is a web-flow, h is a linkage. ◀491
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Together with the reduction from Sect. 3, this yields a proof for Thm. 1 when only the492

source s in the network ∆ = (V, E, s, t, c) may have outgoing edges whose total capacity is493

infinite, i.e., d+
c (x) < ∞ for x ∈ V − {s}. The MFMC use cases in probability theory [22]494

and privacy [7] satisfy this condition.495

4.2 The Unbounded Case496

We now show that Thm. 22 holds even when the neighbours of a vertex have infinite total497

weight. Our proof generalizes Aharoni et al.’s from loose to unhindered bipartite webs. For498

the remainder of this section, we always assume that Ω = (V, E, A, B, w) is a countable499

bipartite web. We write Ω ⊖ f for the bipartite web Ω where the weight of the vertices has500

been reduced by the current f that flows through them.501

▶ Definition 27 (Residual web). If Ω = (V, E, A, B, w) is a bipartite web and f a current in502

Ω, we write Ω ⊖ f for the web (V, E, A, B, w′) where the new weight function w′ is given by503

w′(x) = w(x) − d+
f (x) for x ∈ A and w′(x) = w(x) − d−

f (x) for x ∈ B.504

If f and g are currents or waves in Ω and Ω ⊖ f , respectively, so is f + g in Ω. Similarly,505

if f and g are currents in Ω and g ≤ f , then f − g is a current in Ω ⊖ f ; if additionally f506

is a wave in Ω, so is f − g. Also, let f be a wave in Ω and Ω be unhindered, then Ω ⊖ f is507

unhindered and—in case f is a maximal wave—loose.508

The proof rests on the following step: If Ω is unhindered, then we can find a current f509

that saturates some vertex a ∈ A such that the residual web Ω ⊖ f is unhindered again.510

▶ Lemma 28 (Vertex saturation in unhindered bipartite webs). If Ω is unhindered and a ∈ A,511

then there exists a current f in Ω such that d+
f (a) = w(a) and Ω ⊖ f is unhindered.512

With this lemma, we can now prove that countable unhindered bipartite webs are linkable513

(Thm. 22). The proof is analogous to [3, Thm. 6.5], but uses our Lemma 28 instead.514

Proof of Thm. 22. Enumerate the vertices in A as a1, a2, . . .. Recursively define a family515

fn of currents in Ω as follows:516

(i) f0 is the zero current.517

(ii) For n > 0, pick a current gn in Ω ⊖ fn−1 such that d+
g (an) = wΩ⊖fn−1(an) and518

Ω ⊖ fn−1 ⊖ g is unhindered. Set fn = fn−1 + g.519

A simple induction on n shows that fn is a well-defined current in Ω and Ω⊖fn is unhindered520

for all n; here, Lemma 28 applied to Ω ⊖ fn−1 ensures that gn exists. Set g(e) = sup{fn(e) |521

n ∈ N} for e ∈ E. Then, g is a current in Ω with d+
g (x) = w(x) for all x ∈ A. As every522

current in a bipartite web is a web-flow, g is the linkage we are looking for. ◀523

The proof of the saturation lemma 28 uses the following theorems and lemmas, which524

have already been proven by Aharoni et al. [3]. We have formalized all of them and fixed the525

glitches in the original statements and proofs.526

▶ Theorem 29 (Flow attainability [3, Thm. 5.1]). Let ∆ = (V, E, s, t, c) be a countable527

network with s ̸= t, no loops and no incoming edges to s, and such that for all x ∈ V − {t},528

the sum of capacities of the incoming edges to x or the sum of capacities of the outgoing529

edges from x is finite, i.e., d−
c (x) < ∞ or d+

c (x) < ∞. Then there exists a flow f in ∆ such530

that d+
f (s) = sup{|g| | g is a flow in ∆} and d−

f (x) ≤ |f | for all x ∈ V .531

▶ Lemma 30 ([3, Lemma 6.7]). Let Ω = (V, E, A, B, w) be a countable bipartite web and let532

u :: V → R≥0 such that u(x) = 0 for x ∈ A, u(y) ≤ w(y) for y ∈ B, and ε =
∑

x∈B u(x) < ∞.533



A. Lochbihler 1:15

Let Ω′ = (V, E, A, B, w − u) be the web Ω with w reduced by u. If Ω′ is >ε-hindered, then Ω534

is hindered.535

Proof. Let f be a hindrance in Ω′ and a be a >ε-hindered vertex, i.e., a ∈ A−EΩ′(TERΩ′(f))536

and w(a) − d+
f (a) > ε. We define a network ∆ as follows: The vertex set V∆ of ∆ is V ∪ {s},537

where s is a new vertex added. The source vertex of ∆ is s and the sink is a. For every538

edge (x, y) ∈ E, there is an edge (x, y) in ∆ with capacity c(x, y) is f(x, y) if x ̸= a and 0539

for x = a. Additionally, every edge (x, y) ∈ E induces the reversed edge (y, x) in ∆ with540

capacity max(w(x), w(y)) + 1. Finally, there is an edge from s to every vertex x ∈ B with541

capacity u(x). This network meets the assumptions of Thm. 29, as d+
c (x) < ∞ for x ∈ A542

and d−
c (y) < ∞ for y ∈ B. Therefore, there is a maximal flow j in ∆ with d−

j (x) ≤ d+
j (s) for543

x ∈ V . Note that d+
j (s) ≤ ε by construction.544

Consider the function g :: E → R≥0 given by g(x, y) = f(x, y) + j(y, x) − j(x, y). It is545

easy to see that g is a current in Ω. We next define a graph G with vertices V as follows.546

Every edge (x, y) ∈ E induces the edge (y, x) in G and additionally, if g(x, y) > 0, the edge547

(x, y). Call a vertex x ∈ V reachable iff there is a path in G from x to a. Let h be the current548

g restricted to reachable vertices, i.e., h(x, y) = g(x, y) if both x and y are reachable and549

h(x, y) = 0 otherwise. We shall show that h is the hindrance in Ω we are looking for.550

Note first that h is a current in Ω. Next, we show by contradiction that j(s, x) = u(x) for551

all reachable x, so suppose j(s, x) < u(x) for some reachable x ∈ B. So there is a cycle-free552

path π in G from x to a. Let ε′ be the minimum of g(y, z) for all edges (y, z) of π with553

(y, z) ∈ E, and set ε = min(ε, 1, u(x) − j(s, x)). Clearly, ε > 0. Let j′ be the flow j which has554

been increased on all edges of π and on (s, x) by ε. If this leads to a situation where there555

is some positive flow assignment to two antiparallel edges of ∆, say j′(y, z) ≤ j′(z, y) > 0556

for some (y, z) ∈ E∆ and (z, y) ∈ E∆, then we reduce j′ on both (y, z) and (z, y) by j′(z, y).557

This ensures that j′ assigns a flow between two vertices of ∆ only in one direction, not in558

both. Thus, j′ meets ∆’s capacity constraints and satisfies Kirchhoff’s first law. Hence, j′ is559

a flow in ∆ of value d+
j′(s) = d+

j (s) + ε > d+
j (s), which contradicts the maximality of j.560

Then, all of f ’s reachable Ω′-terminal vertices y ∈ B are also terminal vertices of561

h in Ω, i.e., x ∈ TERΩ(h) if x ∈ TERΩ′(f) ∩ B is reachable. Suppose for the sake562

of contradiction that this was not the case. Then d−
h (x) < w(x) as x ∈ B is a sink,563

but d−
h (x) = d−

g (x) = d−
f (x) + j(s, x) = (w(x) − u(x)) + u(x) = w(x) as x is reachable,564

x ∈ TERΩ′(f)∩B, and u(x) < ∞. A contradiction. Thus, TERΩ(h) is A-B-separating, for if565

(x, y) ∈ E is an edge with x /∈ TERΩ(h), then x and y are reachable and x /∈ EΩ′,B(TERΩ′(f))566

(as d+
h (x) ≤ d+

g (x) = d+
f (x) if x ̸= a), so y ∈ TERΩ′(f) as f is A-B-separating in Ω′ and567

therefore y ∈ TERΩ(h). Hence h is a wave in Ω.568

It remains to show that h is also a hindrance in Ω. We first show that a /∈ E(TER(h)).569

Suppose that a ∈ TERΩ(h) and there was an edge (a, y) ∈ E. By construction of ∆, all570

edges leaving a have capacity 0, so d+
f (a) ≤ d+

g (a) = d+
h (a) = 0, i.e., a ∈ TERΩ′(f). As571

f is A-B-separating in Ω′, y ∈ TERΩ′(f). With y ∈ B being reachable, y ∈ TER(h) by572

the above argument. So a /∈ E(TER(h)). Moreover, d+
h (a) = d+

g (a) ≤ d+
f (a) + d−

j (a) ≤573

d+
f (a) + d+

j (s) ≤ d+
f (a) + ε < w(a). So h is a hindrance in Ω. ◀574

▶ Lemma 31 ([3, Cor. 6.8]). Let g be a current in Ω with ε :=
∑

b∈B d−
g (b) < ∞. If Ω ⊖ g is575

>ε-hindered, then Ω is hindered.576

Proof. Consider the bipartite web Ω′′ = (V, E, A, B, w − d+
g ) and the function u :: V → R≥0577

given by u(x) = d−
g (x). As Ω⊖g is Ω′′ with the weights reduced by u, we can apply Lemma 30578

to Ω′′ and u to get that Ω′′ is hindered. As increasing the weight of vertices in A preserves579

hinderedness, Ω is hindered, too. ◀580
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▶ Lemma 32 ([3, Lem 6.9]). Let Ω be loose and b ∈ B with w(b) > 0. For every δ > 0, there581

exists an ε > 0 such that ε < δ and Ω with the weight of b reduced by ε is unhindered.582

Proof of Lemma 28. We construct the current f using the least fixpoint of a saturation583

function sat in a chain-complete partial order (D, ≤). The set D contains all pairs d = (f, h)584

such that585

(i) f :: E → R≥0 is a current in Ω with d+
f (x) = 0 for all x ∈ V − {a},586

(ii) h :: E → R≥0 is a wave in Ω ⊖ f , and587

(iii) Ω ⊖ (f + h) is unhindered.588

We order the elements of D pointwise, i.e., (f, h) ≤ (f ′, h′) iff f(e) ≤ f ′(e) and h(e) ≤ h′(e)589

for all e ∈ E.590

We first prove that (D, ≤) is a ccpo, i.e., every totally ordered, non-empty subset Y of D591

has a supremum sup Y ∈ D. So let Y ⊆ D be totally ordered and non-empty. We write Yf for592

{f | ∃h. (f, h) ∈ Y } and Yh for {h | ∃f. (f, h) ∈ Y }. The supremum sup Y = (f∗, h∗) is given593

by f∗(e) = sup{f(e) | f ∈ Yf } and h∗(e) = sup{h(e) | h ∈ Yh} for all e ∈ E. The suprema594

in the definition exist in R≥0 because f(x, y) and h(x, y) are bounded by min(w(x), w(y))595

and min(w(x) − d+
f (x), w(y) − d−

f (x)), respectively, by the weight restriction on currents.596

Therefore, it suffices to show that sup Y ∈ D. We prove the three conditions that D imposes:597

(i) It is easy to see that f∗ is a current in Ω with d+
f (x) = 0 for x ∈ V − {a}, as currents598

in a countable web are a ccpo (cf. Sect. 3.2).599

(ii) To see that h∗ is a wave in Ω ⊖ f∗, it suffices to show that all h ∈ Yh are waves in600

Ω ⊖ f∗, as waves in a countable web form a ccpo (cf. Sect. 3.2). So let (f, h) ∈ Y . As Y is601

totally ordered, whenever (f1, h1) ∈ Y and (f2, h2) ∈ Y , then there is a (f3, h3) ∈ Y such602

that d+
f1

(x) + d+
h2

(x) ≤ d+
f3

(x) + d+
h3

(x) and d−
f1

(x) + d−
h2

(x) ≤ d−
f3

(x) + d−
h3

(x) for all x ∈ V .603

From this, it follows that h satisfies the weight restriction on currents in Ω ⊖ f∗. Then, it604

is easy to see that h is a current in Ω ⊖ f∗. Moreover, TERΩ⊖f (h) ⊆ TERΩ⊖f∗(h), as the605

weights in Ω ⊖ f∗ are less than or equal to the weights in Ω ⊖ f . Therefore, h is a wave in606

Ω ⊖ f∗.607

(iii) Let Ω′ abbreviate Ω ⊖ (f∗ + h∗). Now suppose that g is a hindrance in Ω′. Let z608

be a hindered vertex and set δ = wΩ′(z) − d+
g (z). Choose (f, h) ∈ Y such that d+

f∗+h∗(a) <609

d+
f+h(a) + δ. Such f and h exist, because otherwise d+

f∗+h∗(a) + δ = sup{d+
f+h(a) + δ |610

(f, h) ∈ Y } ≤ sup{d+
f∗+h∗(a) | (f, h) ∈ Y } = d+

f∗+h∗(a), but d+
f∗+h∗(a) < d+

f∗+h∗(a) + δ as611

d+
f∗+h∗(a) ≤ w(a) < ∞. Define ε = d+

f∗(a) − d+
f (a). So, 0 ≤ ε < δ by the choice of f and612

h. Set g′ = g + h∗ − h. Then, g′ is a wave in Ω′ ⊖ h, because h∗ + g is a wave and h is a613

current in Ω′. Moreover, ε < δ ≤ wΩ′⊖h(z) − d+
g′(z) and z /∈ EΩ′⊖h(TERΩ′⊖h(g′)). So, g′ is a614

>ε-hindrance in Ω′ ⊖ h. Define the function k :: E → R≥0 by k(e) = f∗(e) − f(e) for e ∈ E.615

Then, k is a current in Ω ⊖ (f + h). As Ω′ ⊖ h = (Ω ⊖ (f + h)) ⊖ k, Ω ⊖ (f + h) is hindered616

by Lemma 31, which contradicts (f, h) ∈ D. Therefore, Ω′ is unhindered and (f∗, h∗) ∈ D.617

This completes the proof that (D, ≤) is a ccpo. Hence, every increasing function on D has618

a least fixpoint in D above any (f, h) ∈ D. We define the saturation function sat :: D → D619

as follows. Given (f, h) ∈ D, choose a maximal wave g in Ω ⊖ (f + h) by the axiom of620

choice and let Ω′ = Ω ⊖ (f + h + g). If d+
f+h+g(a) < wΩ(a), pick a neighbour y of a with621

wΩ′(y) > 0 and pick an ε > 0 such that ε < min(wΩ′(a), wΩ′(y)) and the web Ω′ with y’s622

weight reduced by ε is unhindered. In that case, sat increases f on the edge (a, y) by ε and623

h by g. Otherwise, set sat(f, h) = (f, h).624

We next justify that the function sat is well-defined. First, the maximal wave g exists625

(Sect. 3.2). Second, as g is a maximal wave in Ω ⊖ (f + h), Ω′ = Ω ⊖ (f + h) ⊖ g is loose. So,626

there is a neighbour y of a with wΩ′(y) > 0, because otherwise a /∈ EΩ′(TERΩ′(0)), i.e., the627
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zero wave 0 is a hindrance in Ω′, which contradicts Ω′ being loose. Third, Lemma 32 ensures628

that such an ε exists.629

Next, we prove that sat is increasing in D. Clearly, (f, h) ≤ sat(f, h) for all (f, h) ∈ D.630

To see that sat(f, h) ∈ D, it suffices to consider the case d+
f+h+g(a) < wΩ(a). Suppose631

(f ′, h′) = sat(f, h) and let f ′′ = f ′ − f .632

(i) By the choice of y and ε, f ′′ is a current in Ω ⊖ (f + h + g), so f ′′ is also a current633

in Ω ⊖ f . Hence, f ′ = f + f ′′ is a current in Ω. By construction, d+
f ′(x) = 0 for all634

x ∈ V − {a}.635

(ii) h′ = h + g + f ′′ − f ′′ is a current in Ω ⊖ f ′ = Ω ⊖ f ⊖ f ′′, because h + g + f ′′ is a current636

in Ω ⊖ f , as h is a current in Ω ⊖ f and g a current in Ω ⊖ (f + h) and f ′′ a current in637

Ω ⊖ (f + h + g). Also, h′ is a wave because TERΩ⊖f (h + g) ⊆ TERΩ⊖f ′(h + g) and638

h + g is a wave in Ω ⊖ f .639

(iii) The web Ω ⊖ (f ′ + h′) is unhindered because Ω′ is unhindered and the two differ only640

in the weight of b.641

As Ω is unhindered, (0, 0) ∈ D. Therefore, sat has a least fixpoint in D above (0, 0),642

which we denote by (f̄ , h̄). Let ḡ be the maximal wave in Ω ⊖ (f̄ + h̄), which sat(f̄ , h̄) picks.643

Then, f̄ + h̄ + ḡ is the current that we are looking for. Indeed, d+
f̄+h̄+ḡ

(a) = wΩ′(a), as (f̄ , h̄)644

is a fixpoint of sat. ◀645

5 Discussion of the Formalization646

We have formalized all definitions, theorems, and proofs mentioned in this paper in Isa-647

belle/HOL. This includes all the lemmas and underlying theory. In this section, we discuss648

the challenges we faced and the design decisions we made. The issues with the original649

definitions, theorems, and proofs and their corrections are discussed in the next section.650

Graphs are formalized using Isabelle’s record package [20] as an extensible record with651

one field for the edge relation, given as a binary predicate over the vertices of type α. This652

yields the projection function edge :: α graph ⇒ α ⇒ α ⇒ bool for the edge field.1 From this,653

we derive the set E of edges as an abbreviation.654

record α graph = edge :: α ⇒ α ⇒ bool
definition vertex :: α graph ⇒ α ⇒ bool where vertex G x = (∃y. edge G x y ∨ edge G y x)
type-synonym α edge = α × α

abbreviation E :: α graph ⇒ α edge set where EG = {(x, y). edge G x y}

We derive the set of vertices from edges of the graph rather than modelling them separately.655

This has the advantage that we encode the condition E ⊆ V × V in the construction and do656

not have to carry around this well-formedness condition in our formalization. Conversely,657

graphs in this model cannot have isolated vertices. This is without loss of generality as658

isolated vertices cannot contribute to any flow or cut.659

Networks are formalized as an extension of the record graph. So all operations on graphs660

also work for networks. The same applies to webs.661

1 The record package achieves extensibility with structural subtyping by internally generalizing α graph
to (α, β) graph-scheme, where β is the extension slot for further fields. For example, β is instantiated
with the singleton type unit for graph. All operations on graph are actually defined on graph-scheme so
that they also work for all record extensions. We omit this technicality from the presentation.
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record α network = α graph +
capacity :: α ⇒ ennreal
source :: α

sink :: α

record α web = α graph +
weight :: α ⇒ ennreal
A :: α set
B :: α set

662

Records provide a simple and lightweight means for grouping the components of a network663

or web. Particular properties such as countability, finite capacity and weights, and disjoint664

sides A and B, are formalized as locales [5]. For example, the locale countable-network665

below enforces that there are only countably many edges, the source is not the sink, and666

the capacities are finite and 0 outside of the edges. Using the (structure) annotation on667

a record variable like ∆ [4], we can omit the network (or web) as subscripts, e.g., in the668

assumption countable E; Isabelle automatically fills in the corresponding parameter. We use669

this notational convenience mainly for definitions that need custom syntax anyway, e.g., E,670

RF, and RF◦. For plain HOL functions without special syntax like capacity and source, it is671

usually faster to type the record parameter than to enter special syntax.672

locale countable-network = fixes ∆ :: α network (structure)
assumes countable E and source ∆ ̸= sink ∆

and e /∈ E =⇒ capacity ∆ e = 0 and capacity ∆ e < ∞

Since flows, cuts, and capacities are always non-negative, we use the extended non-negative673

reals ennreal from Isabelle/HOL’s library everywhere. Summations like the in-degree d− are674

expressed using the Lebesgue integral nn-integral over the counting measure count-space A675

on the set A. So every subset of A is measurable and all points have equal weight. Moreover,676

every function is integrable and we need not discharge neither integrability nor summability677

conditions in the proofs. Just the finiteness conditions of the form
∑

x∈A < ∞ are ubiquitous.678

We also formalize capacities and weights as ennreal and explicitly require them being679

finite in the locales. This avoids coercions from the real numbers real into ennreal, which680

would complicate the proof formalization. For example, the in-degree d−
f (f) of y is defined as681

follows where
∑

x∈A g desugars to nn-integral (count-space A) (λx. g). We let the summation682

range over UNIV, the set of all values of α, not only the neighbours of y. Instead, we enforce683

that f is 0 outside of E, e.g., via the capacity assumption in countable-network. This way,684

d-IN depends only on f and not on the graph. This simplifies the formalization because when685

we consider f in the context of different graphs, d-IN f is trivially the same for all of them.686

definition d-IN :: (α edge ⇒ ennreal) ⇒ α ⇒ ennreal where d-IN f y =
∑

x∈UNIV f (x, y)

Regarding the mathematical background theory, we found that most relevant theorems687

were readily available in the Isabelle/HOL library: limits, infinite summations via the688

Lebesgue integral, monotone and majorised convergence, lim sup and lim inf. There is689

even a generic formalization of Cantor’s diagonalization argument by Immler [11]. The690

Bourbaki-Witt fixpoint theorem [8], however, was missing. We therefore ported the Coq691

formalization by Smolka et al. [23] to Isabelle/HOL. It is now part of Isabelle/HOL’s library.692

We have also contributed many lemmas about ennreal and nn-integral to the library.693

Apart from identifying and fixing glitches and mistakes in definitions and proofs (Sect. 6),694

we faced three main challenges during the formalization. First, the definition and proof695

principles in the paper are often not suitable for direct formalization. For example, the696

original proofs construct trimmings, linkages and saturating flows using transfinite iteration697

and transfinite induction with ordinals. We have replaced them with fixpoints of increasing or698

decreasing functions in a chain-complete partial order, using Bourbaki-Witt’s fixpoint theorem699

(Lemmas 15, 21, and 28). This way, we did not need to formalize ordinals and their theory.700
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Second, applying the theorems from the Isabelle library often needs a small twist. The701

proof for the existence of a maximal wave in Sect. 3.2 demonstrates this. The proof that702

the least upper bound
⊔

i∈I fi for a chain fi of currents in a web Γ is a current relies on703

Beppo Levi’s monotone convergence theorem. The challenge here was that the monotone704

convergence theorem applies only to countable increasing sequences, whereas Isabelle’s form-705

alizaton of chain-complete partial orders demands the existence of least upper bounds for706

arbitrary (uncountable) chains. We bridge the gap by finding a countable subsequence of any707

such chain, which relies on the currents being non-zero only on the countably many edges.708

Third, we often faced the problem that a statement had some precondition that was not709

met when we wanted to apply it. In an informal proof, these preconditions would be assumed710

“without loss of generality” or ignored altogether. We deal with them in two ways: either711

introduce a reduction that ensures the precondition or generalize the definitions and proofs712

so that they are not needed. Reductions are in general preferable as generalizations often713

complicate the definitions and proofs. Additional reductions can be seen, e.g., in Lemma 13.714

It assumes that there is no direct edge from s to t and all edges have positive capacity. The715

final theorem 1 does not make these assumptions. We therefore introduce another reduction716

that splits a potential s-t edge by introducing a new vertex and removes all edges with no717

capacity. Similarly, the reduction to bipartite webs in Sect. 3.4 assumes that the web does718

not contain loops. These loops would originate from loops in the original network; so we719

have another reduction that eliminates loops in networks. Reductions are not always feasible720

though. The example of the quotient web (Def. 16) is discussed in the next section.721

On the positive side, reasoning about paths in networks and webs was much less of a722

pain than we had expected. We formalized a finite path as a list of vertices, which allows us723

to reuse Isabelle’s library for lists to manipulate and reason about paths. For example, the724

predicate distinct expresses that a path does not contain cycles, and π @ [x] @ π′ denotes the725

concatenation of the two paths π @ [x] and [x] @ π′. Moreover, we found that E, RF, and726

RF◦ are powerful concepts that allow us to avoid explicitly dealing with paths in the main727

lemmas about flows—once we had proven enough properties about them.728

Table 1 shows line counts of the Isabelle theories for different parts of the formalization,729

as a proxy for the formalization effort. These counts exclude empty lines. The left part730

lists the material that is used by both linkability proofs for bipartite webs. This covers731

the concepts of networks, flows, webs, currents, (maximal) waves, and trimmings, as well732

as the reductions from networks to webs and from webs to bipartite webs. On the right,733

the line counts are shown for linkability of bounded (Sect. 4.1) and unbounded (Sect. 4.2)734

countable bipartite webs, together with the line counts for the helper statements 24 and735

29. The unbounded case requires about 3.6 times as much space as the bounded case if we736

include the formalization of the helper statements. If we exclude the helper statements, the737

ratio is about 5.4. This highlights how much more complicated the general case is.738

We have also generated a PDF from the Isabelle theories using Isabelle’s document739

preparation system. The material corresponding to shared and unbounded fill 236 pages.740

Aharoni et al. need a bit more than 10 pages in [3]. This gives an expansion factor of about741

23. This is much higher than for text book mathematics, where the factor is typically well742

below 10 [6, 25]. We take this as an indication that the original paper is very dense.743

6 Problems in the Original Proof744

We now discuss the problems we have identified in the original paper during the formalization.745
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Table 1 Line counts for different parts of the formalization, not counting empty lines

Shared Bounded Unbounded

preliminaries 200 matrix for marginals (Prop. 24) 845
networks & webs 2214 flow attainability (Thm. 29) 1954
reductions 1248 bipartite linkability (Thms. 26 / 22) 589 3158

total 3662 1434 5112
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Figure 10 A loose web (left) whose bipartite
reduction (right) is not loose as witnessed by
the non-zero wave shown.
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Figure 11 An unhindered web (left) whose
bipartite reduction (right) contains a hindrance
as witnessed at x′.

Reduction to bipartite webs This is the main problem we have found. Aharoni et al. [3]746

claim that the reduction to bipartite webs from Sect. 3.4 preserves looseness, but this is not747

the case. In Fig. 10, the web Γ on the left is loose, its bipartite transformation bp(Γ) on748

the right is not loose, because it contains the non-zero wave shown. The problem is that749

there is no path from the (infinitely many) vertices yi (where i ∈ N) to b. In a finite web, we750

could remove all vertices that cannot reach a vertex in B, because they cannot contribute to751

a web-flow. In the infinite case, however, we cannot do so easily because such infinite paths752

do occur in infinite networks and absorb parts of the (maximal) flow; an example is given753

in the conclusion. So their key theorem [3, Thm. 6.5], namely that every countable loose754

bipartite web contains a linkage, cannot be used to prove the general case.755

Instead, we strengthen the theorem to countable unhindered bipartite webs (Thm. 22). The756

induction invariant now is Ω⊖fn being unhindered rather than being loose, and the induction757

step (Lemma 28) must also be generalized. Fortunately, the original high-level ideas carry over;758

our proof composes the lemmas 30, 31 and 32 in a different order. We regain looseness from759

unhinderedness by first finding a maximal wave and reducing the weights, similar to what is760

happening in Lemma 19. Note that the reduction bp does not preserve unhinderedness either,761

as the example in Fig. 11 shows. The web on the left is not loose as it contains the shown wave.762

Quotient webs Quotient webs (Def. 16) are an example where the definition had to be763

changed. This change propagates to the proofs of the basic properties of quotient webs. In de-764

tail, the original definition sets the edges as EΓ/f = {(x, y) ∈ E | x /∈ RF◦
Γ(f) ∧ y /∈ RF◦

Γ(f)},765
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Figure 12 A wave f in a web Γ (left) and the quotient web
Γ/f (right). The quotient contains the edge (z, x) only in [3].
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Figure 13 Wave f in a web
none of whose trimmings g sat-
isfies Aharoni et al.’s condition
TER(g)−A = E(TER(f))−A.

i.e., an edge may point to one of f ’s essential terminal vertices. Our Definition 16 excludes766

these edges. The difference is illustrated in Fig. 12. The quotient Γ/f on the right of the767

web Γ and the wave f on the left contains the edge (z, x) only with the original definition.768

This edge invalidates a number of statements, e.g., that f + g ↾ (Γ/f) is a current or a wave769

if g is a current or a wave in Γ, where g ↾ (Γ/f) restricts g to the vertices of Γ/f . Take, e.g.,770

g(a, z) = 2, g(z, x) = g(z, y) = 1, and g(e) = 0 otherwise.771

Our definition therefore excludes this edge. And while we were at it, we also changed the772

definition of AΓ/f and the weights so that the two sides of the quotient are always disjoint773

and vertices without edges have weight 0. These changes ensure that the quotient web meets774

the assumptions of the reduction to bipartite webs (Sect. 3.4). Accordingly, we had to adapt775

the existing proofs about the quotient web’s properties or find new ones.776

Trimmings The definition of trimmings (Def. 14) is an example of a small glitch that affects777

proofs only minimally. For trimmings, Aharoni et al. [3] require the stronger condition778

TER(g) − A = E(TER(f)) − A instead of E(TER(g)) − A = E(TER(f)) − A. The two are779

equivalent only if there are no vertices with weight 0, but webs may contain such vertices.780

So Lemma 15 need not hold for such webs. For example, Fig. 13 shows a wave f that does781

not have a trimming according to Aharoni et al.’s definition [3, Def. 4.7]. Every wave g has782

x ∈ TER(g) because x has weight 0, but x /∈ E(TER(f)) − A = {y}.783

Reduction from networks to webs The first step in the proof reduces networks to web784

(Sect. 3.1). The original reduction in [3] contains two flaws, which we have fixed.785

First, Aharoni et al. [3] define a cut as a set of edges of the form {(x, y) ∈ E | x ∈ S∧y /∈ S}786

for some set of vertices S such that s ∈ S and t /∈ S. They claim that if S is A-B-separating787

in web(∆), then E(S) is a cut. This need not hold as the example in Fig. 14 shows. The788

grey web vertices separate A and B and are both essential (the one with weight 1 is essential789

due to the edge to the vertex with weight 2 and the one with weight 0 is essential due to the790

edge to the vertex with weight 4). But the set {(a, b), (b, c)} of corresponding edges in the791

network is no cut, because b occurs both as the end and as the start of an edge. As the two792

grey vertices in Fig. 14 are orthogonal to the web-flow, the reduction as stated in [3] fails for793

this network.794

Instead, we define the cut Ŝ corresponding to an A-B-separating set S as the roofing of795

the source vertices of the edges in S. Moreover, A-B-separating sets orthogonal to a web-flow796

can only contain two neighbouring web vertices if one of them has weight 0. Therefore, our797

Lemma 13(c) requires that all network edges have positive capacity.798

Second, the original definition of orthogonality in webs [3] is too permissive. In detail,799

they call an A-B-separating set S orthogonal to a web-flow f iff S ⊆ SAT(f) and f(x, y) = 0800

for all x ∈ V − RF◦(f) and y ∈ RF◦(f). Our notion of orthogonality strengthens theirs in801

two respects. First, we change y ∈ RF◦(f) to y ∈ RF(f). This is necessary to avoid the802
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Figure 14 A network (left) and the corresponding web
(right) which contains an A-B-separating set of terminal
vertices (grey) which do not correspond to a cut of the
network.
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Figure 15 The network on
the top shows that condition
(ii) in Def. 12 is needed for the
reduction to the web at the
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Figure 16 A loose bipartite web Ω with a sequence of currents fn (left) and the residual web
Ω ⊖ (limn→∞ fn) of the limit flow (right), which is not loose as shown by the non-zero wave.

problem from Fig. 14. Second, we add the condition (ii) in Def. 12. Figure 15 shows why the803

condition is needed. The grey vertex A-B-separates the web at the bottom and is orthogonal804

to zero web-flow. Yet, the edge (s, a) is not orthogonal to the zero flow in the network at the805

top.806

Flow attainability The proof of the unbounded bipartite case (Thm. 22) makes use of the807

flow attainability theorem (Thm. 29). Aharoni et al. [3, Thm. 5.1] have proved it in the808

special case when d−
c (x) < ∞ for all x ∈ V and there are no incoming edges to s. A careful809

analysis shows that their proof generalises to our statement.810

Vertex saturation in bipartite webs Aharoni et al. [3, Lem. 6.10] stated Lem. 28 with811

“unhindered” replaced by “loose”. Their proof is structurally similar to ours, but assumes812

that Ω ⊖ (f + h) is loose rather than unhindered. Yet, taking the limit preserves only813

unhinderedness, not looseness. For example, Fig. 16 shows a loose bipartite web on the left.814

Suppose that we want to saturate the vertex a1 and suppose that the saturation function815

sat always picks b2 as the neighbour vertex whose weight should be reduced. Then, we can816

get a sequence of webs (Ωn)n∈N = Ω ⊖ (fn + hn) with weight reductions on b2 given by817

wΩn
(b2) = 2 − n−1

n , corresponding to the currents fn shown in Fig. 16. Since Ωn is loose, the818

wave counterpart hn to fn is always the zero wave. In the limit n → ∞, the residual web819

Ω∞ = Ω ⊖ (limn→∞(fn + hn)) is not loose as shown by the wave in Fig. 16 on the right. Our820

proof does not suffer from this problem because our induction invariant is unhinderedness821

rather than looseness.822
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Figure 17 An infinite network with an orthogonal pair of a cut and a flow.

7 Related work823

Lee [15] and Lammich and Sefidgar [13, 14] have formalized the MFMC theorem for finite824

networks in Mizar and Isabelle/HOL, respectively. Lammich and Sefidgar additionally825

formalize and verify several max-flow algorithms. We reused Lammich and Sefidgar’s826

formalization in our proof of Prop. 24. We make no algorithmic considerations, as countable827

networks are infinite objects that lie beyond the reach of traditional notions of algorithms.828

Lyons and Peres [19, Thm. 3.1] consider countable locally finite networks, where every829

vertex has only finitely many neighbours, and without a sink. They show that the maximum830

flow’s value equals the value of a minimum cut, where a cut here contains an edge of every831

infinite simple path that starts at the source. Like our proof for the bounded case, their832

proof extends the MFMC theorem for finite networks using majorised convergence. Since833

their graphs are locally finite, all summations of interest are finite by construction.834

8 Conclusion835

In this paper, we have formalized a strong max-flow min-cut theorem for countable networks in836

Isabelle/HOL. To rule out anomalities due to the network being infinite, the theorem statement837

avoids imprecise infinite sums and instead compares the saturation edge by edge. During the838

formalization, we have discovered and fixed a number of problems in the original proof [3].839

Arguably, this statement still does not capture the intuition fully. For example, the840

infinite network in Fig. 17 has a cut of value 4 with an orthogonal flow. This is the cut that841

the proof of Thm. 1 constructs. Yet, this cut is not minimal: The cut that separates the842

upper nodes from the lower nodes would be saturated by a flow of 2 units (not shown). This843

illustrates the intricacies of infinite networks: The out-flow from the source s of value 3 drains844

away in the infinite ray s → x1 → x2 → x3 → . . .. Conversely, the in-flow to the sink t of845

value 4 is pulled in via the infinite path . . . → y3 → y2 → y1 → z → t. So this network shows846

that the outflow from the source may exceed the capacity of a cut and yet not saturate it.847

Aharoni et al. [3, Sects. 7–8] study two restrictions on networks that avoid such anomalies:848

networks without infinite edge-disjoint paths and locally-finite networks. We have not yet form-849

alized these results. Neither result applies to the network in Fig. 17. So finding a more intuitive850

statement of the max-flow min-cut theorem for countable networks is still an open problem.851
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