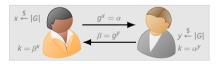
A Mechanized Proof of the Max-Flow-Min-Cut Theorem for Countable Networks

Andreas Lochbihler

Digital Asset

CryptHOL

Relational logic for discrete probability distributions



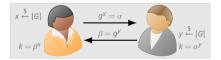
CryptHOL

CryptHOL: Game-based Proofs in Higher-order $\operatorname{Logic}^{\star}$

David A. Basin, Andreas Lochbihler, and S. Reza Sefidgar Institute of Information Security, Department of Computer Science, ETH Zurich, Zurich, Switzerland

Abstract. Game-based proofs are a well-established paradigm for structuring security arguments and simplifying their understanding. We present a novel framework. CryntHOL. for rizorous game-based proofs that is

Relational logic for discrete probability distributions



►Lifting operator

A general framework for probabilistic characterizing formulae

Joshua Sack¹ and Lijun Zhang²

Department of Mathematics and Statistics, California State University Long Beach DTU Informatics, Technical University of Denmark

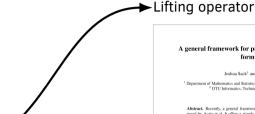
Abstract. Recently, a general framework on characteristic formulae was proposed by Aceto et al. It offers a simple theory that allows one to easily obtain characteristic formulae of many non-probabilistic behavioral relations. Our paper studies their techniques in a probabilistic settine. We provide a general method

CryptHOL

CryptHOL: Game-based Proofs in Higher-order Logic*

David A. Basin, Andreas Lochhilder, and S. Reza Sefidear Institute of Information Security, Department of Computer Science, ETH Zurich, Zurich Switzerland

Abstract. Game-based proofs are a well-established paradigm for structuring security arguments and simplifying their understanding. We present a novel framework, CryptHOL, for rigorous game-based proofs that is



A general framework for probabilistic characterizing formulae

Joshua Sack¹ and Lijun Zhane²

1 Department of Mathematics and Statistics, California State University Long Beach 2 DTU Informatics, Technical University of Denmark

Abstract, Recently, a general framework on characteristic formulae was pronosed by Aceta et al. It offers a simple theory that allows one to easily obtain tis formulas of more non-probabilistic behavioral relations. Our paper dubilistic setting. We provide a general method

Relational logic fc probability distrib

The Max-Flow Min-Cut theorem for countable networks

Ron Aharoni ^{a,1,3}, Eli Berger ^{b,2}, Agelos Georgakopoulos ^{c,3}, Amitai Perlstein ^a, Philipp Sprüssel c,3

ABSTRACT

- a Department of Mathematics, Technion, Haifa, Israel 32000
- b Department of Mathematics, Faculty of Science and Science Education, Haifa University, Israel 32000
- c Universität Hamburg, Germany

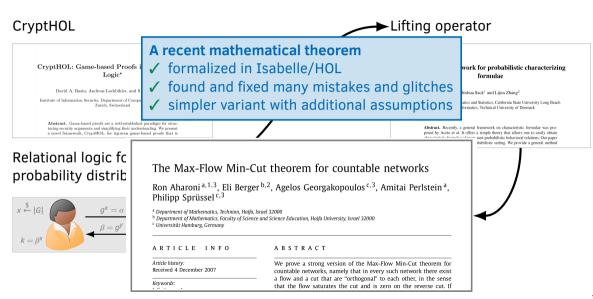
ARTICLE INFO

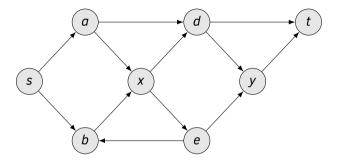
We prove a strong version of the Max-Flow Min-Cut theorem for

Article history: Received 4 December 2007

Keywords:

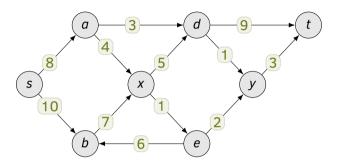
countable networks, namely that in every such network there exist a flow and a cut that are "orthogonal" to each other, in the sense that the flow saturates the cut and is zero on the reverse cut. If





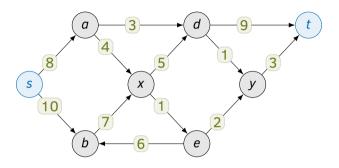
Network

graph *G* = (*V*, *E*)



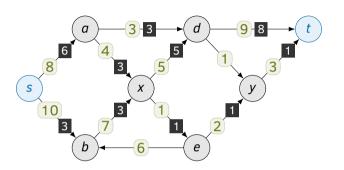
Network

- graph *G* = (*V*, *E*)
- capacity $c: E \to \mathbb{R}_{\geq 0}$



Network

- graph *G* = (*V*, *E*)
- capacity $c: E \to \mathbb{R}_{\geq 0}$
- source s, sink t



Network

- graph *G* = (*V*, *E*)
- capacity $c: E \to \mathbb{R}_{\geq 0}$
- source s, sink t

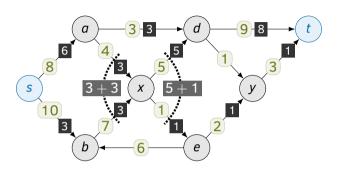
- Capacity $f(e) \le c(e)$
- Preservation $\sum_{e \in \text{in}(x)} f(e) = \sum_{e \in \text{out}(x)} f(e)$ for $x \in V - \{s, t\}$



Network

- graph *G* = (*V*, *E*)
- capacity $c: E \to \mathbb{R}_{\geq 0}$
- source s, sink t

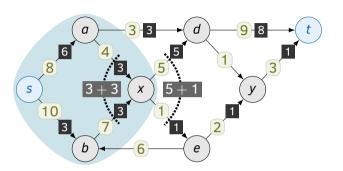
- Capacity $f(e) \le c(e)$
- Preservation $\sum_{e \in \text{in}(x)} f(e) = \sum_{e \in \text{out}(x)} f(e)$ for $x \in V - \{s, t\}$



Network

- graph G = (V, E)
- capacity $c: E \to \mathbb{R}_{\geq 0}$
- source s, sink t

- Capacity $f(e) \le c(e)$
- Preservation $\sum_{e \in \text{in}(x)} f(e) = \sum_{e \in \text{out}(x)} f(e)$ for $x \in V - \{s, t\}$
- Value $|f| = \sum_{e \in \text{out}(s)} f(e) = \sum_{e \in \text{in}(t)} f(e)$ |f| = 6 + 3 = 8 + 1



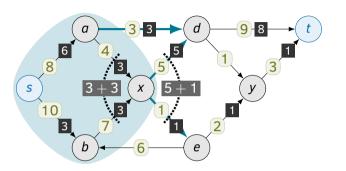
Cut $C \subseteq V$

- $s \in C, t \notin C$
- Value $|C| = \sum_{(x,y) \in E, x \in C, y \notin C} c(x,y)$

Network

- graph G = (V, E)
- capacity $c: E \to \mathbb{R}_{\geq 0}$
- source s, sink t

- Capacity $f(e) \le c(e)$
- Preservation $\sum_{e \in \text{in}(x)} f(e) = \sum_{e \in \text{out}(x)} f(e)$ for $x \in V - \{s, t\}$
- Value $|f| = \sum_{e \in \text{out}(s)} f(e) = \sum_{e \in \text{in}(t)} f(e)$ |f| = 6 + 3 = 8 + 1



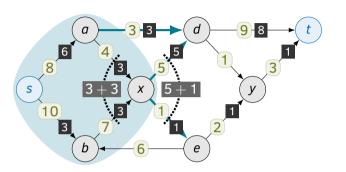
Cut $C \subseteq V$

- $s \in C, t \notin C$
- Value $|C| = \sum_{(x,y) \in E, x \in C, y \notin C} c(x,y)$ |C| = 3 + 5 + 1

Network

- graph G = (V, E)
- capacity $c: E \to \mathbb{R}_{\geq 0}$
- source s, sink t

- Capacity $f(e) \le c(e)$
- Preservation $\sum_{e \in \text{in}(x)} f(e) = \sum_{e \in \text{out}(x)} f(e)$ for $x \in V - \{s, t\}$
- Value $|f| = \sum_{e \in \text{out}(s)} f(e) = \sum_{e \in \text{in}(t)} f(e)$ |f| = 6 + 3 = 8 + 1



Cut $C \subseteq V$

- $s \in C, t \notin C$
- Value $|C| = \sum_{(x,y) \in E, x \in C, y \notin C} c(x,y)$ |C| = 3 + 5 + 1

Network

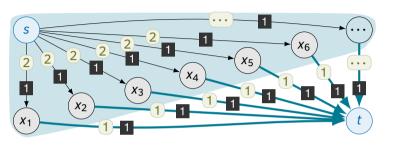
- graph G = (V, E)
- capacity $c: E \to \mathbb{R}_{\geq 0}$
- source s, sink t

Max-Flow Min-Cut Theorem In every finite network, there exist a cut C and a flow f s.t. |C| = |f|.

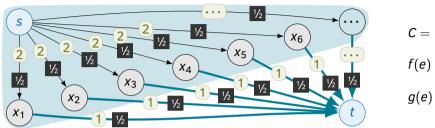
Lammich and Sefidgar [ITP 2016]

Flow $f: \overline{E} \to \mathbb{R}_{\geq 0}$

- Capacity $f(e) \le c(e)$
- Preservation $\sum_{e \in \text{in}(x)} f(e) = \sum_{e \in \text{out}(x)} f(e)$ for $x \in V - \{s, t\}$
- Value $|f| = \sum_{e \in \text{out}(s)} f(e) = \sum_{e \in \text{in}(t)} f(e)$ |f| = 6 + 3 = 8 + 1



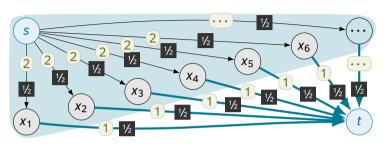
$$C = \{s, x_1, x_2, \ldots\}$$
 $|C| = \infty$
 $f(e) = 1$ $|f| = \infty$



$$C = \{s, x_1, x_2, \ldots\} \quad |C| = \infty$$

$$f(e) = 1$$
 $|f| = \infty$

$$g(e)=1/2$$
 $|g|=\infty$

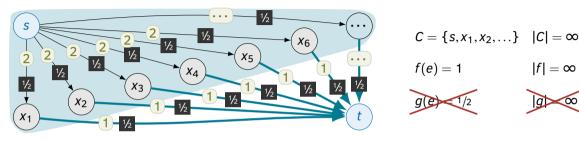


$$C = \{s, x_1, x_2, \ldots\} \quad |C| = \infty$$

$$f(e) = 1$$
 $|f| = \infty$

$$g(e)=1/2$$
 $|g|=\infty$

Avoid infinite sums!

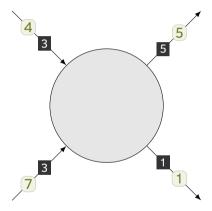


Avoid infinite sums!

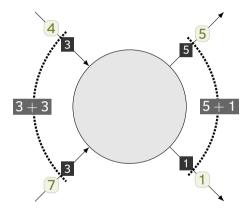
Max-Flow Min-Cut Theorem [Aharoni et al.]

There exist a cut *C* and a flow *f* s.t.

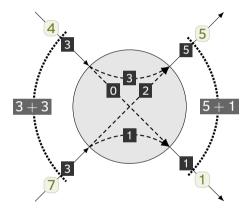
- f(x,y) = c(x,y) for $(x,y) \in E, x \in C, y \notin C$
- f(x,y) = 0 for $(x,y) \in E, x \notin C, y \in C$

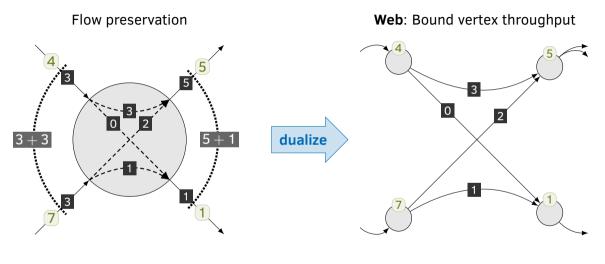


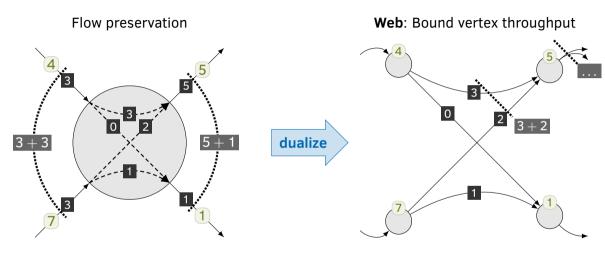
Flow preservation

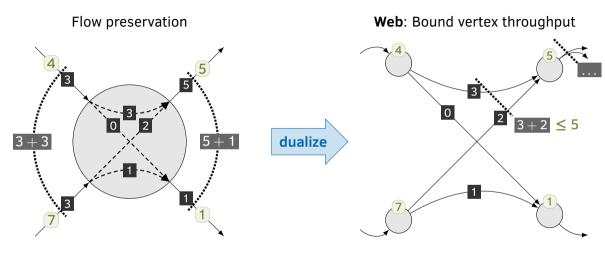


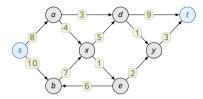
Flow preservation

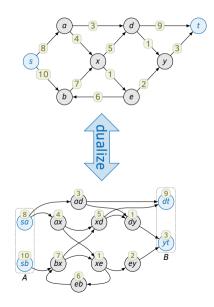


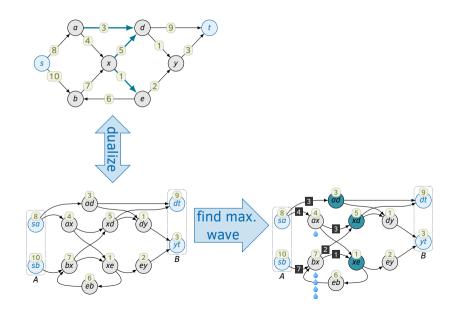


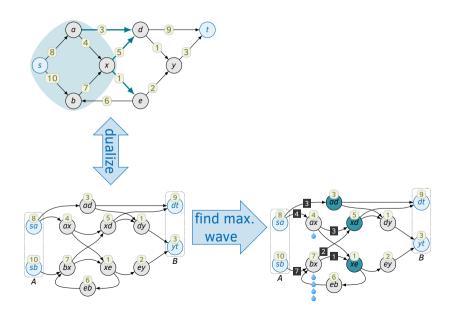


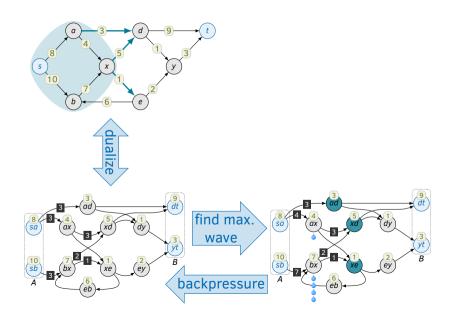


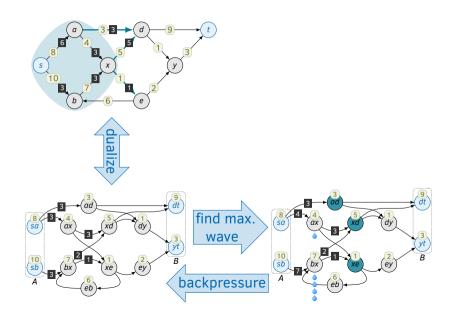


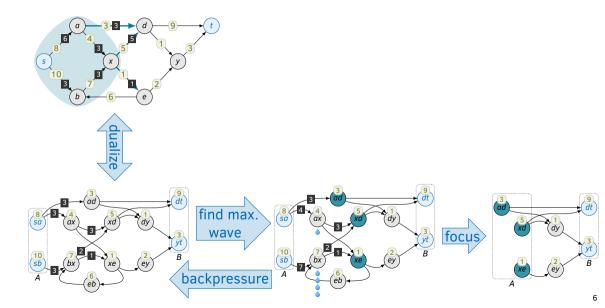


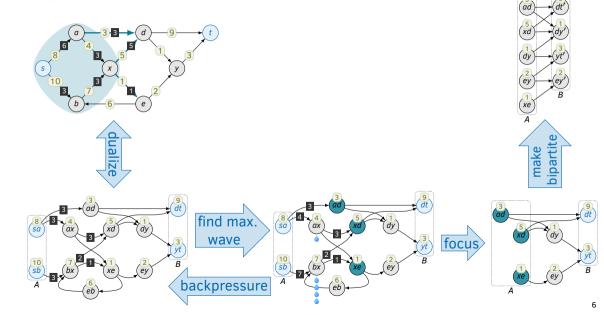


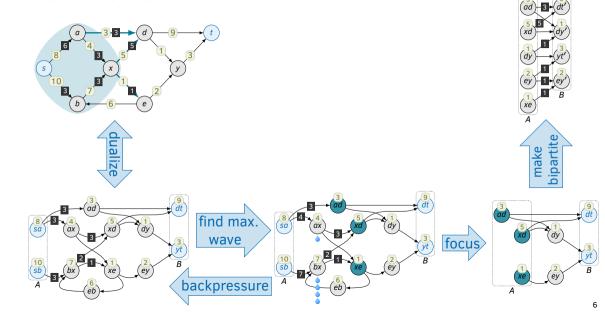


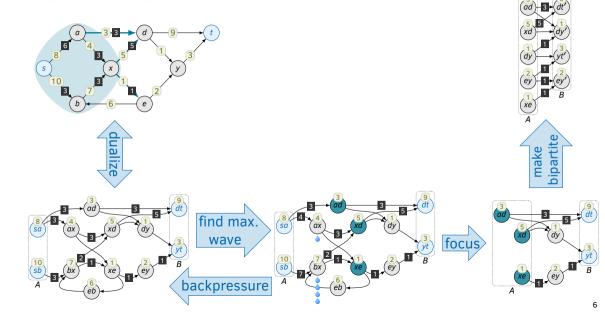


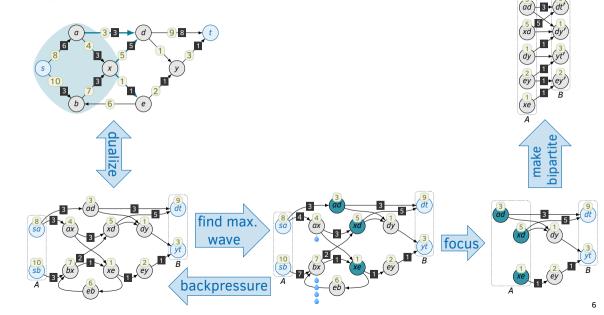


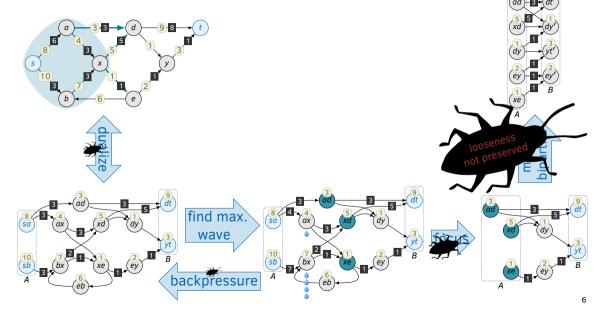




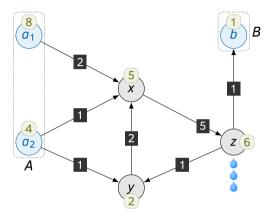


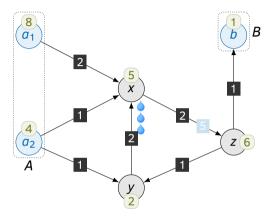


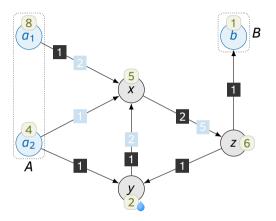


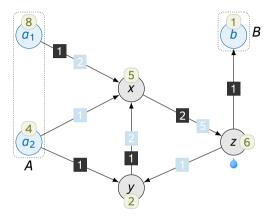


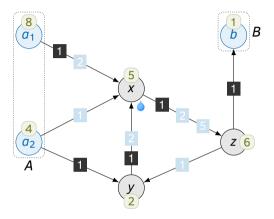
Transformations 1. adapt proof to weakened induction invariant new proof using finite MFMC theorem if total neighbour weight is finite find max. wave backpressure

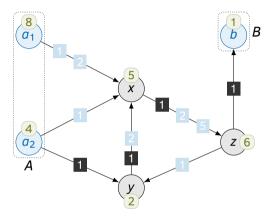


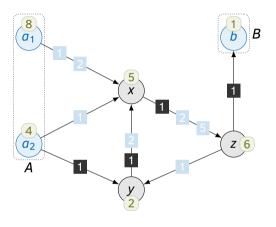










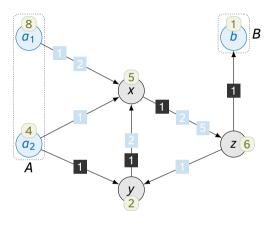


Backpressure $bp_G : Flow \Rightarrow Flow$

Pick a leaking vertex • if any and reduce incoming flow.

$$f = fix(bp_G)$$

7



Backpressure $bp_G : Flow \Rightarrow Flow$

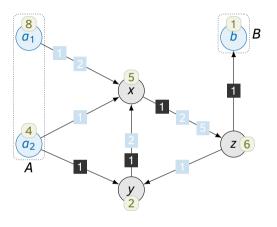
Pick a leaking vertex • if any and reduce incoming flow.

$$f = fix(bp_G)$$

$$Flow = (E \Rightarrow \mathbb{R}_{\geq 0}, \geq)$$
 is a ccpo

Knaster-Tarski?

7



Backpressure $bp_G : Flow \Rightarrow Flow$

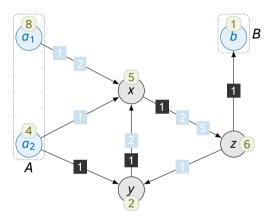
Pick a leaking vertex • if any and reduce incoming flow.

$$f = fix(bp_G)$$

$$Flow = (E \Rightarrow \mathbb{R}_{\geq 0}, \geq)$$
 is a ccpo

Knaster Tarski? bp_G is not monotone

7



Backpressure $bp_G : Flow \Rightarrow Flow$

Pick a leaking vertex • if any and reduce incoming flow.

$$f = fix(bp_G)$$

$$Flow = (E \Rightarrow \mathbb{R}_{\geq 0}, \geq)$$
 is a ccpo

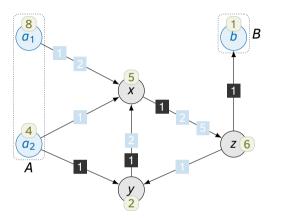
Knaster Tarski? bp_G is not monotone

Bourbaki-Witt! bp_G is decreasing!

$\begin{array}{c} {\bf Transfinite~Constructions~in~Classical~Type} \\ {\bf Theory} \end{array}$

Gert Smolka^(ES), Steven Schäfer, and Christian Doczkal Saarland University, Saarbrücken, Germany (smolka, schaefer, doczkal) for, uni-saarland, de

Abstract. We study a transfinite construction we call tower construction in classical type theory. The construction is inductive and applies to partially ordered types. It yields the set of all points reachable from



Backpressure $bp_G : Flow \Rightarrow Flow$

Pick a leaking vertex • if any and reduce incoming flow.

$$f = fix(bp_G)$$

 $Flow = (E \Rightarrow \mathbb{R}_{\geq 0}, \geq)$ is a ccpo

Knaster Tarski? bp_G is not monotone

Bourbaki-Witt! bp_G is decreasing!



Gert Smolka^(S), Steven Schäfer, and Christian Doczkal Saarland University, Saarbrücken, Germany (smolka, schaefer, doczkal) Sps. uni-saarland, de

Abstract. We study a transfinite construction we call tower construction in classical type theory. The construction is inductive and applies to partially ordered types. It yields the set of all points reachable from

Available in the AFP

 $is a-afp.org/entries/MFMC_Countable.html$

Available in the AFP

isa-afp.org/entries/MFMC_Countable.html

Preliminaries 200 Networks & webs 2214 Transformations 1248 Bounded linkability 1434 Unbounded linkability 5112 Total 10208

Available in the AFP

isa-afp.org/entries/MFMC_Countable.html

Line	counts
Preliminaries	200
Networks & webs	2214
Transformations	1248
Bounded linkability	1434
Unbounded linkability	5112
Total	10208

